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Abstract The Internet of Things (IoT) will enable a range
of applications providing enhanced awareness and control of
the physical environment. Current systems typically sense
and actuate physical phenomena locally and then rely on
a cloud-based publish/subscribe infrastructure for distribu-
tion of sensor and control data to end-users and external
services. Despite the popularity of pub/sub solutions in this
context, it is still unclear which features such a middleware
should have to successfully meet the specific requirements of
the IoT domain. Questions like how a large number of con-
nected devices that only sporadically send small sensor data
messages affect the throughput, and how much additional
delay cloud-based pub/sub systems typically introduce, that
are very important for practitioners, have not been tackled
in a systematic way. In this work we address these limita-
tions by analyzing the main requirements of IoT platforms
and by evaluating which of those features are supported by
prominent open pub/sub solutions. We further carry out a
performance evaluation in the public cloud using four popu-
lar pub/sub implementations: rabbitMQ (AMQP), mosquitto
(MQTT), ejabberd (XMPP), and ZeroMQ. We study the max-
imum sustainable throughput and delay under realistic load
conditions using traces from real sensors. While the core
features are similar, the analyzed pub/sub systems differ in
their filtering capabilities, semantic guarantees and encoding.
Our evaluation indicates that those differences can have a
notable impact on throughput and delay of cloud-based IoT
platforms.
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1 Introduction

The upcoming ubiquitous network of physical objects, the
Internet of Things (IoT), will offer real-time sensing of the
environment and enable triggering autonomous reactions to
changes in the physical world. The paradigm has led to the
advent of various “smart” applications, e.g. smart city, smart
enterprise and smart home, which are expected to drive the
number of connected devices to billions [9, 15].

With its vast processing power, fast networking, and reli-
able storage, cloud computing can provide the infrastructure
for provisioning, managing and controlling this large number
of sensor devices as well as for big data processing of the
sensed data. The flexible on-demand resource allocation and
pay-as-you go cost model can enable elastic matching of the
growing communication, computation and storage require-
ments associated with IoT applications [15].

In contrast to classical wireless sensor networks (WSN),
which are tailored to and used by a single application, an
added value of the IoT lies in the common usage of sensor
hardware by heterogeneous applications. Constrained devices
will take sensor readings only once, which will be distributed
to several interested applications and services. A scalable
cloud-based messaging layer can be used to tackle the chal-
lenging aspect of matching sensor data streams and interested
applications or services and distribute the data accordingly.

The publish/subscribe messaging pattern enables selec-
tive distribution of messages and has become a well estab-
lished data dissemination pattern, e.g. for stock market or
weather data. Despite the popularity of pub/sub solutions
in related applications, there is still a lack of data on the
features a pub/sub system should have to meet the specific
IoT requirements, the degree those features are provided by
existing solutions and on the performance trade-offs of these
features. In this paper, we make three main contributions
towards addressing these problems:
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1. We derive a set of requirements for pub/sub systems
for cloud-based IoT and analyze which available open
solutions satisfy those requirements;

2. We define three classes of IoT traffic based on realistic
use-cases;

3. We conduct a cloud-based performance evaluation under
common realistic conditions using real world trace files.

This paper is based on the talk with the same title given
at the “Cloudification of the Internet of Things” 2015 confer-
ence [17]. The original work presents a performance evalua-
tion study of the prominent messaging protocols considered
suitable for IoT settings in the public cloud using four popular
implementations: rabbitMQ (AMQP), mosquitto (MQTT),
ejabberd (XMPP), and ZeroMQ. Metrics used are the maxi-
mum sustainable throughput under a synthetic load and the
typical end-to-end delay using sensor trace files. However,
the load models used only represent one specific type of
sensor application, which hampers the applicability of those
results for other types of IoT devices. In this paper we aim at
providing more general results: While we use a similar mea-
surement approach, we significantly expand on the consid-
ered traffic scenarios. We capture three classes of real-world
IoT traffic and use them as a load to evaluate the perfor-
mance of the messaging middleware under test. This work
thus presents new and improved results and gives a more
realistic and detailed analysis of both throughput and delay.
It also gives new insights into the traffic patterns commonly
anticipated in the IoT context, which was not part of the
original work.

2 Pub/sub in the IoT domain

Today, several prominent academic and commercial IoT plat-
forms share a cloud centric architecture similar to the one
depicted in Figure 1 [15, 22]. Devices are connected to gate-
ways, which forward sensor data to a cloud tier with a mes-
sage broker. Additional services, e.g. data storage, analysis,
or aggregation, and user facing applications connect to the
broker to get access to the data. We see a trend to use a
message broker using the publish/subscribe pattern to dis-
tribute the data to multiple interested applications [22]. A
publish/subscribe system is a message-oriented middleware

Value-added
Services

Cloud Tier App TierGateway TierDevice Tier

Pub/Sub System

Message
Broker

Fig. 1 General architecture of a cloud-centric IoT platform.

