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Zusammenfassung

Nach einem Jahrzehnt intensiver Forschung und Entwicklung sind drahtlose Sen-
sornetze (Wireless Sensor Networks (WSNs)) kurz davor, sich von einer unbekann-
ten Technologie in ein tragfähiges Marktsegment zu verwandeln. Während dieses
Zeitraums hat sich die WSN-Knoten-Hardware ständig verbessert, was zu erhöhter
Funktionalität und einer Reduzierung von Formfaktor, Kosten und Energieverbrauch
geführt hat. Leider konnte die Software-Entwicklung nicht mit demselben Tempo
voranschreiten. Die Begrenztheit der Betriebsmittel und anwendungsspezifische An-
forderungen sind dafür verantwortlich, dass Entwickler geschlossene und integrierte
Lösungen anstreben, was die Wiederverwendung von Entwürfen und Programmier-
code behindern. Dies führt dazu, dass der erforderlicheAufwand für die Entwicklung
neuer Anwendungen und ihre Anpassung an die sich kontinuierlich entwickelnde
Hardware ansteigt.

Das Fehlen einer allgemeinen Softwarearchitektur für WSNs wird von vielen
Mitgliedern der wissenschaftlichen Gemeinschaft als wesentlicher Faktor für die
existierenden Defizite angesehen. Wir präsentieren eine doppelverankerte Softwarear-
chitektur für drahtlose Sensornetze, die eine effektive WSN Entwicklung ermöglicht,
indem traditionelle Methoden des Entwurfes und der Wiederverwendung von Pro-
grammiercode angewendet werden, unter Einhaltung von bewährten Prinzipien wie
funktioneller Entkoppelung und dem Verbergen von Komplexität. Gleichzeitig wird
ein Mechanismus zur Steuerung des inhärenten Kompromisses zwischen Effizienz
und Wiederverwendung zur Verfügung gestellt, so dass sich die genannten Vorteile
im Vergleich mit einer maßgeschneiderten und vertikal integrierten Lösung ohne
einen übermäßig hohen Nachteil an Leistungsfähighkeit realisieren lassen.

Die vorgestellte Architektur ist als ein Komponenten-System ausgeführt, das um
zwei “Anker” angeordnet ist, die Beständigkeit ermöglichen und als die Basis für
den Entwurf und die Wiederverwendung von Programmiercode dienen. Der untere
Portabilitäts-Anker abstrahiert die Hardware und ermöglicht explizite Kontrolle des
Performance-Portabilität Trade-offs. Der obere Interoperabilität-Anker abstrahiert die
Knoten-lokalen Dienste mithilfe einer expressiven Publish/Subscribe Schnittstel-
le und unterstützt anwendungsspezifische Anpassung. Diese Dissertation vertritt
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die These, dass eine breite Softwarearchitektur, die auf diesen beiden Ebenen des
Software-Stacks verankert ist, wirksam Portabilität und Interoperabilität fördern
kann und dass dies unter Beachtung der Kosten für die involvierten Abstraktionen
geschieht.

Wir werten diese Behauptungen in qualitativer und quantitativer Art und Weise
aus, und zwar anhand eines Beispiels, das eineReihe vonPrototyp-Implementierungen
realisiert, von denen einige breite Anwendung in der WSN-Forschungs-Gemeinschaft
gefunden haben. Zur Unterstützung der Auswertung haben wir eine spezifische
Test-Infrastruktur entwickelt, die eine effiziente Prüfung der funktionalen und nicht-
funktionalen Eigenschaften von WSN-Protokollen und -Diensten ermöglicht.



Abstract

After a decade of intense research and development,Wireless SensorNetworks (WSNs)
are on the verge of transforming from an obscure technology into a viable market
segment. In this period, the WSN node hardware has constantly improved, resulting
in better functionality while size, cost and energy consumption have been reduced.
Unfortunately, the software development process has not been able to keep the
same pace. The tight resource constraints and the application-specific requirements
are driving developers into closed and integrated solutions which impede design
and code reuse, increasing the required effort for developing new applications and
adapting them to an ever evolving hardware.

