
TKN
Telecommunication

Networks Group

Technical University Berlin

Telecommunication Networks Group

TWIST Actu: A RESTful Platform for
Remote Experimentation With

Building Automation Sensors and
Actuators

Sunkara Vinodh Kumar, Vlado Handziski
svinodhkumar.1031@gmail.com,handziski@tkn.tu-berlin.de

Berlin, August 2012

TKN Technical Report TKN-12-003

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

The TWIST Actu platform is aimed at extending the capabilities of the TWIST testbed at
TU Berlin with support for remote experiments involving building automation sensors and
actuators, as part of a wider effort to migrate the testbed from a pure sensor network testbed
to one that can also effectively host more challenging cyber-physical system experimental
scenarios. In this demo paper we summarize the main features of the hardware and software
architecture of TWIST Actu, focusing on the design of the RESTful remote experimentation
API that supports a “Testbed as a Service” model of use of the testbed resources. Finally,
we present the prototype implementation of the platform and the scenario for demonstrating
its capabilities.

Contents

1 Introduction 4

2 TWIST Actu Remote Experimentation API 6

3 TWIST Actu Prototype 11

4 Performance Evaluation 16

5 Acknowledgments 19

1

List of Figures

1.1 Illustration of the current deployment configuration of the TWIST Actu ex-
tension . 5

2.1 Resource manipulation using a uniform method set in REST 6
2.2 TWIST Actu resource hierarchy . 8

3.1 System architecture of the TWIST Actu extension 11
3.2 Client–Server interaction patterns in HTTP long polling and streaming . . . 13
3.3 Client–Server interaction patterns in WebSockets 13
3.4 Client–Server negotiation for upgrading a HTTP connection to a WebSocket

connection . 14
3.5 Notification “push” using a reverse XMLRPC bridge 14
3.6 WebSocket-based notification for actuator state change 15

4.1 Time overhead in the execution of several core database-related operations . . 16
4.2 Time overhead in the execution of several core CCU-related operations 17

2

List of Tables

2.1 Extended TAA resources for the TWIST Actu services 7

3

Chapter 1

Introduction

The TKN Wireless Indoor Sensor Network Testbed (TWIST) [5] is a flexible testbed archi-
tecture implemented on top of open hardware and software. The TWIST instance at TU
Berlin is one of the largest indoor sensor network testbeds with public remote access. It
integrates 204 sensor nodes, distributed over three floors of the TKN building, offering more
than 1500 m2 of instrumented office space.

The TWIST Actu platform extends the hardware capabilities of the TWIST testbed
with typical building automation sensors and actuators like heating plate valve controllers,
light switches/dimmers, window tilt and blinds controllers. Wrapped behind an expressive
and flexible remote experimentation API, the TWIST Actu extension enables new test sce-
narios like:

• evaluation of different Internet/HVAC interfacing approaches, middleware, program-
ming abstractions;

• evaluation of interference effects on the correct operation of different sensing/actuation
control loops;

• evaluation of the impact of coexistence problems between different radio technologies
on the operation of building automation systems, etc.

The selection process for the hardware platform used in the TWIST Actu extension has
been conducted following general criteria like maturity, availability, and level of support.

Since the home automation hardware is retrofitted into an “old” building that is already
in use, the ease of integration with the existing infrastructure like electrical wiring, heating
plates, lights, etc. has also been a major decision factor. Similarly, the need for good indoor
RF propagation characteristics and compatibility with the existing sensor node platforms in
the testbed has motivated us to seek a platform that operates in the 868 MHz ISM band
with support for bidirectional communication between the actuators and the control nodes,
enabling evaluation of ARQ protocols.

Following these selection criteria, the TWIST Actu extension has been realized using
products from the HomeMatic line of sensors and actuators from the ELV/eQ-3 group [6].
The HomeMatic system is one of the most popular “retrofitting” building automation systems

4

TU Berlin

in Germany. It features a very large product palette and its products are available through
major distributors of electronic equipment.

The HomeMatic nodes use a Texas Instruments CC1100 radio in the 868 MHz band, with a
custom communication protocol named BidCos. The protocol uses a form of XOR obfuscation
and initial ASK-protected handshake, which have already been reverse-engineered. This
opens the opportunity to freely communicate with the HomeMatic equipment using any sensor
node platform that has a radio compatible with the CC1100, enabling low-level integration
with the rest of the TWIST sensor networks infrastructure. In the current configuration,
illustrated on Figure 1.1, the TWIST testbed has been extended with seven different types
of HomeMatic nodes, installed in the CPS Lab on the second floor of the TKN building.