(MoM) [10] providing distributed, asynchronous, loosely
coupled communication between message producers and
message consumers. A pub/sub middleware offers three main
types of decoupling [13] which makes it particularly suitable
for large-scale IoT deployments: 1) Message producers (pub-
lishers) and consumers (subscribers) are decoupled in time,
i.e. they do not have to be connected at the same time; 2)
Messages are not explicitly addressed to a specific consumer
but to a symbolic address (channel, topic); 3) Messaging is
asynchronous, non-blocking.

A core building block of pub/sub systems is the matching
between publishers and subscribers, that may be based on
different types of filtering, mostly topic or content. The filter-
ing is usually done by multiple dedicated message brokers.
In the topic based scheme, the symbolic channel addresses
are topics, usually in the form of strings, i.e. producers pub-
lish to and consumers subscribe to topics. Messages are only
delivered to matching subscribers. Topics may be organized
hierarchically, i.e. a topic may be a subtopic of another topic.
Subscriptions on a parent topic will then usually also match
all subtopics. Topic based filtering is a static scheme offering
only limited expressiveness. In contrast, in the content based
scheme, subscribers are not statically matched based on top-
ics, but on the content of individual messages, e.g. if a value
reaches a certain threshold predefined by the subscriber.

A similar approach dealing with large scale sensor data is
stream processing. In contrast to the message-based pub/sub,
stream processing applications act as complex stateful con-
tinuous queries on input streams of data generating streams
of results. The focus of stream processing frameworks lies
in the transformation of the input stream, whereas pub/sub
focuses on the distribution of data. While we see stream
processing as a promising approach to process and analyze
large data streams, we argue that stream processing alone
will not enable the common use of sensor hardware across
multiple applications, which is one of the key properties of
the IoT vision. However, we envision value-added services
that use stream processing approaches on the data provided
by pub/sub systems.

While pub/sub is a well established and studied messag-
ing pattern, the use of pub/sub in cloud-based IoT settings
is still not explored in detail. There is a plethora of existing
solutions available without reliable data on which solution
fits the specific IoT requirements best. In the following sec-
tion we start addressing these problems by defining reference
scenarios for cloud-based IoT deployments. We continue by
giving a definition of the requirements of pub/sub systems
used in cloud-based IoT deployments on which we base a
quantitative evaluation of existing solutions.
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2.1 Reference scenarios

Before deriving a set of requirements for generic IoT appli-
cations, we first introduce a subset of possible scenarios by
defining three reference scenarios in the context of smart
cities as examples:

2.1.1 Social weather service

The first use-case we envision is a social weather service,
where sensor device owners connect and share their existing
sensors with the public. An example is a heating, ventilating,
and air conditioning (HVAC) system in an office building
that takes temperature and humidity readings periodically.
The system can either provide its own data publicly or use
readings from other similar systems or monitor a weather
forecast to improve on when to heat or cool, saving energy
and improving comfort.

2.1.2 Smart car sharing

The second use-case is a car sharing system. The advent
of connected cars has led to the emergence of car sharing
business, renting out cars on demand. Sharing cars reduces
the number of parking spots required and in turn reduce the
amount of traffic looking for a parking spot. In the future,
individuals could start renting out their cars in a similar
manner: private cars could periodically offer themselves for
rental and provide additional information, such as position,
fuel level or condition. Interested parties could monitor those
offers and contact the car directly to rent it.

2.1.3 Traffic monitoring

To reduce the amount of traffic, another option is to monitor
traffic in the city and reroute cars on traffic jams. Cameras
take pictures of traffic conditions and send them to the cloud.
A cloud-based service evaluates them and assesses traffic
conditions. Interested drivers or navigation units can use this
information to plan their route accordingly.

2.2 Requirements for pub/sub in cloud-based IoT

This section outlines the specific IoT requirements that in-
fluence the selection of a suitable pub/sub middleware. We
start with the functional requirements, that are derived from
generic IoT applications and illustrated by the reference sce-
narios introduced above:

1. Messaging Pattern: All use cases require the monitoring
of sensor readings. We already motivated the use of the
pub/sub pattern, where symbolic addresses are used to
match producer and consumer, which has to be supported.

It should additionally be possible to address and contact
a particular device, e.g. a car to rent. That means a point-
to-point messaging pattern should also be supported.

2. Filtering: Interested parties usually want to receive only a
subset of all information, e.g. weather sensors in the same
neighborhood. The filtering capabilities of the middle-
ware determine the expressiveness of the subscriptions
a client application can issue. A topic-based approach
is suitable for basic subscriptions to certain physical or
virtual sensors. A hierarchical topic structure enables
monitoring sensor sets. However, it often makes more
sense to be informed on certain events, e.g. when a sen-
sor reading reaches a threshold. This requires a content
based pub/sub pattern or additional complex event pro-
cessing. While a topic-based filtering is mandatory for
cloud-based pub/sub systems, a content-based scheme is
highly desirable.

3. QoS Semantics: While a loss of sensor data messages
may be tolerable in some settings, others might require
guaranteed delivery of messages, e.g. a smart car could
issue alarm messages in case of theft. The middleware
should therefore enable annotating subscriptions and mes-
sages with QoS requirements. Additionally, especially
for sensors with low sampling rate, the system should
provide subscribers with latest values while waiting for
the next sensor reading.

