
2015: Cloudification of the Internet of Things

Meeting IoT Platform Requirements with Open Pub/Sub Solutions

Daniel Happ · Niels Karowski · Thomas Menzel · Vlado Handziski · Adam Wolisz

Received: June 19, 2015

Abstract The Internet of Things (IoT) will enable a range
of applications providing enhanced awareness and control of
the physical environment. Current systems typically sense
and actuate physical phenomena locally and then rely on a
cloud-based publish/subscribe infrastructure for distribution
of sensor and control data to end-users and external services.
Despite the popularity of pub/sub solutions in this context,
it is still unclear which features such a middleware should
have to successfully meet the specific requirements of the
IoT domain. Questions like how a large number of connected
devices that only sporadically send small sensor data mes-
sages affect the throughput, and how much additional delay
cloud based pub/sub systems typically introduce, that are
very important for practitioners, have not been tackled in a
systematic way. In this work we address these limitations
by analyzing the main features and requirements of several
existing academic and commercial IoT platforms and by eval-
uating which of those features are supported by prominent
open pub/sub solutions. We further carry out a performance
evaluation in the public cloud using four popular implemen-
tations: rabbitMQ (AMQP), mosquitto (MQTT), ejabberd
(XMPP), and ZeroMQ. We study the maximum sustainable
throughput under a realistic synthetic load and compare the
typical end-to-end delay using traces from the TWIST sensor
network testbed at TU Berlin. We find that while the core
features are similar, the analyzed pub/sub systems differ in
their filtering capabilities, semantic guarantees and encoding.
Our evaluation indicates that those differences can have a
notable impact on throughput and delay of cloud based IoT
platforms.

D. Happ · N. Karowski · T. Menzel · V. Handziski · A. Wolisz
Technische Universität Berlin, Telecommunication Networks Group
(TKN), Einsteinufer 25, FT 5, 10587 Berlin, Germany
E-mail: {happ, karowski, menzel, handziski, wolisz}@tkn.tu-berlin.de

Keywords IoT · pub/sub · AMQP · MQTT · XMPP ·
ZeroMQ · performance evaluation

1 Introduction

We are at the brink of a new era of computing driven by rapid
augmentation of physical objects around us with computa-
tional and wireless communication capabilities. The resulting
network of “smart” objects that interact and exchange infor-
mation without direct human intervention, the so called Inter-
net of Things (IoT), can offer deep real-time awareness and
control of the physical environment and serve as foundation
for novel applications in a wide range of domains [7].

Based on enablers like server virtualization, fast network-
ing and reliable distributed storage, cloud computing offers
important benefits when used as vehicle for realizing core
elements of the IoT technology stack. The flexibility, scala-
bility and usage-based cost model enable elastic matching
of the growing communication, computation and storage
requirements associated with the IoT applications.

Today, several prominent academic and commercial IoT
platforms share a cloud centric architecture similar to the one
depicted in Figure 1 [15, 26]. Sensor data from devices are
sent to a cloud-based service tier. It provides access to the
data as well as additional services, e.g. data storage, analysis,
or aggregation, to user facing applications.

The current IoT landscape is characterized by a limited
interoperability between vertical silos of proprietary IoT sens-

IoT Device
Tier

Io
T

D
ev

ic
e

A
PI

Cloud
Service Tier

Io
T

Se
rv

ic
e

A
PI

Io
T

A
pp

lic
at

io
n

Fig. 1 General architecture of a cloud-centric IoT platform.



2 Daniel Happ et al.

Table 1 Survey of IoT platform characteristics

Architecture Pattern Messaging Protocol Message Format

C
on

su
m

er
s

A
ct

ua
to

rs

G
at

ew
ay

s

R
eq

/R
es

p

Pu
b/

Su
b

Pu
sh

HTTP Pub/Sub Other XML JSON Other
Axeda [5] X X X X X X X X ASN.1

Digi Device Cloud [10] X X X X X X X X
ETSI (one)M2M [30] X X X X X X X MQTT CoAP X X

EVRYTHNG [13] X X X X
FI-WARE [14] X X X X X X X X X

ioBridge [22] X X X X X X X X
openHAB [31] X X X X X X X MQTT X X
OpenIoT [32] X X X X X X X Socket X X CSV

OSIoT [33] X X X X X X X MQTT/XMPP CoAP X X
RuBAN [9] X X X X X X X X

SENSEI [35] X X X X X X SIP X
Sensor Andrew [38] X X X X X X X XMPP X CSV

Xively [25] X X X X MQTT Sockets X X CSV

ing and actuation platforms. A scalable and open messaging
middleware is required to provide connectivity between these
silos. Publish/subscribe has become a well established data
dissemination pattern for monitoring applications, e.g. stock
market or weather data. Due to the similar interaction styles,
traffic patterns, and QoS requirements, there is a trend to
replace the inappropriate request/response communication
pattern in favor of event-driven pub/sub systems in sensor
applications [18, 19, 23, 42].