WSN nodes

HM Heater Plate Actuation

HM Window Blinds Actuator
HM Window Tilt Sensor and Actuator

HM Wall-Mounted Weather Station
(Temperature, Light, Wind, Rain)

HM Heater Plate Actuation

HM Window Blinds Actuator
HM Window Tilt Sensor and Actuator

HM Heater Plate Actuation

HM Window Blinds Actuator
HM Window Tilt Sensor and Actuator

TW
IS

T
C

ab
lin

g

WSN nodes WSN nodes

 WSN nodesWSN nodesWSN nodes

TW
IST

C
abling

HM Light Actuation Switch

HM PIR Occupancy SensorHM PIR Occupancy Sensor

HM CO2 Air Quality Sensor

HM Door Movement Sensor Room FT226/FT227 Total Area: 52 m2

Figure 1.1: Current deployment configuration of the TWIST Actu extension

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 5

Chapter 2

TWIST Actu Remote
Experimentation API

The user-facing service API for remote experimentation with building automation actuators
has been designed as an extension of the COTEFE Testbed Abstraction API (TAA) [2].
Following the Representational State Transfer (REST) architectural style [4], the API is
specified as a set of resources which are manipulated through a uniform method set, comprised
of the standard HTTP methods like GET, PUT, DELETE, POST, etc. The role and the
semantics of the methods are independent from the resources that are being manipulated,
specified by a Universal Resource Locator (URL), as shown on Figure 2.1.

GET PUT DELETE POST

Retrieve
Create/
Replace

Delete
Append/
Modify

Safe
Idempotent
Cacheable

Idempotent Idempotent
Not Safe

Not
Idempotent

Resource URL
Eg: http://cotefe.net

/nodes/12

Figure 2.1: Resource manipulation using a uniform method set in REST

The abstraction of the access to the building automation sensors and actuators in TWIST
Actu has been achieved through two new resources that extend the resource model of the
TAA: Channel and Parameter.

The API supports two types of channel resources: sensors and actuators. The sensor
channels perform a supervisory function. They sense a particular parameter in the environ-
ment and generate events when necessary. Actuator channels perform control functions and
influence the state of physical objects in the environment. Both sensor and actuator channels
are characterized by state values, data points and attributes which are exposed through the
parameter resource concept (Table 2.1).

The representation of the resources is realized using JSON serialization that simplifies the
development of JavaScript client implementations and increases the human-readability and

6

TU Berlin

RESOURCES ANALOGY(with real devices) ATTRIBUTES FIELDS

Node

id Char
native id Integer
name Char
platform ForeignKey

Parent Device location x Decimal
location y Decimal
location z Decimal
datetime created DateTime
datetime modified DateTime

Channel

id Char
name Char

Channels in a parent device node ForeignKey
is sensor Boolean
is actuator Boolean

Parameter

id Char
channel ForeignKey
name Char

Data Points for a channel value Float
type Char
unit Char
min Float
max Float

Table 2.1: Extended TAA resources for the TWIST Actu services

encoding efficiency in comparison to XML-based solutions.
Figure 2.2 documents the associated URL hierarchy. Starting from the top, the actuator

devices in the TWIST Actu extension are considered to be normal System Under Test (SUT)
TWIST nodes. For example, issuing a HTTP GET command to the URL:

• https://www.twist.tu-berlin.de:8001/nodes

returns a container representation of all nodes that are currently accessible on TWIST.
These nodes include both the new Homematic actuator nodes and the existing TWIST sensor
nodes:

[

{

"id": "GEQ0207622" ,

"uri":"https://www.twist.tu-berlin.de:8001/nodes/GEQ0207622" ,

"media_type": "application/json" ,

"name": "HM-CC-SCD"

},

{"id": "HEQ0138342" ,

"uri":"https://www.twist.tu-berlin.de:8001/nodes/HEQ0138342" ,

"media_type": "application/json" ,

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 7

https://www.twist.tu-berlin.de:8001/nodes

TU Berlin

../nodes/

../nodes/node_id/

parent devices

parent device

channels

../nodes/node_id/channels/

../nodes/node_id/channels/channel_id/
channel

../nodes/node_id/channels/channel_id/parameters/

data points

../nodes/node_id/channels/channel_id/parameters/p_id

data point

../nodes/node_id/channels/?type='sensor'