4. Topology: In the context of cloud centric IoT, every
pub/sub middleware must support a centralized topol-
ogy, where a broker forwards the messages based on the
requested filters. Please note that while we consider a sin-
gle logical broker, this broker will be distributed across
several physical or virtual machines. As an alternative to
reduce the load on the broker, producers and consumers
could communicate directly in a distributed topology,
which would raise the question how to find particular
sensors or actuators. We expect that most cloud-based so-
lution would rather make use of a hybrid approach which
matches producer and consumer using a central broker,
while the actual payload is transferred directly.

5. Message format: Due to the heterogeneity of sensor hard-
ware as illustrated in the selected use cases, it is chal-
lenging to foresee the exact format sensor data will be
provided in. Pub/sub solutions must therefore be payload
agnostic, i.e. make no assumptions about the payload.
Further, they should support binary payloads, so that
binary data serialization frameworks, such as protocol
buffers [36] can be used.

These requirements will be used in the following section
to derive a taxonomy of pub/sub systems. In addition to the
requirements mentioned above, there are two important non-
functional requirements for a cloud-based pub/sub system:
1) Due to the large number of devices expected, the system
should be scalable; 2) As data may be urgent, messaging
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should have low latency. We investigate these requirement
separately in a performance evaluation in Section 3.

2.3 Taxonomy of pub/sub systems

Building on the general requirements for IoT platforms, in
this section we present a subset of pub/sub protocols and give
a classification according to the defined requirements. We
limit ourselves to protocols with an openly available protocol
specification with open source implementations that are in
wide use. We choose the protocols AMQP, MQTT, XMPP
and ZeroMQ for further evaluation. In the following, we give
a brief introduction of these protocols:

AMQP: Advanced Message Queuing Protocol (AMQP) [2]
was developed as an open replacement for proprietary
messaging protocols in the financial services industry.
AMQP is used in popular implementations, such as Rab-
bitMQ [27], Apache ActiveMQ [4], and Apache Apollo [5].
AMQP version 0-9-1 is an open and royalty-free specifi-
cation of both a wire-level protocol and a broker model.
AMQP 1.0 recently became an Organization for the Ad-
vancement of Structured Information Standards (OASIS)
standard, but includes mainly a novel wire-level protocol
and only abstract broker requirements. Most functionality
is defined by the broker and its behavior, which is not
part of AMQP 1.0. We therefore focus on version 0-9-
1, which defines the most widely implemented broker
model.

MQTT: Message Queue Telemetry Transport (MQTT) [21]
is a pure pub/sub protocol for constrained devices and
low-bandwidth, high-latency, and unreliable networks de-
veloped by IBM and standardized by OASIS. It has vari-
ous open source implementations, such as the mosquitto
broker and client library [24], Apache ActiveMQ [4], and
the Eclipse paho client library [12] There is an effort to
port MQTT to sensor nodes in the slimmed down variant
MQTT-S [19]. MQTT and MQTT-S are openly published
with royalty-free licenses.

XMPP: Extensible Messaging and Presence Protocol (XMPP)
[33] has its origin in the instant messaging protocol Jab-
ber, motivated by the diversity of proprietary chat pro-
tocols. XMPP is based on XML streaming. The core
protocol is standardized in multiple IETF RFCs and ex-
tended by XMPP Extension Protocols (XEPs), including
pub/sub messaging [23]. XMPP is the protocol behind the
instant messaging server ejabberd [28] and the Openfire
server [20].

ZeroMQ: ZeroMQ [18] is a messaging library offering a
socket API with more advanced messaging patterns than
Berkeley sockets. Supported patterns include request/re-
sponse and pub/sub. The wire-level protocol is the Ze-
roMQ Message Transport Protocol (ZMTP), which is

Table 1 Classification of open pub/sub middleware protocols
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Messaging Pattern Pub/Sub X X X1 X
Point-to-point X X X

Filtering Topic-based X X X1 X
Content-based

QoS Semantics

At-most-once X X X X
At-least-once X X
Exactly-once X X

Last value caching X2 X X X

Topology
Decentralized X

Centralized X X X X
Hybrid X1

Message Format Payload agnostic X X X X
Binary Encoding X X X

made available under the GNU General Public License.
ZeroMQ is a generic messaging library enabling the ad-
dition of new functions to the core protocol. To compare
the library to other systems, we only consider features
included in the official documentation.

In the remainder of this section, we give a classification
of pub/sub protocols regarding cloud-based IoT platform
requirements, which is summarized in Table 1.

We motivated the use of the pub/sub and request/response
massaging for monitoring sensing device. While AMQP and
ZeroMQ support both patterns, MQTT is a pure pub/sub
protocol. Request/response is still possible, but would have
to use special topics on which devices or services subscribe
for requests. XMPP is originally a chat protocol for direct
messaging which has been extended by XEP-0060 to support
pub/sub messaging [23].

The considered solutions provide only topic based pub/sub
with hierarchical topics. AMQP and MQTT support wild-
cards at every topic level, while ZeroMQ only supports prefix
matching. XMPP uses a combination of leaf and collection
nodes, where collection nodes are a set of leaf nodes, which
contain published items, which is equivalent to a hierarchical
topic tree. Content based pub/sub is not supported.

