
Migrating IoT Processing to Fog Gateways
Daniel Happ, Sanjeet Raj Pandey, Vlado Handziski

Technische Universität Berlin, Telecommunication Networks Group (TKN)
{happ, pandey, handziski}@tkn.tu-berlin.de

Abstract—Internet-connected sensor devices usually send their
data to cloud-based servers for storage, data distribution and
processing, although the data is often mainly consumed locally
to the source. This creates unnecessary network traffic, increases
latency and raises privacy concerns. Fog and edge computing
instead propose to migrate some of those functions to the edge
of the network. In particular, on premise gateways have the
potential to offer more privacy preserving and low-latency local
storage and processing capabilities. In this study, we outline
our ongoing efforts to combine the benefits of fog and cloud
sensor data processing. We present our work-in-progress towards
a system that automatically selects the most suitable execution
location for processing tasks between cloud and fog. We present
a protocol for migration of processing tasks from one system to
another without service interruption, and propose a reference
architecture. We additionally introduce an analytical cost model
that serves as basis for the placement selection and give advice on
its parametrization. Finally, we show initial performance results,
gathered with an early prototype of the proposed architecture.

I. INTRODUCTION

The Internet of Things (IoT) enables applications that interact
with the physical world around us in real-time by embedding
sensors, software and network connectivity into physical objects.
Additional software components for sensor data distribution,
storage, and analytics, are often offered as services by cloud
providers [1]. However, cloud computing is not always the most
suitable option for offering those services in the IoT context,
especially for latency and privacy sensitive applications [2].
Instead of forcing all data through cloud servers that are
possibly located far away, fog computing proposes to move
some of those services to the edge of the network [3], in our
case to existing gateways devices.

We envision the architecture of future IoT systems to have
3 layers, as shown in Figure 1. The device layer consists of
sensor and actuator devices, which are severely constrained in
terms of processing power, memory and energy. Those ”things”
are connected to a nearby gateway which relays their data to the
Internet. Fog and cloud layers provide the means to distribute,
store and process sensor data. While fog instances are relatively
local and thus closer to the end-user, the centralized remote
cloud provides ubiquitous and seemingly infinite access to
storage and processing.

We expect that all the components use the publish/subscribe
pattern to communicate [2], [4]. In this one-to-many pattern,
the matching between consumer and producer of data is done
by message brokers, which we expect to run on cloud and fog
instances. We mainly consider the topic based naming scheme,
where the symbolic channel addresses are strings.

We identify gateway devices as a prime candidate for local,
low-latency and privacy preserving storage and processing.
While sensor devices themselves are very constrained, today’s
IoT gateway hardware include powerful embedded single-board
computers (Raspberry Pis, BeagleBone Blacks, Intel NUCs,
home routers, etc.) and smartphones and are powerful enough
to take over some of the services the cloud is providing today.
Gateways in industrial and home environments are usually
mains-powered and not energy constrained. We argue that
already deployed gateway hardware has a significant amount
of potential processing power and storage available right on
premise that is not yet fully utilized. Through leveraging
local processing on gateway devices and migrating heavy
computation to resourceful cloud servers on demand, the
resource constraints of local gateway hardware regarding CPU-,
memory-, or network-intensive tasks can be overcome while
still benefiting from the locality gateways provide.

In this work, we present our ongoing effort aimed at
developing a flexible framework for IoT process relocation. Al-
though the concepts provided here universally apply to process
migration in distributed IoT systems using publish/subscribe,
we consider the context of gateway to cloud offloading as an
example. Our main contributions in this work are threefold: 1)
We outline a migration mechanism and a framework for sensor
processing tasks. 2) We provide a cost model for processing task
migration and give advice on a suitable parametrization. 3) We
show preliminary measurements of a research prototype. Those
parts of this paper describing the framework and measurements
are largely based on already published work [5]. The in-depth
analysis of the cost model for task migration has not been
published before.

Low 

Latency 

High 

Latency 
Cloud 

Sensors 

Last Mile Link 

DSL, Cable, 3G 

Gateways 

VM 

GW GW GW 

S S 

S 
S S 

S 

VM … 

Fig. 1. Overall architecture of a simplified Fog-enabled IoT platform.

,

29



Migration Request 

Transfer Code 

Suspend Sensor 

GetState 

Delete 

Migration Response 

(accept) 

Verify Code 

Setup 

Subscribe 

Acknowledge Code 

SetState 

Resume 

Acknowledge Start 

Hypervisor Hypervisor 

Fig. 2. Migration between two hypervisors.