../nodes/node_id/channels/?type='actuator'

sensors

actuators

Figure 2.2: TWIST Actu resource hierarchy

"name":"HM-CC-VD"

},

]

Discovery of nodes from a particular platform can be performed using the platform filter.
For example, to receive a container representation of all HomeMatic nodes currently accessible
on TWIST, one needs to issue a HTTP GET command to the URL:

• https://www.twist.tu-berlin.de:8001/nodes/?platform=homematic

Like other SUT nodes, each actuator device is uniquely identified through a serial number
which is leveraged for construction of its URL. For example, a HTTP GET on the URL:

• https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249

provides a detailed description of a HomeMatic actuator with serial number “IEQ0042249”:

{

"id": "IEQ0042249" ,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249" ,

"media_type": "application/json" ,

"name": "HM-Sec-Win" ,

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 8

https://www.twist.tu-berlin.de:8001/nodes/?platform=homematic
https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249

TU Berlin

"native_id": "null" ,

"platform":

{

"id": "homematic" ,

"uri": "https://api.cotefe.net/platforms/homematic" ,

"media_type": "application/json" ,

"name": "HomeMatic"

},

"channels":

[],

"location_x": 0,

"location_y": 0,

"location_z": 0,

"datetime_created": "2012-07-09T11:24:06" ,

"datetime_modified": "2012-07-09T11:24:06"

}

The list of all channels supported by this actuator can be retrieved by issuing the HTTP
GET method on the URL:

• https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels

whereas the same method issued against the URL:

• https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1

provides a detailed representation of the HomeMatic channel with address “IEQ0042249:1”:

[

{

"id": 0,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/0" ,

"media_type": "application/json" ,

"name": "MAINTENANCE"

},

{

"id": 1,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1" ,

"media_type": "application/json" ,

"name": "WINMATIC"

},

{

"id": 2,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/2" ,

"media_type": "application/json" ,

"name": "AKKU"

}

]

The data points in the internal HomeMatic APIs which encode the internal state of a
particular channel are exposed through the parameter resource. The list of all data points

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 9

https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels
https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1

TU Berlin

for a particular channel is thus obtained by the issuing a HTTP GET request against a URL
in the form:

• https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters

whereas a HTTP GET request against the URL:

• https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters/

2

provides a detailed representation of a particular parameter:

{

"id": 2,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters/2" ,

"media_type": "application/json" ,

"name": "LEVEL" ,

"type": "FLOAT" ,

"value": 0,

"unit": "100%" ,

"min": 0,

"max": 1,

"channel":

{

"id": 1,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1" ,

"media_type": "application/json" ,

"name": "WINMATIC"

},

"node":

{

"id": "IEQ0042249" ,

"uri": "https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249" ,

"media_type": "application/json" ,

"name": "HM-Sec-Win"

},

"datetime_created": "2012-07-09T11:24:07" ,

"datetime_modified": "2012-07-09T11:31:38"

}

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 10

https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters
https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters/2
https://www.twist.tu-berlin.de:8001/nodes/IEQ0042249/channels/1/parameters/2

Chapter 3

TWIST Actu Prototype

We have developed a prototypical implementation of the TWIST Actu API which has been
deployed for testing. Figure 3.1 illustrates the system architecture of the current prototype.
It shows how the XMLRPC-based interfaces offered by the HomeMatic Central Control Unit
(CCU) have been integrated and abstracted via an extended CONET Testbed Adaptation
Server implemented with Django [7].

COTEFE Testbed
Abstraction API

Web Interface

XMLRPC Client

TWIST WSN
Testbed

8005

8000

PostgreSQLSQLite

2000

2001

2002

Homematic Devices

Bidcos-wired

Bidcos RF

Systemof internal devices

BIDCOS
Communication

Central Control UnitHomematic

XMLRPC Interface

BRIDGE API

Testbed Server

TWIST Client

COTEFE Client

8001

RESTful API

Figure 3.1: System architecture of the TWIST Actu extension

To simplify the adaptation of this RPC-centric API to the user-facing REST API, we

11

TU Berlin

have leveraged an intermediate gateway adaptation component called “Homematic Bridge”
with the following API signature:

API for Winmatic HM-Sec-Win

• openWindow(self, request, address)

• closeWindow(self, request, address)

• tiltWindow(self, request, address, value)

• getWindowTilt(self, request, address)

API for Channel 1 of HM-CC-TC

• getTemperature(self, request, address)

• getHumidity(self, request, address)

API for Channel 2 of HM-CC-TC

• setClimateRegulator(self, request, address, value)