In case of critical data, semantic guarantees have to be
given to the application. AMQP and MQTT offer at-most-
once, at-least-once and exactly-once semantics. XMPP and
ZeroMQ are best-effort, but usually build upon a reliable un-
derlying transport protocol. XEP-0079 describes additional
delivery semantics including time-sensitive delivery. To sup-
ply the most recent value to late joining or temporarily discon-
nected subscribers, some protocols offer a last value cache
(LVC). MQTT messages can be marked to be retained. Late
joining subscribers will then get the latest of those messages
on the specific topics on subscribing. Nodes (topics) in XMPP

1 using XMPP Extension Protocols (XEPs)
2 not required by standard, but mostly available via plugin
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may store the last value for new subscribers. Although Ze-
roMQ does not offer LVC directly, implementing LVC with
ZeroMQ is given as an example in the official guide. AMQP
does not consider LVC explicitly, however it may be pro-
vided by the broker software. There is for example a plugin
for RabbitMQ that adds LVC functionality [27].

We focus on cloud-based IoT platforms with a central-
ized topology. This means dedicated distributed brokers at
a central location handle the matching and delivery of mes-
sages. All considered protocols support such a topology. In
the face of the expected number of devices, it will be bene-
ficial to reduce the load on the central brokers. XMPP uses
a distributed network of XMPP servers as brokers. It is also
possible to establish out-of-band peer-to-peer connections
using XEP-0065, corresponding to a hybrid topology. Ze-
roMQ can be used without a central broker in a P2P fashion.
Additionally, its pub/sub sockets can be used to form a hierar-
chy of brokers, which forward publications and subscriptions
selectively, enabling horizontal scaling.

All protocols are generally agnostic to the message for-
mat. AMQP, MQTT, and ZeroMQ use a binary encoding,
permitting any format, while XMPP uses XML, which can
also transport other formats, but usually at the cost of less
bandwidth efficiency and increased parsing overhead. AMQP
additionally offers a type system that maps transmitted data
types to common data types of many languages and plat-
forms.

3 Cloud-based performance evaluation

While the pub/sub systems analyzed offer the same core
features, they differ in QoS semantics, encoding and expres-
siveness of filters, which might have subtle effects on per-
formance. To analyze the non-functional requirements of
scalability and low latency, we evaluate the systems under
realistic conditions. One core aspect of those realistic con-
ditions is the deployment in the cloud. Another aspect is a
realistic replication of real-life traffic sources using a large
number of devices.

3.1 Performance metrics

We choose the performance metrics according to the non-
functional requirements of scalability and low latency. As
cloud centric IoT platforms may in the future have to support
billions of devices [15], it is important that the system can
scale horizontally. This would usually be done by using a
cluster of brokers. One possibility would be the sharding
based on topics. For the performance of the whole system, it
is however most important that a single broker can handle as
many sensors and therefore sensor messages as possible, i.e.

Cloud Tier App TierGateway TierDevice Tier

Pub/Sub System

VM

VM

VM

VM
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Trace

Trace
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Message Broker

Publishers Subscribers

VM

VM
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Fig. 2 Experiment setup: real-world sensor data is collected and played
back on cloud instances from trace files; the broker distributes this data
to subscribing processes, which are also modeled using cloud virtual
machines.

Table 2 Overview of studied publish/subscribe systems

Protocol Broker Version Release date Language
AMQP RabbitMQ 3.4.4 2015-02-11 Erlang
MQTT mosquitto 1.4 2015-02-18 C
XMPP ejabberd 15.02 2015-02-17 Erlang
ZeroMQ XPUB/XSUB - - C

Table 3 Overview of Amazon EC2 instances used

m4.large m3.medium
OS Ubuntu 14.04 64bit

(ami-234ecc54)
Kernel Linux 3.13

# virtual cores 2 1
Memory (GB) 8 3.75

it offers the highest throughput of messages on a given physi-
cal or virtual machine. We therefore study the throughput on
a single broker, which we define as the number of messages
per second the broker can process.

Another important requirement is the low latency be-
tween the measurement of sensor values and the delivery
to interested applications. In this study, we do not focus on
the overall latency, but only on the part of the latency that is
introduced by the pub/sub system. We thus study the end-to-
end delay between gateways and interested applications, i.e.
between publishers and subscribers.

3.2 General measurement setup

In the following, we present the measurement setup we use
to evaluate the selected systems using the metrics presented.
Our measurements aim at evaluating cloud-based messaging
broker performance as realistic as possible. An overview of
our setup is given in Figure 2. As the broker is expected to
run on a cloud-based virtual machine, we deploy the broker
on an instance at Amazon’s Elastic Compute Cloud (Amazon
EC2) [1], which is one of the leading public cloud providers.

Since we cannot deploy sensor hardware at a scale stress-
ing the broker, we follow a similar approach as Rege et
al. [29] and replicate traffic sources on cloud instances. The
device tier is modeled with trace files collected from real-
world sensor devices. More details are given in the next sec-
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tion. The trace files are used to replicate the timing behavior
and message sizes of traffic seen at IoT gateways. The gate-
ways, which act as publishers in the pub/sub system, as well
as the subscribing applications, are replicated on cloud-based
virtual machines.