II. GATEWAY TO CLOUD OFFLOADING OF SENSOR
PROCESSING TASKS

In this work, we define a sensor processing task very broadly
as an arbitrary computation on a set of input sensor streams that
create one or more output streams. Input streams are exclusively
obtained by subscribing to a pub/sub system. Likewise, the
output is published on one or more output topics. The process
can be defined freely by the user; we do not make any
assumptions about the function provided.

A process has two parts, the code that defines its function
and its state. To enable migration, we need a standard way
to snapshot the state and to restore it at the new location.
We therefore require each processing task to implement a
predefined set of operations, which are given in Table I. The
getState method is used to extract the current process state.
The setState method is called to set the (initial) state of the
task. The state has to be serialize to a byte stream. The specific
encoding of the state is up to the task developer, as long as it
is serialized to a byte stream.

For starting, suspending and resuming tasks, we use addi-
tional operations. Since we do not want to make any assumption
on the specific type of task, each one has its own constructor/de-
constructor (setup/delete) methods to initialize the process, e.g.
with a pub/sub broker. The subscribe method starts to subscribe
on every input topic given and fills the relevant queues with
sensor data. It does not start processing any data. This is
triggered by a call to the resume method, which takes the
sequence number of the next value to process. A process is
likewise suspended using the suspend call, which returns the
next sequence number to process.

The system we envision should dynamically adapt to the
current state of each available processing instance and offer
migration from cloud to gateway and from gateway to cloud.
While not specifically targeted in this work, a gateway to
gateway offloading would be possible as well. As a simplified
example, we use one gateway and one cloud instance. We
envision that the system has a default entry point that stays
responsible for the task. In our case, this is the local gateway.
Each task is defined by code, initial state and estimates for
resource usage. Since different task have different requirements,

TABLE I
OVERVIEW OF SPECIFIC PROCESSING TASK METHODS.

Method Desciption
setup called before launch to initialize task
subscribe called to subscribe to input topics and fill buffers
setState called to set initial state to representation given
resume called to start processing
restart called to restart processing
suspend called to suspend processing
getState called to get representation of the process state
delete called for terminating the processing task

Decision
Engine

Hypervisor

Execution
Environment

Controller

Profiling

Fog enabled Gateway Cloud

Hypervisor

Execution
Environment

Profiling Plugins
CPU

Memory
Network Traffic

Task Issuer

Administrator

Optimizer

Fig. 3. Simplified gateway to Cloud offloading architecture.

not all tasks are equally suitable for remote execution. The task
issuer may thus give additional constraints, e.g. if a task must
not be offloaded. The placement of the processing task must
comply with the given constraints, as well as the available
resources on the gateway. Resource usage is continuously
monitored and the corresponding task meta-data updated.

Figure 3 depicts the high-level architecture of the offloading
system. Every entity offering execution of processing tasks has
a Hypervisor that suspends, resumes and migrates processing
tasks. The execution environment is instrumented with profilers
that monitor the overall and per task resource usage. The
entities that not only support processing of existing tasks but
also issuing new processing tasks have a controller that receives
the necessary task definitions and relevant metadata. A decision
engine decides whether and where to offload the task based on
constraints, issued tasks, optimization goal and profiling data.

We further identify three distinct roles to interact with the
system: The local administrator defines constraints for the
execution environment, e.g. total CPU or memory consumption
can be restricted. The task issuer defines the processing
function and additional metadata, such as estimates of resource
consumption and input and output topics as well as estimated
output frequencies. The optimizer sets the optimization goal.

III. ADAPTIVE OFFLOADING POLICY

A core part of the presented offloading system is the decision
engine, which determines which processes should be offloaded.
The problem of assigning processing tasks to processing nodes
is related to the knapsack problem and NP-hard. In order to
get further insights into the trade-offs of different offloading
policies, we formulate the problem of assigning tasks to
processing nodes as an optimization problem. We then derive

30



a greedy strategy and give some pointers for future work in
the area.