• getClimateRegulator(self, request, address)

API for CO2 sensor HM-CC-SCD

• getCO2(self, request, address)

API for Radio Control Valve (Heater) HM-CC-VD

• getHeaterState(self, request, address)

API for motion detector HM-Sec-MDIR

• getBrightness(self, request, address):

• getMotion(self, request, address)

• getNextTransmission(self, request, address)

• setNextTransmission(self, request, address, value)

The Homematic CCU provides the facility of sending notifications about important events
reported by the sensor and actuator devices. To this end, the CCU acts as a XMLRPC client
that can “push” notifications to a remote XMLRPC server. Combined with the “direct path”
where the CCU acts as a server, this creates a reverse XMLRPC bridge enabling command
and notification flow in both directions.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 12

TU Berlin

To adapt the RPC-based notification mechanism to the requirements of the TWIST Actu
experimentation API, the notifications are offered to the testbed user using the HTML5
WebSocket protocol [3].

The WebSocket mechanism enables much more efficient “pushing” of notification from the
sensors and actuators than the traditional methods of HTTP-polling or HTTP-streaming.
Figure 3.2 illustrates the differences in the interaction patterns between these two methods,
and the benefits of the WebSocket approach (Figure 3.3).

LONG - POLLING HTTP - STREAMING

Request

Request

Response

Request

Response
Part

Event

Response
Part

EventEvent

Event

Client ClientServer Server

Figure 3.2: Client–Server interaction patterns in HTTP long polling and streaming

WEBSOCKET

Request

Request

Upgrade

Response Part

Response Part

Data Exchange

Event

Event

Client
Event

 Client Server

Figure 3.3: Client–Server interaction patterns in WebSockets

The WebSocket protocol provides a bidirectional communication service between a web
client and a server. After an initial HTTP-based negotiation phase, the connection is “up-
graded” to a bi-directional data flow conduit over the same underlying TCP/IP connection
between the client and the server (Figure 3.4).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 13

TU Berlin

{

"Request URL" : "ws://192.168.100.6:9036/" ,

"Request Method" : "GET" ,

"Status Code" : "101 Switching Protocols Request Headers" ,

"Connection" : "Upgrade" ,

"Host" : "192.168.100.6:9036" ,

"Origin" : "null" ,

"Sec-WebSocket-Extensions" : "x-webkit-deflate-frame" ,

"Sec-WebSocket-Key" : "882suVIB7Cv7+N1vK41nmg==" ,

"Sec-WebSocket-Version" : 13,

"Upgrade" : "websocket" ,

"(Key3)" : "00:00:00:00:00:00:00:00" ,

"Connection" : "Upgrade" ,

"Sec-WebSocket-Accept" : "+oMgYFzTuhdbN9PThuhLA14B6u8=" ,

"Server" : "AutobahnPython/0.5.5" ,

"Upgrade" : "WebSocket" ,

"(Challenge Response)" :"00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00"

}

Figure 3.4: Client–Server negotiation for upgrading a HTTP connection to a WebSocket
connection

The WebSocket server in the TWIST Actu prototype has been implemented using the
“Autobahn” library [1]. The architecture of the reverse XMLRPC bridge implementation is
shown in Figure 3.5.

8002
Autobahn API

8003
Events API

8001

TestBed
Abstraction

API

2000

2001

2002

XMLRPC Server (Non-Twisted)

Register Server at CCU

Central Control Unit - HomeMatic

homematic devices

events

Trigger Events

BROWSER

Twisted Server

Runs xmlrpc server (8003) on thread

Writes the notification on to socket (browser)

Figure 3.5: Notification “push” using a reverse XMLRPC bridge

Figure 3.6 provides an illustration of the notification push service in TWIST Actu. A

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 14

TU Berlin

change in the tilt level of the window actuator “IEQ0042251:1” to value “0.245”, triggers a
notification encoded in JSON format that is efficiently pushed to the testbed client.