To avoid playing the exact same trace files on different
gateways and potentially biasing the results, a distribution of
message sizes and inter-message times is calculated for every
15 minutes interval and played back. This keeps the informa-
tion about varying message sizes and rates during the day,
which would usually be correlated in a smart city, but avoids
unrealistic bias introduced by artificial high correlation.

We evaluate the protocols using popular implementations
as representatives. Our selection of brokers is given in Table
2. The ZeroMQ broker is using the XPUB and XSUB sock-
ets as given in the ZeroMQ documentation and is written in
C. The broker configuration is kept as much as possible to
the defaults. Erlang brokers use High Performance Erlang
(HiPE). As we do not consider security, encryption is dis-
abled. Broker and publishing and subscribing processes are
both deployed on EC2 instances running on the current 64bit
long term support release of Ubuntu (14.04) (ami-234ecc54).
The hardware is summarized in Table 3. Brokers run on a
single m4.large instance with two cores, usually of an Intel
Xeon E5-2676 v3 with 32 GB of RAM. Message producers
and consumers are deployed on m3.medium instances, with
one core and 3.75 GB of RAM. We use 10 gateway instances,
which host up to 60 virtual publishing gateways and up to 60
subscribing processes each. The CPU load on every instance
is monitored during experiments, so that bottlenecks on the
client side will not be regarded as poor broker performance.

To generate traffic and replicate subscribing processes,
we use a client written in the C programming language. The
application publishes and subscribes using a uniform inter-
face that is mapped to the interfaces of the individual pub/sub
systems by dedicated plug-ins. The traffic generation and
logging component stays the same in every experiment. To
avoid side-effects by disk IO, we buffer all results in memory
before writing them to disk. We use non-persistent messages
with at-most-once semantic with a fixed fan-out factor of 1,
i.e. every publisher has one subscriber.

We use a fixed fan-out factor of 1 mainly due to two rea-
sons: First, there is a lack of insight into the actual behavior
of subscribers in an IoT context. Realistic modeling of the
distribution of subscribers across topics and the timing behav-
ior of subscribe and unsubscribe requests would be needed
to accurately reproduce their behavior, which is currently not
well understood. One option would be to model the behavior
using stochastic processes, such as a Zipf-like distribution
for the popularity of topics [8]. Another option would be
to sample popular topics on real deployments, which is not
easily possible without administrative access to a popular
public broker. In this work, we resort to using a well-defined

fan-out factor as a first step, but work on more advanced
subscriber models for future work. Second, our setup sim-
plifies the measurement of throughput and latency, since we
can trivially deploy publishers and subscribers of a topic on
the same cloud based virtual machine avoiding the need for
precise synchronization between the processes.

We evaluate every protocol using three workload scenar-
ios, analogous to our reference scenarios, which we define in
the following.

3.3 Workload scenarios

We generalize the three reference scenarios in Section 2.1
to three main classes of sensors producing distinct traffic
patterns:

3.3.1 Simple sensors

Weather sensors are an example of what we define as a sim-
ple sensor, which samples a single value at a time, usually
independent of other sensors and in a compact binary rep-
resentation. Other examples could be gas, water or other
resource consumption monitoring.

The weather data is collected upfront using the TKN
Wireless Indoor Sensor network Testbed (TWIST) [16] with
90 Telos Rev. B sensor nodes [25] equipped with a Sen-
sirion SHT11 humidity and temperature sensor, a Hamamatsu
S1087 (320nm to 730nm) visible light sensor measuring the
photosynthetically active radiation (PAR) and a Hamamatsu
S1087-01 (320nm to 1100nm) visible to IR light sensor mea-
suring the total solar radiation (TSR). We collect samples
of the sensors mentioned above on each sensor node every
second using a TinyOS1 application that sends the data in one
packet to the serial interface that is exposed on the Universal
Serial Bus (USB) port. The collection process leverages the
capabilities of the TWIST testbed: each sensor node is con-
nected to one supernode that forwards the serial packets to
the TWIST server, where a trace file with all sensor values
is recorded. A trace file with a total of 72 hours of data is
generated.

We use this raw sensor data to generate sensor traces to
publish. We choose to only issue a message with updated
sensor data if reasonable thresholds are exceeded, i.e. if a
sensor samples a value that is close to the value sampled
before, the gateway will not retransmit the data. We consider
this to be a reasonable behavior in wireless sensor networks,
where energy is scarce. An overview of the generated trace
file is shown in Figure 3a, which shows one day of sample
data. The number of messages per second emitted varies and
has its maximum around noon. Since messages are binary
encoded, the message size is constant at 36 bytes.

1 http://www.tinyos.net/
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Fig. 3 Temporal characteristics of sensor tracefiles during one particular day of measurement; message size and message rate per minute are given.

3.3.2 Complex sensors

In contrast to simple readings, which are connected but also
meaningful on their own, vehicle sensors are mostly only
meaningful together. Considering the example of car sharing,
the fuel level alone is for instance not very meaningful to
potential customers without the position of the car. We define
such sensors as complex sensors, which is the combination
of several simple sensors, where sensor readings are grouped
to form an entity of readings that are connected and send to-
gether as one message. Those messages are usually encoded
with JSON or XML.