It is still unclear which features pub/sub systems should
have to meet the specific IoT requirements, how a large num-
ber of connected devices that only sporadically send small
sensor data messages affect the throughput, and how much
additional delay cloud based pub/sub systems typically in-
troduce. In this paper, we make three main contributions
towards addressing the above problems:

– we survey current cloud-centric IoT platforms and derive
a set of requirements for pub/sub systems;

– we perform a qualitative analysis of several open pub/sub
solutions based on IoT requirements;

– we perform an experimental cloud-based performance
evaluation to compare popular open-source implemen-
tations of these solutions under typical conditions when
deployed in a public cloud environment.

2 Survey of Cloud based IoT Platforms

In this section, we present the result of a survey of several
prominent cloud-based IoT solutions. The key findings are
listed in Table 1, from which we derive requirements for
pub/sub protocols used in IoT platforms.

Architecture – Almost all surveyed platforms explicitly
differentiate between data generators and consumers, offer-
ing separate APIs for interacting with the cloud layer from

devices on one side, and from applications on the other. As
a result, their architecture is similar to the one depicted in
Figure 1. Xively uses a unified API towards the generators
and consumers of data. Actuators are supported by most so-
lutions. Gateways are used to mediate and integrate devices
that lack native IP connectivity. We conclude that a pub/sub
solutions should support monitoring and controlling of sens-
ing and actuation devices. As gateways are present, pub/sub
solutions do not need to run on sensor devices directly.

Messaging Pattern – All solutions support a synchronous
request/response pattern, but most also offer an asynchronous
interface, either offering pub/sub or push based notifications.
The push notification service enables applications or users
to be notified by the IoT platform when predefined condi-
tions are met. The specification of conditions ranges from
notifications on every sensor reading to complex rules in-
cluding comparison or logical operators. We conclude that
IoT platforms should support both synchronous as well as
asynchronous messaging. Pub/sub is the dominant pattern for
efficient data distribution. The push-based interfaces indicate
the need for advanced filtering capabilities in the cloud.

Messaging protocol – Providing uniform access to the
data collected is one of the core features of every IoT plat-
form. The results of our survey show that all current plat-
forms support HTTP access. A few platforms offer access via
standard pub/sub protocols, notably MQTT and XMPP. We
conclude that in contrast to closed off silo solutions, future
IoT systems will use standardized protocols with royalty-free
specifications and open-source implementations.

Messaging format – XML and JSON are the leading mes-
sage encoding formats and many platforms support both.
This emphasizes the need for standard formats in IoT settings.
Also, both solution offer extensibility to support unforeseen
new technologies, which should be offered by future IoT
related pub/sub systems.



Meeting IoT Platform Requirements with Open Pub/Sub Solutions 3

QoS – While some of the platforms [10, 30, 31, 35] make
use of QoS capabilities of the underlying network, only
Axeda uses message prioritization and OpenIoT supports
QoS between the application and device tiers.

In addition to the requirements mentioned above, there
are several general non-functional requirements for a cloud
based pub/sub system: Due to the large number of devices
expected, the system should be scalable. As data may be ur-
gent, messaging should have low latency. Because gateways
may be connected over constraint links, protocols and serial-
ization formats should be efficient. Based on these functional
and non-functional requirements, we develop a taxonomy of
current open pub/sub systems in the following section.

3 Qualitative Analysis of pub/sub Protocols

A publish/subscribe system is a message-oriented middle-
ware (MoM) [6,8,12,39] providing distributed, asynchronous,
loosely coupled communication between message produc-
ers and message consumers. In the context of IoT platforms
we see mainly sensor devices and their gateways in the IoT
device tier as message producers, while IoT applications in-
terested in sensor data are regarded as message consumers.
An actuator would also act as a consumer.

A pub/sub middleware in general offers three main types
of decoupling [12] which make them particularly suitable
for large-scale IoT deployments: 1) Message producers and
consumers are decoupled in time, i.e. they do not have to
be connected at the same time. 2) Messages are not explic-
itly addressed to a specific consumer but to a symbolic ad-
dress (channel, topic). 3) Messaging is asynchronous, non-
blocking.

A pub/sub system may support different types of filtering,
mostly based on topic or content. In the topic based scheme,
the symbolic channel addresses are topics, usually in the
form of strings, i.e. producers publish to and consumers
subscribe to topics. Messages are only delivered to matching
subscribers. Topics may be organized hierarchically, i.e. a
topic may be a subtopic of another topic. Subscriptions on
a parent topic will then usually also match all subtopics.
Topic based filtering is a static scheme offering only limited
expressiveness. In contrast, in the content based scheme,
subscribers are not statically matched based on topics, but
dynamically on the content of individual messages, e.g. if a
value reaches a certain threshold predefined by the subscriber.