The lack of a common software architecture for WSNs is seen by many in the re-
search community as significant contributing factor for the existing inefficiencies. We
introduce a Double-Anchored Software Architecture that enables effective WSN develop-
ment through traditional methodologies of design and code reuse, using time-tested
principles like functional decoupling and complexity hiding. At the same time, it
provides mechanisms for controlling the inherent trade-offs between efficiency and
reuse so the above benefits can be achieved without paying a prohibitively high price
in performance, compared to a customized and vertically integrated solution.

The proposed architecture is specified in the form of a component framework
organized around two “anchors” that provide rigidity and establish a base for design
and code reuse. The lower portability anchor abstracts the hardware while enabling
explicit control over the performance-portability trade-offs. The upper interoperability
anchor abstracts the node-local services behind an expressive publish/subscribe
interface and supports application-specific customization. This dissertation contends
that a broad software architecture, anchored at these two levels of the software
stack, can effectively promote portability and interoperability while maintaining
high sensibility towards abstraction costs. We evaluate these claims in qualitative
and quantitative way, on the example of several prototype implementations, some of
which are in wide use in theWSN community. To support the evaluation we have also
developed a custom distributed testing infrastructure that enables efficient testing of
functional and non-functional properties of WSN protocols and services.
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CHAPTER 1
Introduction

Driven by pervasive availability of affordable high-bandwidth access at the edge, and
large increase in computational and storage capabilities at the core, the usage model
of the Internet is experiencing a profound transformation. User generated content
is becoming an important pillar on which novel services like media sharing, social
networks and life-streaming are being built. The characteristic traffic asymmetry
is slowly disappearing, as data increasingly flows from the edge of the network
towards the core. This process is further amplified by the rapid spread of the mobile
phone and its transformation from a voice into a general-purpose data capturing
and communication platform. The ubiquity of wireless access and geolocation has
enabled nomadic and contextual [111] generation of content. As a result, the coupling
between the physical and the virtual world is becoming stronger, and more and more
of the tangible things are getting their virtual duals.

Despite these developments, the bulk of the contextual information about the
world around us remains human-generated and explicit, thus limited in scope and
depth [193]. Vast parts of our reality remain under-instrumented and can’t be easily
digitized, analyzed and ultimately controlled. On the confluence of these technologi-
cal and social trends a new platform is emerging that promises to fill this gap: the
so-called Wireless Sensor Networks (WSNs), networks of small devices that integrate
low-power sensing and processing with short-range wireless transmission [4].

1.1 Wireless Sensor Networks

The untethered nature, the small size and the need for long-lived and unattended
deployments means that the nodes in a WSN often have to operate on battery power.
The energy provided by the batteries can not be easily replenished during the appli-
cation lifetime, leading to a limited energy budget that determines the achievable
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system lifetime. This energy scarcity promotes the energy-efficiency of the hardware
and the software as the primary design objective [172] for this class of systems.

Due to the cost, size and energy constraints, theWSN nodes usually have a process-
ing element in the form of a low-power 8-bit or 16-bit Micro-Controller Unit (MCU).
The MCUs have small amounts of program and data memory which stands in con-
trast to the relatively high data buffering needs in the sensing and communication
stacks. This memory-limited nature necessitates different optimization goals for
the software development process than in traditional systems: the size-efficiency
and the memory-efficiency of the code are often much more important than the
computational-efficiency.

The sensing elements are responsible for gathering contextual information from
the physical reality around the WSN node. Although the nature of the collected
information and the type of the used sensors strongly depends on the application,
due to cost and size pressures, many of the sensors have reduced fidelity that has
to be compensated at the system level by oversampling in the spatial and temporal
domains.

The same size and energy constraints also put limits on the communication
subsystem. Theymandate the use of small, low-cost and low-power radio transceivers.
The WSN traffic is mostly comprised out of small data packets sent over relatively
short distances and with low average data rates. Under these conditions, the power
consumption of the transceiver is dominated by the radio electronics and protocol
solutions that limit the amount of idle listening are needed to achieve long system
lifetimes.