The vehicle data as a representative of complex sensor
data is derived from the public websites of the two car sharing
businesses [6, 11]. In the same way a browser accesses the
data to draw a map of available cars, we access the publicly
available data of those services for Berlin every minute and
split the response up in individual status reports for every ve-

hicle. We record the size of those individual readings and use
them to replicate equivalent messages in our measurements,
without storing any actual data about the cars. Trace files
contain one week of data for both car sharing businesses.

Individual status reports from cars are used as messages
to publish. The rationale is that every car would publish
its availability along with additional information on the car,
such as condition or position. One day of the data is shown in
Figures 3b and 3c for each car sharing business. The change
in the number of available cars follows the same general
pattern and is low around 9:00 and between 17:00 and 20:00,
when a lot of commuters rent cars. While car sharing business
would usually get status reports either in a fixed interval or
on certain events, the number of private cars available for
rent from citizens would presumably follow a similar pattern.
The message size is quite stable over the course of the day,
but differs significantly between the two businesses.
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3.3.3 Multimedia sensors

Examples of cameras as IoT sensors include surveillance
camera images or video streams, but also traffic observations
using cameras. Traffic camera images could be analyzed in
real-time to suggest alternative routes to smart navigation
systems. We define the class of multimedia sensors, which
produce media, such as audio, still images or video footage.
Those media streams are encoded as binary chunks of data.

As an example of media data, we use publicly available
traffic cameras of the city of Berlin. In a similar manner as for
the cars, we access the camera images at a fixed interval of
30 seconds and record the response size. Trace files contain
one week of data for 34 cameras.

Individual images are used as messages to publish. A day
of example data is shown in Figures 3d. The average mes-
sage size increases towards the afternoon, probably because
images with more lights will have more details that will not
compress as good as dark images. The message rate is quite
stable with about two images per minute per camera, as ex-
pected. Some cameras tend to not update reliably, so that we
ignore all exact duplicates, explaining the slight fluctuation.

3.4 Throughput measurements

We use the traffic classes introduced before for a cloud-based
measurement campaign determining the typical through-
put and delay of pub/sub systems. We start measuring the
throughput by applying an increasing load on the broker. This
is achieved by a higher number of publisher and subscriber
pairs. For the weather sensor scenario, we vary the number
of publishing gateways from 10 to 600, with each gateway
generating a load equivalent to 1000 sensors, correspond-
ing to a total of up to 600000 emulated sensors. For the car
sharing use-case, we use 10 to 600 publishers, which gen-
erate a load equivalent to up to 9.6 million individual cars.
We vary the number of cameras from 40 to 600, where each
publisher mimics only one camera. The increase in the num-
ber of publisher/subscriber pairs is exponential to accurately
measure both very small and very high throughput values.
Experiments consist of generating load for 5 minutes and
measuring the number of messages that reach subscribers
during that time. The load is generated according to a random
position in one of the trace files. Each parameter configura-
tion is applied a total of 8 times.

Figure 4 shows the measured throughput when the broker
is loaded by the different workloads defined earlier. The
saturation of the throughput marks the individual maximum
sustainable throughput of the protocols in a certain scenario.
Results are shown with their 95% confidence interval.

Figure 4a depicts the results for weather sensors. Ze-
roMQ has the highest throughput with up to 522k msg/s.
The other protocols have a significantly lower throughput:

MQTT shows a maximum throughput of less than a third
of that with 134k msg/s. AMQP has a maximum throughput
of 30k msg/s. XMPP’s maximum of 1k msg/s is about two
orders of magnitude lower than the throughput of MQTT.

Figure 4b shows the results for the carsharing use-case.
ZeroMQ again shows the highest maximum throughput with
up to 83k msg/s. Notably, in this use-case, while still not
reaching the throughput of ZeroMQ, the gap between the pro-
tocols has narrowed: MQTT shows a throughput of 69k msg/s.
AMQP has a maximum throughput of 26k msg/s. With up
to 2k msg/s, the throughput of XMPP is below the other
protocols, but surprisingly higher than for smaller messages.

Figure 4c shows the results for camera traffic. For this
use-case, AMQP has the highest throughput with a maximum
of 186msg/s. ZeroMQ also shows a maximum throughput
of up to 186msg/s which is slightly below AMQP only after
the decimal point. MQTT shows a maximum throughput of
164msg/s. XMPP shows a throughput of up to 92msg/s, but
cannot cope at all with a load over 300msg/s. While for the
other reference scenarios ZeroMQ was the clear leader, for
the camera scenario the protocols show much more similar
results.

We explain this behavior as follows: Our ZeroMQ bro-
ker is only very basic and only supports prefix matching.
Because of that, the throughput is considerably higher than
the other protocols especially for smaller messages. MQTT
and AMQP offer more complex filtering, increasing the time
spent for every filtering decision. XMPP has the largest over-
head due the used XML encoding, which has to be parsed
at the clients and the broker, leading to further processing
overhead. For larger messages, MQTT and AMQP become
more competitive, as the time spent for filtering decision is
independent of the mesasge size and the time for in memory
copying as well as network transmission of messages become
the dominant factors of processing time.