We assume the simplified case of one fog gateway that
can either run processing tasks locally or give them upstream
to the next higher layer, which in our case is a cloud
backend. We further assume that the cloud can provide
infinite resources and the gateway has zero cost for unused
resources. We model the system as time discrete with time
steps on the creation or destruction of processing tasks and
at regular intervals where resource usage is updated and the
assignment problem reevaluated. Let us suppose that we
have n processing tasks P1, P2, . . . , Pn. We further assume
a processing task Pi during the time frame t yields an
output from the profilers which is characterized as the tuple
〈cpui(t),memi(t), rxi,loc(t), rxi,rem(t), txi,loc(t), txi,rem(t)〉,
where cpui(t) is the amount of computing resource required
during the time frame (e.g. CPU usage), memi(t) is the
amount of memory used for the task, rxi,loc(t) and txi,loc(t)
are the number of bytes of traffic received and transmitted
locally on the same gateway and rxi,rem(t) and txi,rem(t)
the amount of external traffic to the cloud. When the process
is first started, the variables are set to the metadata provided
by the task issuer.

We further introduce the decision variable xi ∈ {0, 1}
determining if Pi should be run locally (x = 0) or in the
remote cloud (x = 1). This yields the following function
for the monetary cost of the system, which would be one
possible optimization goal. The cost function has three parts:
The first part describes the bandwidth cost from gateway to
cloud. The second and third part are costs for computing power
and memory in the cloud respectively. Weight parameters have
to be defined according to the cost for CPU, memory and
bandwidth of each individual cloud provider. Since we only
look at a fixed t, we omit this parameter for clarity:

min
xi∈0,1

(ctransfer · ωtr + cmemory · ωmem + ccpu · ωcpu) (1)

where

ctransfer =

n∑

i=1

xi (rxi,loc + txi,loc)

+(1− xi)(rxi,rem + txi,rem) (2)

cmemory =
n∑

i=1

memi · xi (3)

ccpu =
n∑

i=1

cpui · xi (4)

Additionally, we identify several constraints, namely that
processes run locally may in total not exceed a predefined
fraction of the available resources:

n∑

i=1

cpui · (1− xi) ≤ availcpu · fcpu (5)

n∑

i=1

memi · (1− xi) ≤ availmem · fmem (6)

TABLE II
GOOGLE CUSTOM MACHINE PRICES.

Item Price ($) ω
vCPU 0.033174 / vCPU hour 0.210463

Memory 0.004446 / GB hour 0.028207
Bandwidth 0.12 / GB 0.761329

n∑

i=1

rxi,rem · (1− xi) + txi,loc · xi ≤ availbw↓ ∗ frx (7)

n∑

i=1

txi,rem · (1− xi) + rxi,loc · xi ≤ availbw↑ ∗ ftx (8)

To evaluate different offloading policies, we additionally
need to find a suitable parametrization of the aforementioned
model, i.e. the weights for the cost parameters. Since these
parameters are subjective to the system configuration, we give
advice on parametrization with a specific but realistic example.
We use prices provided by Google for a ”custom” virtual
machine types as listed in Table II. We can use those prices
to determine the weights ωtr, ωmem and ωcpu by dividing the
individual price for one traffic, memory and CPU item by the
sum of all prices.

As a first example, this cost function can trivially be
transformed into a greedy strategy. First, all processes that were
determined to never be offloaded due to provided metadata are
copied to the ”local” set and resources are allocated accordingly.
The algorithm sorts the remaining processes by the specific
gain w.r.t. the cost function. It iterates over this sorted list of
remaining processes and adds the one with the highest gain to
the ”local” set and allocates local resources if enough resources
are available. That means it effectively determines the process
that is saving the most amount of monetary cost when running
locally in contrast to running it in the cloud. If that does not
yield a possible allocation, the algorithm should stop or reject
tasks, e.g. the tasks that where created last.

We plan to use Markov decision processes (MDPs) to
determine the solution to our offloading problem in future work.
MPDs are discrete time stochastic control processes, which
can be used to model decision processes with partly random
outcome. Since processing task have event-based input data that
shows partly random behavior and random external impact on
the system, such as background processing tasks, MPDs seem
to be a good fit for the problem at hand. If the state transition
function P and the reward function R of an MPD are known,
a policy can be computed. Because of the random nature of
the amount of input data over a specific timeframe, P and R
cannot be expected to be static and known in advance. Our
idea is to use reinforcement learning to continuously reestimate
the current values for both functions. With this approach, the
system would in any state with a relatively low probability
”try out” assignments that are expected to give a suboptimal
reward to rediscover better solutions in case of an outdated
estimate of P and R and update the functions accordingly. As
mentioned above, this is part of future studies.

31



ams blr fra lon nyc sfo sgp tor
Datacenter

0

500

1000

1500

2000

M
ig

ra
tio

n 
Ti

m
e 

[m
s]

Fig. 4. Migration between two hypervisors.