Building on the general requirements for IoT platforms,
in this section we present a subset of pub/sub protocols
widely in use today and give a classification according to
the defined requirements. We limit ourselves to protocols
with an openly available protocol specification with open
source implementations widely used. We choose the proto-
cols AMQP, MQTT, XMPP and ZeroMQ, being protocols

widely used today which meet those criteria, for further eval-
uation. In the following, we give a brief introduction of those
protocols:

AMQP – Advanced Message Queuing Protocol (AMQP)
[2] was developed as an open replacement for proprietary
messaging protocols in the financial services industry. AMQP
is used in popular implementations, such as RabbitMQ [34],
Apache ActiveMQ [3], and Apache Apollo [4]. AMQP ver-
sion 0-9-1 is an open and royalty-free specification of both
a wire-level protocol and a broker model. AMQP 1.0 re-
cently became an Organization for the Advancement of Struc-
tured Information Standards (OASIS) Standard, but includes
mainly a novel wire-level protocol and only abstract broker
requirements. Most functionality is defined by the broker and
its behavior, which is not part of AMQP 1.0. We therefore
focus on version 0-9-1, which defines the broker model most
widely implemented.

MQTT – Message Queue Telemetry Transport (MQTT)
[24] is a pure pub/sub protocol for constrained devices and
low-bandwidth, high-latency, and unreliable networks stan-
dardized by OASIS. It has various open source implemen-
tations, such as the mosquitto broker and client library [28],
the aforementioned Apache ActiveMQ [3] broker, and the
Eclipse paho client library [11] There is an effort to port
MQTT to sensor nodes in the slimmed down variant MQTT-
S [19]. MQTT and MQTT-S are openly published with royal-
ty-free licenses.

XMPP – Extensible Messaging and Presence Protocol
(XMPP) [41] has its origin in the instant messaging proto-
col Jabber, motivated by the diversity of proprietary chat
protocols. XMPP is based on XML streaming. The core pro-
tocol is standardized in multiple IETF RFCs and extended
by XMPP Extension Protocols (XEPs), including pub/sub
messaging [27]. XMPP is the protocol behind the instant
messaging server ejabberd [36] and the Openfire server [21].

ZeroMQ – ZeroMQ [17] is a messaging library offering
sockets with more advanced messaging patterns than Berke-
ley sockets. Supported patterns include request/response and
pub/sub. The wire-level protocol is the ZeroMQ Message
Transport Protocol (ZMTP), which is made available under
the GNU General Public License. Because ZeroMQ offers
an abstraction of communication principles, all required fea-
tures of IoT platforms can be met by building those features
on top of the messaging patterns provided. In this work, we
only consider features included in the official documentation.

3.1 Taxonomy of Pub/Sub Systems

In this section, we give a classification of pub/sub proto-
cols regarding cloud-based IoT platform requirements. An
overview of our findings is given in Table 2.

In our survey, we focused on cloud-based IoT platforms
with a centralized topology. All considered protocols support



4 Daniel Happ et al.

such a topology, where the entire communication is done
via a cloud based broker. In the face of the expected number
of devices, it will be beneficial to reduce the load on the
broker. In a hybrid topology the matching between producer
and consumer is done by a central broker, but the actual pay-
load is transferred directly. XMPP uses a distributed network
of XMPP servers as brokers. It is also possible to establish
out-of-band peer-to-peer connections using XEP-0065, corre-
sponding to a hybrid topology. ZeroMQ can be used without
a central broker in a P2P fashion. Additionally, its pub/sub
sockets can be used to form a hierarchy of brokers, which
forward publications and subscriptions selectively.

We observed the use of the pub/sub and request/response
massaging patterns for monitoring sensing device. While
AMQP and ZeroMQ support both patterns, MQTT is a pure
pub/sub protocol. Request/response is still possible, but would
have to use special topics on which devices or services sub-
scribe for requests. XMPP is originally a chat protocol for
direct messaging which has been extended by XEP-0060 to
support pub/sub messaging [27].

We further concluded that protocols should offer ad-
vanced filtering capabilities. The considered solutions pro-
vide only topic based pub/sub with hierarchical topics. A
topic-based approach is suitable for a basic subscription
to a certain physical or virtual sensor. A hierarchical topic
structure enables monitoring sensor sets. AMQP and MQTT
support wildcards at every topic level, while ZeroMQ only
supports prefix matching. XMPP uses a combination of leaf
and collection nodes, where collection nodes are a set of leaf
nodes, which contain published items, which is equivalent
to a hierarchical topic tree. Content based pub/sub, as for
triggering, is not supported.