3.5 Latency measurements

We also investigate the latency of the protocols. As the la-
tency in a saturated setting would be unrealistically high, we
observe the latency distribution over the course of one day
in this separate experiment. We replicate 40 weather sensor
networks with a size of 200 nodes each, which models a
medium size sensor network such as the TWIST testbed. We
use 100 car sharing networks similar to those recorded in
Berlin. Finally, we run one camera network, similar to the
one measured in Berlin with 34 cameras.

The results are presented in Figure 5. Individual plots
show the empirical distribution function of the delay intro-
duced by the pub/sub system. The graphs illustrate which
percentage of successfully transmitted messages experience
which end-to-end delay between publisher and subscriber.



Author-created version: the final publication is available at http://link.springer.com

Meeting IoT Platform Requirements with Open Pub/Sub Solutions 9

0 

100k

200k

300k

400k

500k

600k

0 
10

0k
20

0k
30

0k
40

0k
50

0k
60

0k

A
ch

ie
ve

d 
Th

ro
ug

hp
ut

 [M
sg

/s
]

Offered Load [Msg/s]

ZeroMQ

MQTT

AMQP
XMPP

weather

(a) Throughput under weather sensor load.

0 

10k

20k

30k

40k

50k

60k

70k

80k

90k

0 20
k

40
k

60
k

80
k

10
0k

12
0k

14
0k

16
0k

A
ch

ie
ve

d 
Th

ro
ug

hp
ut

 [M
sg

/s
]

Offered Load [Msg/s]

ZeroMQ

MQTT

AMQP

XMPP

car

(b) Throughput under car sharing load.

40 

60 

80 

100 

120 

140 

160 

180 

200 

0 
10

0 
20

0 
30

0 
40

0 
50

0 
60

0 

A
ch

ie
ve

d 
Th

ro
ug

hp
ut

 [M
sg

/s
]

Offered Load [Msg/s]

ZeroMQ

MQTT

AMQP

XMPP

camera

(c) Throughput under camera load.

Fig. 4 Throughput achieved by the protocols in the three reference scenarios.
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Fig. 5 Empirical cumulative distribution function (ECDF) of resulting delay by applying different loads.

Since the measured latency has a range that spans several
orders of magnitude, we use a logarithmic scale to better
compare results.

For the weather sensor scenario, the results in Figure 5a
show that the latency distributions of MQTT and ZeroMQ
are quite similar. More than 90% of the messages have a
delay below 1ms. AMQP shows a slightly higher delay. Still,
about 70% of measured latency values are below 1ms and
90% below 3ms. XMPP introduces a considerably higher
delay, but still under 3% of the messages are delayed more
than 10ms.

The resulting latency distributions measured for the car
sharing load are shown in Figure 5b. Although messages
are significantly larger, the delay distribution of ZeroMQ,
MQTT and AMQP is very similar to the previous scenario.
Using MQTT and ZeroMQ, more than 90% of measured
latency values are below 1ms. With AMQP, about 70% of
the messages have a delay below 1ms and about 90% below
3ms. XMPP shows considerably higher delays of up to 10s,
which indicates an overload situation.

Delay distributions for the camera use-case are given
in Figure 5c. In general, the delay of all the protocols is
higher than for sensors with smaller message sizes. Also,
the delay distributions do not differ as significantly as for
smaller message sizes. For all protocols, more than 90% of
the delay is below 100ms. While achieving a lower delay
more often, for ZeroMQ about 10% of the delay is above
100ms, sometimes reaching up to 1s.

To summarize, the latency behavior and therefore choice
of pub/sub systems is depending heavily on the distinct mes-
sage sizes used in each specific use-case. While for small
messages, MQTT and ZeroMQ turn out to introduce less
delay, with increasing message size the delay distributions
converge. The additional delay introduces by more complex
filtering techniques, such as used by AMQP, becomes neg-
ligible. Also, the delay introduces by the XML encoding of
the header information in XMPP is not making the overall
processing time considerably higher than for other protocols
in scenarios where large messages are sent.
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4 Related work

The use of pub/sub systems has been proposed for a wide
area of applications [13]. Classical examples of research pro-
totypes include Hermes [26], Padres [14], and SIENA [7].
Hermes [26] is a distributed, content-based, event-based
middleware combining pub/sub, peer-to-peer routing and
higher-level services. In [14], the authors present Padres,
a distributed content-based pub/sub middleware with fea-
tures such as load balancing and network failure handling
aiming at enterprise applications. SIENA [7] is an Internet-
scale content-based pub-sub system, focusing mainly on the
content-based routing between brokers, aiming at maximiz-
ing filter expressiveness and scalability. While this fundamen-
tal research is essential for understanding the basic concepts
and techniques required for building large scale pub/sub sys-
tems, those prototypes usually do not see wide adaption in
real-world IoT deployments, so are not practical candidates
for a cloud-based IoT middleware at the moment.