Despite this simple hardware architecture of the individual nodes, the WSNs
enable construction of large distributed monitoring and actuation systems that are
deeply embedded in the physical environment and offer unprecedented levels of
temporal and spatial sampling density. Thanks to their small size, low cost and
reduced installation and maintenance overheads, they pave the way for novel ap-
plications that were either impractical or impossible with legacy technologies. This
flexibility and versatility of WSNs, however, comes at the expense of a more complex
overall system design that is necessary to address the severe resource scarcity and
the challenging operating conditions. The system designers commonly have to resort
to redundant deployment, error-mitigation and error-correction strategies in order
to construct a reliable aggregate system out of the unreliable individual building
blocks.

1.2 Software Design Challenges

After a decade of intense research and development, WSNs are on the verge of trans-
forming from an obscure technology into a viablemarket segment. WSNs are currently
being applied in areas as diverse as environmental monitoring, building automation,
industrial monitoring and control, logistics, agriculture and health-care [6]. During
this period, the improvements in the silicon production process, following Moore’s
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Law, has driven the design of the WSN node hardware forward, resulting in better
functionality while reducing the size, energy consumption and cost. This trend of
continuous advancement of theWSN hardware will continue in the foreseeable future
and will result in more affordable, capable and efficient components. As a result, the
WSN node costs will soon be approaching the thresholds enabling massive market
penetration.

Unfortunately, the software development process has not been able to keep the
same pace as the hardware improvements. The tight resource constraints and the
application-specific requirements typical for WSNs are driving developers into closed
and integrated solutions. Although they provide high levels of efficiency by extract-
ing maximal performance out of the available resources, the tight vertical integration
impedes design and code reuse, significantly increasing the required effort for de-
veloping new applications or for adapting existing applications to an ever evolving
hardware [117].

This integrated software development model is becoming a significant hindrance
to faster growth of the WSN technology and is opening a productivity gap between
the hardware and the software domains. Developing applications is hard and a
successful outcome requires expertise in the complete value chain starting from the
hardware platform, communication protocols, sensing stack, up to the application
domain. These shortcomings are reflected in the current structure of the WSN market,
characterized by high fragmentation and low levels of horizontal reuse. On one side,
it is dominated by vertically integrated, single-vendor solutions that are focused
on specific application areas. On the other side, there is a large offering of generic
system components that are developed in isolation and can not be easily combined
into reliable end-user solutions.

The currently predominant software development approach is ill-suited to handle
the new set of challenges that the broad adoption of the WSN technology brings. In
contrast to the isolated nature of classical embedded systems, WSN are networked
systems that are often interconnected with the wider Internet. In the near future, a
typical home will host several WSN installations providing energy metering, build-
ing automation, health-care and many other services. The physical proximity and
the privacy implications of the technology will drive changes in the traditional re-
lationship between the users and the operators of these WSN services. Users will
request more direct control and freedom to compose the services in novel ways,
mirroring the “content mashup” trend on the Web. Enabling such federated applica-
tions requires breaking the existing vertical silos and transforming WSNs from closed,
application-specific solutions into open platforms that facilitate rapid application de-
velopment and offer a degree of separation between the services and the underlying
heterogeneous hardware substrate.

The lack of a common software architecture for WSNs is seen by many in the
research community as significant contributing factor for the existing inefficien-
cies [16, 80, 177, 192]. The IEEE Standard 1471 defines software architecture as “the
fundamental organization of a system embodied in its components, their relationships to each
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other, and to the environment, and the principles guiding its design and evolution” [103].
Through the identification of core components, their interfaces and composability
rules, software architectures codify the functional decomposition of the system and
lay foundations for a more structured development approach. In addition, they
formalize best-practices into reusable design templates that can be shared across dif-
ferent applications and hardware platforms [7]. The resulting increase in adaptability
and reusability reduces the cost and the complexity of the development process and
lowers the entry barriers for new developers and new application areas.