All protocols are generally agnostic to the message for-
mat. AMQP, MQTT, and ZeroMQ use a binary encoding,
permitting any format, while XMPP uses XML, which can
also transport other formats, but usually at the cost of less
bandwidth efficiency and increased parsing overhead. AMQP
additionally offers a type system that maps transmitted data
types to common data types of many languages and plat-
forms.

It may be desirable to be given semantic guarantees in
form of QoS semantics. AMQP and MQTT offer at-most-
once, at-least-once and exactly-once semantics. XMPP and
ZeroMQ are best-effort, but usually build upon a reliable un-
derlying transport protocol. XEP-0079 describes additional
delivery semantics including time-sensitive delivery. To sup-
ply the most recent value to late joining or temporarily discon-
nected subscribers, some protocols offer a last value cache
(LVC). MQTT messages can be flagged as retained, the lat-
est of which is provided to new subscribers. Nodes (topics)
in XMPP may store the last value for new subscribers. Al-
though ZeroMQ does not offer LVC directly, implementing
LVC with ZeroMQ is given as an example in the official

Table 2 Classification of open pub/sub middleware protocols

A
M

Q
P

M
Q

T
T

X
M

PP

Z
er

oM
Q

Pattern Pub/Sub X X X1 X
Point-to-point X X X

Filtering Topic-based X X X1 X
Content-based

QoS Semantics

At-most-once X X X X
At-least-once X X
Exactly-once X X

Last value caching X2 X X X

Topology
Decentralized X

Centralized X X X X
Hybrid X1

Binary Encoding X X X

guide. AMQP does not consider LVC explicitly, however it
may be provided by the broker software. There is for example
a plugin for RabbitMQ that adds LVC functionality [34].

4 Cloud based Performance Evaluation

While pub/sub systems offer the same core features, they dif-
fer in QoS semantics, encoding and expressiveness of filters.
The effect of those differences on pub/sub performance is
unknown. Furthermore, a cloud based deployment may intro-
duce unknown effects on the performance, making a cloud
based performance study necessary. This section first intro-
duces our measurement platform and relevant metrics. It then
presents the results of throughput and delay measurements
conducted in the public cloud.

4.1 Measurement Setup

We expect future platforms to have one or more brokers on
private or public cloud infrastructure. In our measurements,
we deploy brokers on instances on Amazon’s Elastic Com-
pute Cloud (Amazon EC2) [1], which is one of the leading
public cloud providers. We see gateways as clients using
the pub/sub protocol to publish their data. Gateways that
control actuators and user-facing applications are considered
subscribers. We do not explicitly study underlying sensor
network technologies, as those technologies are independent
of the pub/sub protocol used. To replicate a large number
of gateways and applications, we also model them using
instances in the cloud, enabling large-scale experiments.

We choose to evaluate the protocols using popular imple-
mentations as representatives. Our selection of brokers given
in Table 3. The broker configuration is kept as much as pos-
sible to the defaults. Erlang brokers use High Performance

1 using XMPP Extension Protocols (XEPs)
2 not required by standard, but mostly available via plugin



Meeting IoT Platform Requirements with Open Pub/Sub Solutions 5

Table 3 Overview of studied publish/subscribe systems

Protocol Broker Version Release date Language
AMQP RabbitMQ 3.4.4 2015-02-11 Erlang
MQTT mosquitto 1.4 2015-02-18 C
XMPP ejabberd 15.02 2015-02-17 Erlang
ZeroMQ malamute 4.0.5 2014-10-14 C++

Erlang (HiPE). As we do not consider security, encryption is
disabled.

We use a client written in the C programming language
as the gateway. It publishes and subscribes using uniform
interfaces to pub/sub plug-ins for every protocol. The traffic
generation and logging component stays the same in every
experiment. To avoid side-effects by disk IO, we buffer all
results in memory before writing them to disk. We use non-
persistent messages with at-most-once semantic.

Broker and publishing and subscribing processes are both
deployed on EC2 instances running Ubuntu 14.04 64bit (ami-
234ecc54). Brokers run on a single m3.large instance with
two cores, usually of an Intel Xeon E5-2670 with 2.50GHz,
and 7.5 GB of RAM. Gateway clients are deployed on
m3.medium instances, with one core and 3.75 GB of RAM.
We use 10 gateway instances, which host up to 100 virtual
publishing gateways and up to 100 subscribing processes.
The CPU load on every instance is monitored during ex-
periments, so that bottlenecks on the client side will not be
regarded as poor broker performance.