There are several more recent proposals to use pub/sub
systems specifically tailored to IoT and sensor applications
[3, 19, 30, 39]. Sensor Andrew [30] is an IoT sensor platform
using XMPP for data dissemination. MQTT-S is a stripped-
down version of MQTT, which is optimized for the small
frame sizes in sensor networks, which are typically under
128 bytes [19]. Gateways often found in sensor networks
are used to translate MQTT-S to ordinary MQTT and relay
messages to upstream brokers. The more recent OpenIoT
project [34] uses the CUPUS pub/sub system [3], a specifi-
cally designed content-based pub/sub with the ability to have
mobile brokers, i.e. mobile pub/sub enabled gateways. They
compare their system to MQTT, but only consider qualita-
tive metrics and messaging overhead. While we focus on a
cloud based architecture, Zhang, et al. [39] propose to not
rely on the cloud for messaging, but instead use a fully dis-
tributed system of message routers to deliver messages across
a global IoT overlay network offering a pub/sub interface.
These works therefore emphasize the need for pub/sub in-
tegration in sensor applications. Still, none of them puts a
focus on or provides a performance comparison of suitable
protocols.

Previous work has been done in the field of performance
evaluation of pub/sub systems [31, 32, 35]. However, com-
parisons of different pub/sub systems in the literature usually
do not consider the specific requirements, use-cases or traffic
patterns relevant for IoT messaging. In [31], a good overview
of pub/sub performance evaluation is given. In [32], the au-
thors give a generic pub/sub benchmark based on scenarios
in the field of logistics. Tran and Greenfield investigated the
performance of IBM’s MQSeries v5.2 with generic traffic
in [35].

Other studies have investigated the network behavior of
Cloud-based virtual machines [29, 37, 38]. They focus on

Amazon Elastic Compute Cloud (Amazon EC2) [1], which
uses Xen virtualization. The CPU sharing introduces side ef-
fects such as unstable TCP/UDP throughput and abnormally
large delay variations found in [37]. Findings in [29] support
those results. In [38] the author show that instances of the
same type have different performance characteristics that are
unlikely to change with time.

Although pub/sub systems, IoT sensor applications, and
Cloud-based virtual machines were studied extensively, to
the best of our knowledge, there are no studies evaluating
pub/sub systems in the specific context of cloud-based IoT
platforms. With this study we try to answer the question
which pub/sub system is best suited for those settings and
what the performance impact for pub/sub operating on top of
virtualized computation is.

5 Conclusion

In this work, we conducted a requirement analysis for pub/sub
in cloud-based IoT platforms, analyzed core features of exist-
ing open solutions and presented a quantitative evaluation of
prominent representatives for each protocol under realistic
load. It shows that although no protocol offers all features
desirable in IoT settings, there are significant differences
between the protocols: Although being an extensible open
protocol, XMPP cannot reach the performance observed with
the other pub/sub middlewares in IoT settings. Additionally,
at the server side, every stanza has to be parsed in order
to make a routing decision. That is presumably one reason
XMPP performs considerable worse than the other protocols
regarding throughput and delay. AMQP is a full-featured
message oriented middleware that offers all the building
blocks necessary for creating an IoT enabled messaging bro-
ker. The performance in terms of message throughput and
average delay lacks behind ZeroMQ and MQTT for loads
with a large number of small messages. MQTT is specifically
designed to transport sensor-like data and has emerged to
the de-facto-standard in the field. The mosquitto broker has
reasonable high throughput and low delay. A crucial part
missing in MQTT is the possibility to contact connected
clients directly, as MQTT is a pure pub/sub protocol. Our per-
formance measurements suggest that ZeroMQ can achieve
very high throughput while maintaining low delay, mostly in-
dependent of the load. Also appealing is the fact that a broker
is optional and a decentralized system is possible. However,
ZeroMQ is no full-featured broker implementation and less
expressive than the other protocols, as only prefix matching
is supported. Therefore, crucial features may need to be and
can be added for a deployment of ZeroMQ in IoT settings.

Our conclusion therefore is twofold: We recommend Ze-
roMQ where a specifically tailored solution is needed and the
effort of implementing missing features is acceptable. For
settings where a readily available solution is necessary, we
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recommend MQTT or AMQP, depending on the expected
message sizes, as there are several open source software
solutions that can be used out of the box.
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(2013)

30. Rowe, A., Berges, M.E., Bhatia, G., Goldman, E., Rajkumar, R.,
Garrett, J.H., Moura, J.M., Soibelman, L.: Sensor Andrew: Large-
scale campus-wide sensing and actuation. IBM Journal of Research
and Development 55(1.2), 6:1–6:14 (2011)

31. Sachs, K.: Performance modeling and benchmarking of event-based
systems. Ph.D. thesis, TU Darmstadt (2010). SPEC Distinguished
Dissertation Award 2011

32. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance eval-
uation of message-oriented middleware using the SPECjms2007
benchmark. Performance Evaluation 66(8), 410–434 (2009)

33. Saint-Andre, P.: Extensible Messaging and Presence Protocol
(XMPP): Core. RFC 6120 (Proposed Standard) (2011). URL
http://www.ietf.org/rfc/rfc6120.txt

34. Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte,
J.P., Riahi, M., Aberer, K., Jayaraman, P.P., Zaslavsky, A., Žarko,
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