Although there is a broad agreement on the benefits of converging towards a
more unified software architecture for WSNs, the question about the appropriate
scope and granularity of such an architecture remains open. Most of the existing
proposals concentrate on selected subsets of the WSN software stack, with great di-
versity in the context in which the proposals are framed: execution environments,
communication architectures, programming and service abstractions, middleware,
etc. For example, motivated by the central role of communication in WSNs and the
success of protocol reference frameworks like ISO/OSI [102] and TCP/IP [20], many
proposals have focused on the WSN protocol stack [31, 37, 44, 45, 112, 136, 163]. The
protocol stack has also been at the core of the industrial standardization efforts like
ZigBee [225], WirelessHART [217] and ISA100 [101], as well as the more recent push
for adapting the TCP/IP protocol stack to the needs of WSNs lead by the 6LoWPAN [2]
and ROLL [97] IETF working groups. These proposals undoubtedly cover important
and necessary aspects of the WSN software stack, but they often have limited scope.
Substantial progress along the stated goals of promoting reuse and rapid develop-
ment is only possible by taking a more general view and by spreading the structured
development approach over wider parts of the software stack. Although it is highly
unlikely that a single architectural framework will be able to cover the complete
diversity in applications and hardware platforms, significant gains are still possible
by concentrating on the requirements of several typical classes of WSN systems and
leveraging the existing commonalities.

1.3 Double-anchored Software Architecture

This dissertation argues that an effective software architecture for WSNs is indeed
possible when right balance between API fixation and composability freedom is
struck, at right points in the software stack. We introduce a Double-Anchored Software
Architecture (DASA) for WSN that enables effective development through traditional
methodologies of design and code reuse, using time-tested principles like functional
decoupling and complexity hiding. At the same time, it provides mechanisms for
controlling the inherent trade-offs between efficiency and reuse so the above benefits
can be achieved without paying a prohibitively high price in performance, compared
to a customized and vertically integrated solution.

The architecture is specified in the form of a component framework organized
around two “anchors” that provide rigidity and offer basis for reuse:
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portability anchor that abstracts the hardware while enabling explicit control over
the performance-portability trade-offs, and

interoperability anchor that abstracts the communication stack and other node-
local services and supports application-specific customization while maintain-
ing application-level interoperability.

Breaking the tight coupling between the software and the underlying hardware
through a hardware abstraction layer is a crucial prerequisite for amending the
deficiencies of the vertically-integrated development model. By hiding the hardware-
dependent code from the rest of the system, hardware abstraction layers facilitate
portability and code reuse. Due to these benefits, they have been a standard part of
many traditional operating systems [154, 206]. In WSNs, however, hardware abstrac-
tion layers often come into direct conflict with the performance and energy-efficiency
requirements. In this context the abstraction costs cannot be as easily masked by
hardware over-provisioning as in traditional systems, so mechanisms are needed for
avoiding some of the abstraction overhead in cases when the need for performance
trumps the benefits of the complexity hiding.

The portability anchor is our answer to these specific challenges. It codifies the
design-constraints that we deem necessary for effective organization of software
along the hardware/software boundary. The anchor is structured as a three-level
component framework that progressively abstracts the capabilities of the underlying
hardware platform. The top level components offer public hardware-independent
interfaces for building portable services and applications. At the same time, the mid-
dle level components offer public hardware-specific interfaces which provide access
to the full capabilities of the underlying hardware. This organization of the hardware
abstraction functionality offers several benefits in comparison to amonolithic solution.
From one side, it provides a firm base for developing hardware-independent services
and applications, allowing significant code reuse across different hardware platforms.
From other side, it offers mechanisms for flexible control of the performance penalty
for this portability: in situations where the performance loss is too high, the devel-
oper can skip the portability abstraction and directly tap to the hardware-specific
interface.

While contributing to portability, the portability anchor alone can not significantly
improve the productivity of the application development process. Rapid application
development needs to be supported by additional complexity hiding through higher-
level service Application Programming Interfaces (APIs) that shield the application
from the evolution of the underlying service code. In traditional networked sys-
tems, this decoupling varies from transparent programming interfaces on top of the
communication stack like the Berkeley sockets API [189], to complex interoperability
frameworks like CORBA [187]. Both of these extremes seem unsuitable design points
for a broad WSN software architecture. From one side, in many WSN application
domains, a raw networking APIs is not providing adequate level of abstraction for
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substantial productivity gains. From the other side, the severe resource constraints
make overly complex middleware approaches unattractive.