4.2 Metrics

As cloud centric IoT platforms may in the future have to
support billions of devices [15], it is important that a single
broker can handle as many sensor devices as possible, i.e.
offers the highest throughput of messages on a given physical
or virtual machine. We therefore study the throughput, which
we define as the number of messages per second the broker
can process. Additionally, the user expects fresh data from
the sensor application. We thus study the end-to-end delay
between publisher and subscriber.

4.3 Throughput Measurements

To get meaningful results for the throughput, the most crucial
part is to generate realistic load from connected sensors,
which will be forwarded as publications by the gateway, and
realistic modeling of applications and gateways that act as
subscribers.

For the measurement of throughput we decide for a well-
defined, generic, reproducible, synthetic load with a fixed
message size. Every gateway emits 500 messages per second
of 64 bytes, which is what we consider an average size for
sensor messages in traditional sensor networks. The typi-
cal maximum size of each frame in IEEE 802.15.4 is 128
bytes [20, 24]; with headers and additional layers on top,

101 102 103

Publisher/Subscriber Pairs

102

103

104

105

106

T
hr

ou
gh

pu
t

[m
sg

/s
]

ZeroMQ
MQTT
AMQP
XMPP

Fig. 2 Maximum sustainable throughput of the protocols.

the effective payload is usually half of that, as for instance
with ZigBee [24]. Every gateway has one subscriber that
is interested in the whole traffic the gateway emits, so the
fan out factor is 1. In the experiments, the number of pub-
lisher/subscriber pairs is increased until the pub/sub system
can no longer keep up with the offered load. The maximum
observed throughput is then defined as the maximum sustain-
able throughput.

Experiments consist of generating load for 5 minutes and
measuring the number of messages that reach subsribers dur-
ing that time. Increased load is achieved by a higher number
of publisher/subscriber pairs, which range from 10 to 1000.
The increase in the number of publisher/subscriber pairs is
exponential to accurately measure both very small and very
high throughput values. Each parameter configuration is ap-
plied a total of 8 times.

Figure 2 shows the measured throughput when applying
a certain load on the broker. The saturation of the throughput
marks the individual maximum sustainable thorughput of
the protocols. ZeroMQ in general has the highest throughput
with almost 400000msg/s. MQTT shows a throughput of
less than half of that with about 130000msg/s. AMQP has
a throughput of approximately 22000msg/s. XMPP has a
rather low throughput, which is mostly below 1000msg/s
and two orders of magnitude lower than the throughput of
ZeroMQ.

Our ZeroMQ broker is only very basic and only prefix
matching is supported. Because of that, the throughput is
considerably higher than the other protocols. MQTT and
AMQP offer more complex filtering, decreasing the through-
put. XMPP has the largest overhead due the used XML en-
coding, which has to be parsed at the clients and the broker,
leading to reduced throughput.

4.4 Latency Measurements

Opposed to the throughput measurements, we aim to mea-
sure the typical delay in a cloud-based setting rather than
under a saturated setting. In order to investigate the latency
introduced by cloud based pub/sub systems, we use a more



6 Daniel Happ et al.

00:00
04:00

08:00
12:00

16:00
20:00

00:00

Time

0

10

20

30

40

50

60

PA
R

 (l
ux

)

(a) Average measured photosynthetically ac-
tive radiation

00:00
04:00

08:00
12:00

16:00
20:00

00:00

Time

24.4

24.6

24.8

25.0

25.2

25.4

25.6

Te
m

pe
ra

tu
re

 (°
C

)

(b) Average Temperature

00:00
04:00

08:00
12:00

16:00
20:00

00:00

Time

37.2

37.4

37.6

37.8

38.0

38.2

38.4

H
um

id
ity

 (%
)

(c) Average Humidity

Fig. 3 Sample of average values measured on the TWIST sensor nodes over the course of one day (November 8, 2014); sunrise and sunset are
marked with blue dotted lines

realistic traffic source, that replicates a real life sensor net-
work.

We first collect representative sensor data traces in the
TKN Wireless Indoor Sensor network Testbed (TWIST) [16].
Our collection is done using 90 Telos Rev. B sensor nodes
[29]. Every node is equipped with a Sensirion SHT11 hu-
midity and temperature sensor which is factory calibrated
and produces digital output. Additionally, the nodes have
two analogue light sensors connected to analog-to-digital
converter (ADC) pins of the micro-controller: a Hamamatsu
S1087 (320nm to 730nm) visible light sensor measuring the
photosynthetically active radiation (PAR) and a Hamamatsu
S1087-01 (320nm to 1100nm) visible to IR light sensor mea-
suring the total solar radiation (TSR). We also collect internal
voltage readings from the microprocessor.