IV. EVALUATING MIGRATION TIME

In the previous model we have ignored the cost and time
of task migrations. We use a prototype of our system to
evaluate this time. The prototype is written in python and uses
Message Queue Telemetry Transport (MQTT) as the messaging
middleware between all components of the framework and also
as the pub/sub system the actual processing tasks uses for
input and output data. As a first step, we use the prototype to
evaluate the migration time between a gateway node in Berlin,
Germany and a cloud-based virtual machine, manifests as a
perceived service interruption or lag.

We use a Beaglebone Black as the local gateway and cloud
instances in every datacenter of the provider Digital Ocean. We
use a processing task that we assume to be realistic to offload,
namely a motion detection task that analyses webcam footage.
The size of this task is around 3kB. The state of the task is a
background image which is used to detect changes and varies
in size depending on the image. In our example it is 21kB.

Figure 4 shows the migration times of 64 migrations back and
forth along with a red dot marking an estimate calculated from
round trip time and throughput measurements, which can be
easily done using widely available tools. The migration time is
in the worst case under 2.5s even to very remote destinations.
Due to the additional overhead and latency introduced by
the messaging middleware, the actual average migration time
shows to be considerably higher than the prediction, with the
estimation being the lower bound of the migration time.

In conclusion, since we do not expect migrations across the
globe to happen often, the migration time is small enough to
be tolerable by the end-user for most sensor applications; espe-
cially for migrations to cloud backends on the same continent,
which are well below 200ms. The measurements additionally
highlight the need for a prototypical implementation of the
system. First, the migration time that is ignored in our model
has to be taken into account by future work on the topic.
Second, it shows that parameters of an extended model can
potentially not be accurately derived from simple estimations
but have to be verified by measurements in realistic settings.

V. RELATED WORK

Many mechanisms have been proposed in previous work
that address the challenges of seemless offloading, particularly

mobile offloading from phones to infrastructure. In the IoT con-
text, existing work is still limited. The authors of [6] describe
an integrated fog cloud IoT (IFCIoT) architectural paradigm,
including application, analytics, virtualization, reconfiguration,
and hardware layer. In [7], the authors propose a virtual
machine migration mechanism for fog computing. Aazam
and Huh [8] present a resource estimation and pricing model
for fog-based IoT, including resource prediction, estimation,
reservation, and pricing. We complement this existing work
by focusing on the specific context of processing tasks using
publish/subscribe. Additionally, previous work often lacks the
notion of state, which we deem necessary.

VI. FUTURE WORK AND CONCLUSION

In this work, we argue that the full potential of globally
interconnected sensor technology will only be fully utilized
through increased local sensor data processing. To realize this
vision, we present an offloading mechanism and an initial
architecture of a generic offloading framework which enables
flexible definition of processing tasks as well as constraints
and optimization targets. We provide a formal definition of
the offloading problem, give advice on the parametrization and
give hints on potential solutions. We highlight the need for a
prototypical implementation of such a framework and show
that processing tasks found in IoT systems can be migrated in a
reasonable short time. We further plan to expand our platform
to not only take into account the available resources, but to
optimize the offloading decision with regard to a wider range of
performance targets, such as reduced latency, minimization of
energy consumption, or reduced network traffic. We also plan
to expand the model and the evaluation in terms of migration
time and cost and more realistic use cases.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek,
E. Lee, and J. Kubiatowicz, “The cloud is not enough: Saving iot from
the cloud,” in 7th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’15). Santa Clara, CA: USENIX Association, Jul. 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: ACM, 2012, pp. 13–16.

[4] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting
IoT Platform Requirements with Open Pub/Sub Solutions,” Annals of
Telecommunications, vol. 72, no. 1, pp. 41–52, 2017.

[5] D. Happ and A. Wolisz, “Towards gateway to cloud offloading in iot
publish/subscribe systems,” in Second International Conference on Fog
and Mobile Edge Computing, FMEC 2017, Valencia, Spain, May 8-11,
2017, 2017, pp. 101–106.

[6] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated fog cloud
iot architectural paradigm for future internet of things,” CoRR, 2017.
[Online]. Available: http://arxiv.org/abs/1701.08474

[7] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards virtual
machine migration in fog computing,” in 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Nov
2015, pp. 1–8.

[8] M. Aazam and E. N. Huh, “Fog computing micro datacenter based dynamic
resource estimation and pricing model for iot,” in 29th International
Conference on Advanced Information Networking and Applications, March
2015, pp. 687–694.

32