{"RESPONSE":

{

"id" : "rf" ,

"channel" : "IEQ0042251:1" ,

"parameter" : "LEVEL" ,

"value" : "0.245"

}

}

Figure 3.6: WebSocket-based notification for actuator state change

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 15

Chapter 4

Performance Evaluation

To evaluate the performance of the implemented prototype, we have measured the time over-
head in the execution of several core operations of the platform. The results are summarized
in the form of boxplots, showing the median, lower and upper quartiles, and outliers for one
hundred repetitions of the respective operation. Figure 4.1 shows the performance results for
the database-related operations. The results for the CCU-related operations are depicted on
Figure 4.2. In the following we provide brief description of the evaluated operations and

Parameter.objects.all()

Node.objects.all()

Channel.objects.all()

●

●●●●●● ●●●●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●● ●● ●●

● ● ●●●●●●●● ●● ●● ●

0.
00

00
0

0.
00

00
2

0.
00

00
4

0.
00

00
6

0.
00

00
8

0.
00

01
0

Delay [s]

O
pe

ra
tio

n

Figure 4.1: Time overhead in the execution of several core database-related operations

Channels from Database The presented boxplot summarizes the time overhead in the
execution of the Channel.objects.all() operation, measured using the “timeit” module in

16

TU Berlin

Python. The evaluation shows that the average time overhead for channel retrieval from the
database is on he order of 0.000035 s. The operation returns a channels list containing all
channels associated with all nodes, leading to a relatively larger time overhead compared to
other database operations. The channel list in the database is a cached version of the channel
data returned by the proxy.getDevices() command on the CCU described below.

Nodes from Database The boxplot summarizes the time overhead in the execution of
the Node.objects.all() operation. The evaluation shows that the average time overhead
for node retrieval from the database is on he order of 0.000021 s.

Parameters List from the Database The boxplot shows the time overhead in obtain-
ing the list of Parameters associated with a given channel from the database using the
Parameter.objects.all() command. The average measured time overhead for the op-
eration is 0.000021 s.

proxy.setValue()

proxy.getValue()

proxy.getParamset()

proxy.listDevices()

●● ● ●● ●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0.
00

1.
00

2.
00

3.
00

4.
00

5.
00

Delay [s]

O
pe

ra
tio

n

Figure 4.2: Time overhead in the execution of several core CCU-related operations

Devices List from the CCU This operation returns a list of all nodes and channels regis-
tered at the CCU. The boxplot summarizes one hundred iterations of the proxy.listDevices()
command where “proxy” is a ServerProxy instance that manages the communication with
the XMLRPC server at the CCU. The evaluation shows that the average time overhead for
the retrieval of the devices list from CCU is on the order of 1.67 s.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 17

TU Berlin

Parameter Set from the CCU The parameter set from the CCU contains all parameters
associated with a given channel. The boxplot depicts the time overhead in the execution of
the ’proxy.getParamset() operation. The average time taken for the parameter set retrieval
from the CCU is 0.05 s.

Get Value from the CCU The plot covers one hundred iterations of proxy.getValue()
command. The returned result represents the value of a particular parameter obtained
through the CCU.The obtained average time overhead measure is on the order of 0.05 s.

Set Value at the CCU The proxy.setValue() command supports setting a given pa-
rameter value at the CCU. As it can be seen on the plot, the average time overhead for
updating a parameter value at the CCU is expectantly significantly higher than the simple
proxy.getValue() retrieval, and is on the order of 0.75 s.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-003 Page 18

Chapter 5

Acknowledgments

The work has been performed during the first author’s internship at the TKN group at TU
Berlin. It has been partially supported by EIT ICT Labs, as part of the activity 12149,
“From WSN Testbeds to CPS Testbeds”.

19

Bibliography

[1] Autobahn web sockets. http://autobahn.ws.

[2] Claudio Donzelli, Vlado Handziski, and Adam Wolisz. Demo Abstract: Testbed-
independent experiment specification and execution using the COTEFE platform. In
Proc. of 9th European Conference on Wireless Sensor Networks, EWSN 2012, February
2012.

[3] I. Fette and A. Melnikov. The WebSocket protocol. Internet Network Working Group
RFC6455, 2011.

[4] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture.
In Proc. of the 22nd intl. conference on Software engineering, ICSE ’00, 2000.

[5] Vlado Handziski, Andreas Köpke, Andreas Willig, and Adam Wolisz. TWIST: a scalable
and reconfigurable testbed for wireless indoor experiments with sensor networks. In Proc.
of the 2nd Intl. Workshop on Multi-Hop Ad Hoc Networks, REALMAN ’06, May 2006.

[6] HomeMatic platform. http://www.homematic.com.

[7] Django, the web framework for perfectionists with deadlines. http://www.

djangoproject.com.

20

http://autobahn.ws
http://www.homematic.com
http://www.djangoproject.com
http://www.djangoproject.com

	Introduction
	TWIST Actu Remote Experimentation API
	TWIST Actu Prototype
	Performance Evaluation
	Acknowledgments