We collect samples of the sensors mentioned above on
each sensor node every second using a TinyOS application
that sends the data in one packet to the serial interface that
is exposed on the Universal Serial Bus (USB) port. The
collection process leverages the capabilities of the TWIST
testbed: each sensor node is connected to one supernode that
forwards the serial packets to the TWIST server, where a
trace file with all sensor values is recorded.

We collected a total of 72 hours of data, consisting of
about 90000000 individual sensor readings. For the cloud-
based delay measurements, we limit ourselves to a represen-
tative calendar day out of those traces, which is shown in
Figure 3: Figure 3a shows the average of one of the light
readings over all the sensors, Figure 3b shows the average
temperature, and Figure 3c shows the average humidity.

The graph of the light sensors show the course of the sun
on this day. After the sunset, there is a low level of remaining
light until about 7:30PM from office employees still in the
building. The temperature rises with solar radiation and drops
after noon. The relative humidity shows a drop around noon
due to the increased temperature.

We use this raw sensor data to generate sensor traces to
publish. We choose to only issue a message with updated
sensor data if reasonable thresholds is exceeded, i.e. if a

00:00
04:00

08:00
12:00

16:00
20:00

00:00

Time

40

50

60

70

80

90

100

110

120

L
oa

d
[m

sg
/s

]

Fig. 4 Resulting load by replaying recorded trace file from TWIST
testbed.

sensor samples a value that is close to the value sampled
before, the gateway will not retransmit the data, which would
be reasonable in large scale sensor networks. An overview
of the generated trace file is shown in Figure 4. The number
of messages per second emitted follows the course of the
maximum solar radiation shown before. While the mean
value of messages per second is about 50, the maximum
number of messages per second is almost 120.

We replay collected traces in real-time, i.e. the traces
are read by the test-client and published on the broker at the
same time offset as they where collected. In order to get more
general results, we replicate each publishing process 40 times,
i.e. the equivalent of 40 sensor networks. The starting point in
the trace is shifted up to 30 minutes, which is approximately
the solar time difference across Germany, modeling sensor
networks deployed across a mid-European country, which
keeps information about the day/night cycle intact.

For modeling the subscriber side, we subscribe each sub-
scriber process to a wildcard topic corresponding to one of
the modeled gateways.

We measure the end-to-end delay, whose distribution is
shown in Figure 5. The distributions of MQTT and ZeroMQ
is quite similar. More than 90% of the delay is below 1ms.
AMQP has in general a slightly higher delay. Still, about 80%



Meeting IoT Platform Requirements with Open Pub/Sub Solutions 7

0.0 0.1 1.0 10.0 100.0

Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

MQTT
ZeroMQ
AMQP
XMPP

Fig. 5 Empirical distribution function (ECDF) of resulting delay by
replaying recorded trace file from TWIST testbed.

of measured data is below 1ms. XMPP shows a considerably
higher delay up to around 250ms.

We explain this behavior as follows: As we also include
the network delay in our measurements, the delay is bounded
by the network delay between the instances. ZeroMQ and
MQTT operate very close to this minimum possible delay.
AMQP is significantly more complex than the other two pro-
tocols, which would explain the higher delay. XMPP has by
far the highest delay of the protocols. We expect that this is
mainly due to the XML encoding of messages. While other
protocols are byte-oriented, XML messages have to be parsed
at least partly in order to make a routing decision. Addition-
ally, the XML encoding makes the messages considerably
larger than for the other protocols.

5 Related Work

Previous work has been done in the field of performance
evaluation of pub/sub systems [39, 40, 43]. In [39], a good
overview of pub/sub performance evaluation is given. In
[40], the authors give a generic pub/sub benchmark based
on scenarios in the field of logistics. Tran and Greenfield
investigated the performance of IBM’s MQSeries v5.2 with
generic traffic in [43].

There are several proposals to use pub/sub systems in
IoT and sensor applications [19, 38]. Sensor Andrew [38]
is an IoT sensor platform using XMPP for data dissemina-
tion. MQTT-S is a stripped-down version of MQTT, which
is optimized for the small frame sizes in sensor networks,
which are typically under 128 bytes [19]. Gateways often
found in sensor networks are used to translate MQTT-S to
ordinary MQTT and relay messages to upstream brokers.
Both works address the need for pub/sub integration in sen-
sor applications but do not provide performance evaluation
of their protocols.

Other studies have investigated the network behavior of
Cloud-based virtual machines [37, 44, 45]. They focus on
Amazon Elastic Compute Cloud (Amazon EC2) [1], which
uses Xen virtualization. The CPU sharing introduces side ef-
fects such as unstable TCP/UDP throughput and abnormally

large delay variations found in [44]. Findings in [37] support
those results. In [45] the author show that instances of the
same type have different performance characteristics that are
unlikely to change with time.

Although pub/sub systems, IoT sensor applications, and
Cloud-based virtual machines were studied extensively, to
the best of our knowledge, there are no studies evaluating
pub/sub systems in the specific context of cloud-based IoT
platforms. With this study we try to answer the question
which pub/sub system is best suited for those settings and
what the performance impact for pub/sub operating on top of
virtualized computation is.

6 Conclusion

In this work, we conducted and analysis of cloud based IoT
platforms and a qualitative as well as a quantitative evalua-
tion of four different pub/sub solutions. Although no protocol
offers all features desirable in IoT settings, both evaluations
showed significant differences between the protocols: Al-
though being an extensible open protocol, XMPP cannot
reach the performance observed with the other pub/sub mid-
dlewares in IoT settings. Additionally, at the server side,
every stanza has to be parsed in order to make a routing de-
cision. XMPP performs considerable worse than the other
protocols regarding throughput and delay. AMQP is a full-
featured MOM that offers all the building blocks necessary
for creating a IoT enabled messaging broker. The perfor-
mance in terms of message throughput and average delay
is acceptable. However, it does not reach the performance
of MQTT or ZeroMQ. MQTT is specifically designed to
transport sensor-like data and has emerged to the de-facto-
standard in the field. The mosquitto broker has reasonable
high throughput and low delay. A crucial part also missing in
MQTT is the possibility to contact connected clients directly,
as MQTT is a pure pub/sub protocol. However, we believe
that those shortcomings can be overcome with several minor
modifications to the MQTT protocol and broker software.
Our performance measurements suggest that ZeroMQ can
achieve very high throughput while maintaining low delay.
Also appealing is the fact that a broker is optional and a
decentralized system is possible. However, ZeroMQ is no
full-featured broker implementation and less expressive than
the other protocols, as only prefix matching is supported.
Therefore, crucial features may need to be, but on the other
hand can be, added for a deployment in IoT settings.

Our conclusion therefore is twofold: We recommend Ze-
roMQ where a specifically tailored solution is needed and
the effort of implementing missing features can be accepted.
For settings where a readily available solution is necessary,
we recommend MQTT, where there are a few open source
software solutions that can be used out of the box.



8 Daniel Happ et al.

References

1. Amazon: Elastic Compute Cloud (EC2). URL http://aws.

amazon.com/ec2
2. AMQP Working Group: Advanced message queuing protocol

(2010). version 0-9-1
3. Apache Software Foundation: ActiveMQ. URL http://

activemq.apache.org/
4. Apache Software Foundation: Apollo. URL http://activemq.

apache.org/apollo/
5. Axeda Corporation: URL http://www.axeda.com
6. Banavar, G., Chandra, T., Strom, R., Sturman, D.: A case for mes-

sage oriented middleware. In: P. Jayanti (ed.) Distributed Com-
puting, Lecture Notes in Computer Science, vol. 1693, pp. 1–17.
Springer Berlin Heidelberg (1999)

7. Chui, M., Löffler, M., Roberts, R.: The internet of things. McKinsey
Quarterly 2, 1–9 (2010)

8. Curry, E.: Message-oriented middleware. In: Q.H. Mahmoud (ed.)
Middleware for Communications, chap. 1, pp. 1–28. John Wiley &
Sons (2005)

9. Davra Net.: Ruban. URL http://www.davranetworks.com
10. Digi International Inc.: Digi device cloud. URL http://www.

digi.com/cloud-overview
11. Eclipse Foundation: Paho. URL https://eclipse.org/paho/
12. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The

many faces of publish/subscribe. ACM Computing Surveys
(CSUR) 35(2), 114–131 (2003)

13. EVRYTHNG: Every thing connected. URL https://evrythng.

com/
14. FIWARE: Open apis for open minds. URL https://www.

fiware.org/
15. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of

Things (IoT): A vision, architectural elements, and future directions.
Future Generation Computer Systems 29(7), 1645–1660 (2013)

16. Handziski, V., Köpke, A., Willig, A., Wolisz, A.: Twist: A scalable
and reconfigurable testbed for wireless indoor experiments with
sensor networks. In: Proc. of the 2nd Int. Workshop on Multi-hop
Ad Hoc Networks: From Theory to Reality (REALMAN ’06), pp.
63–70. Florence, Italy (2006)

17. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly
(2013)

18. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications
and enabling technologies. In: Proc. of the 3rd ACM Int. Conf.
on Distributed Event-Based Systems (DEBS ’09), pp. 1:1–1:15.
Nashville, TN, USA (2009)

19. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S – A
publish/subscribe protocol for Wireless Sensor Networks. In: 3rd
Int. Conf. on Communication Systems Software and Middleware
and Workshops (COMSWARE’08), pp. 791–798. Bangalore, India
(2008)

20. IEEE Standard for Information technology: Local and metropoli-
tan area networks – Specific requirements – Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications for Low Rate Wireless Personal Area Networks (WPANs).
IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003) pp.
1–320 (2006). DOI 10.1109/IEEESTD.2006.232110

21. Ignite Realtime: Openfire Server. URL http://www.

igniterealtime.org/projects/openfire/
22. ioBridge, Inc.: Realtime.io. URL http://www.iobridge.com
23. Leguay, J., Lopez-Ramos, M., Jean-Marie, K., Conan, V.: An effi-

cient service oriented architecture for heterogeneous and dynamic
wireless sensor networks. In: 33rd IEEE Conf. on Local Computer
Networks (LCN 2008), pp. 740–747. Montreal, Canada (2008)

24. Locke, D.: MQ Telemetry Transport (MQTT) V3.1 Protocol Speci-
fication. IBM developerWorks Technical Library (2010)

25. LogMeIn, Inc.: Xively official website. URL https://www.

xively.com/. (Xively is former COSM)

26. Menzel, T., Karowski, N., Happ, D., Handziski, V., Wolisz, A.:
Social sensor cloud: An architecture meeting cloud-centric iot
platform requirements (2014). 9th KuVS NGSDP Expert Talk on
Next Generation Service Delivery Platforms

27. Millard, P., Saint-Andre, P., Meijer, R.: XEP-0060: Publish-
Subscribe (2010). URL http://www.xmpp.org/extensions/

xep-0060.html. Version: 1.13
28. Mosquitto: An open source mqtt v3.1/v3.1.1 broker. URL http:

//mosquitto.org/

29. Moteiv Co.: Tmote sky datasheet. URL http:

//www.crew-project.eu/sites/default/files/

tmote-sky-datasheet.pdf

30. oneM2M Technical Specification: Functional architecture. Tech.
Rep. TS 118 101 V1.0.0, ETSI (2015). Version 1.6.1

31. openHAB: The open home automation bus. URL http://

openhab.org

32. OpenIoT: Open source cloud solution for the internet of things.
URL http://openiot.eu

33. OSIoT: Open source internet of things. URL http://osiot.org

34. Pivotal Software: RabbitMQ. URL https://www.rabbitmq.

com/

35. Presser, M., Barnaghi, P., Eurich, M., Villalonga, C.: The sensei
project: integrating the physical world with the digital world of the
network of the future. IEEE Communications Magazine 47(4), 1–4
(2009)

36. ProcessOne: ejabberd XMPP Server. URL https://www.

process-one.net/en/ejabberd/

37. Rege, M.R., Handziski, V., Wolisz, A.: CrowdMeter: an emulation
platform for performance evaluation of crowd-sensing applications.
In: Proc. of the 2013 ACM conf. on Pervasive and ubiquitous com-
puting adjunct publication, pp. 1111–1122. Zürich, Switzerland
(2013)

38. Rowe, A., Berges, M.E., Bhatia, G., Goldman, E., Rajkumar, R.,
Garrett, J.H., Moura, J.M., Soibelman, L.: Sensor Andrew: Large-
scale campus-wide sensing and actuation. IBM Journal of Research
and Development 55(1.2), 6:1–6:14 (2011)

39. Sachs, K.: Performance modeling and benchmarking of event-based
systems. Ph.D. thesis, TU Darmstadt (2010). SPEC Distinguished
Dissertation Award 2011

40. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance eval-
uation of message-oriented middleware using the SPECjms2007
benchmark. Performance Evaluation 66(8), 410–434 (2009)

41. Saint-Andre, P.: Extensible Messaging and Presence Protocol
(XMPP): Core. RFC 6120 (Proposed Standard) (2011). URL
http://www.ietf.org/rfc/rfc6120.txt

42. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N.,
Ferraz, C.: A message-oriented middleware for sensor networks.
In: Proc. of the 2nd Workshop on Middleware for Pervasive and
Ad-hoc Computing (MPAC ’04), pp. 127–134. Toronto, Canada
(2004)

43. Tran, P., Greenfield, P., Gorton, I.: Behavior and Performance of
Message-Oriented Middleware Systems. In: Proc. of the 22nd Int.
Conf. on Distributed Computing Systems Workshops, pp. 645–650
(2002)

44. Wang, G., Ng, T.S.E.: The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center. In: Proc. of the 29th
Conf. on Information Communications (INFOCOM’10), pp. 1–9
(2010)

45. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: Avoiding
Long Tails in the Cloud. In: Proc. of the 10th USENIX Symp. on
Networked Systems Design and Implementation (NSDI ’13), pp.
329–341. Lombard, IL, USA (2013)