The interoperability anchor in our architecture takes a middle course: it exports
a light data-centric abstraction based on the publish/subscribe interaction pattern
that is well aligned with the needs of large class of WSN applications. The anchor
is organized as a component framework that decouples the exported service from
the communication stack and other node-local services. The framework allows easy
application-specific optimization of the service through the use of different commu-
nication substrates and extension components. This compile-time customization is
further complemented by efficient run-time control using metadata attributes.

The two proposed anchors facilitate adaptive enforcement of design-constraints
in different zones of the WSN software stack. The mature parts of the stack—where
fixation of the interfaces can promote decoupling and reuse—are accompanied
by relatively strong design-constraints and composability rules. In contrast—the
parts with highest performance impact and prime candidates for application-specific
customization—remain highly flexible.

This dissertation contends that a broad software architecture for WSN, anchored
at these two levels of the software stack, can effectively promote portability and
interoperability while maintaining high sensibility towards abstraction costs. We
evaluate these claims in quantitative way using several examples.

1.4 Outline

The rest of the dissertation is organized in six chapters, as follows. In Chapter 2
we provide background information on aspects of the WSN technology and their
impact on the organization of software. In the first part, we analyze hardware
development trends and review the hardware abstraction support in existing WSN
operating systems. In the second part, we overview several programming models
for WSN that share similar aims with our interoperability anchor.

In Chapter 3 we introduce the main features of the proposed double-anchored
software architecture, focusing on the core organizational principles. Here we pro-
vide arguments for the use of the component frameworkmodel as effective vehicle for
expressing the architectural constraints and we argue about the optimal delineation
points in the WSN software stack.

The portability anchor that offers progressive abstraction of the capabilities of
the underlying hardware platform is presented in Chapter 4. After discussing the
benefits and the specific challenges of abstracting hardware in WSNs, we present the
vertical and horizontal decoupling principles of the anchor that provide the needed
flexibility. We conclude the chapter by evaluating the effectiveness of the proposed
organization using a set of micro-benchmarks and by analyzing the impact from the
application of the presented architectural guidelines in the TinyOS 2.x code base,
one of the most popular execution environments for WSNs.
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The interoperability anchor that exports a customizable data-centric communica-
tion service is described in Chapter 5. We discuss the appropriateness of the anchor
API as foundation for rapid application development and we present the architectural
properties of the anchor that enable application-specific customization of the service
by decoupling it from the underlying communication and sensing stacks. In the last
part of the chapter we present TinyCOPS, a component framework that implements
the anchor and serves as basis for its evaluation.

In Chapter 6 we argue on the need for test-driven development as necessary
prerequisite for successful application of the principles of black-box reuse and for
exercising the compositional freedom supported by our architecture. We then present
the design and implementation of a distributed testing framework that enables
efficient testing of the functional and non-functional properties of the data-centric
communication service provided by the interoperability anchor.

We conclude the dissertation in Chapter 7 with a summary of the main design
features of the proposal and with a reflection on the lessons learned through their
application on real-world systems. Finally, we outline several directions of inquiry
that can be pursued as follow-up of the presented work.
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CHAPTER 2
Background

As a software architecture, the design of DASA is strongly influenced both by the
properties of the hardware from below, as well as by the service requirements of WSN
applications from above. This chapter provides an overview of theWSN technological
landscape and surveys the existing service models that correspond with the two
anchors in the DASA architecture.

In the first part of the chapter, we discuss the generic architecture of a WSN
node, before proceeding to evaluate in greater detail each of the core hardware
elements, focusing on their general role and the design parameters that influence their
instantiation on a concrete WSN hardware platform. Using a comprehensive survey
of existing WSN platforms, we then analyze the trends in the hardware capabilities
over the last decade and discuss their impact on the organization of the software
support.

The second part of the chapter overviews existing service abstractions that par-
tially overlap with the intended focus of the two anchors in our DASA proposal: we
first analyze the features of the portability abstractions offered by different general-
purpose and WSN operating systems, after which we briefly review several program-
ming models and service abstractions for rapid development of WSN applications.

2.1 Hardware Platforms

A successfulWSN hardware platform has to achieve a fine balance between providing
the necessary functionality, as demanded by the target application, and satisfying
the stringent system constraints like size, cost and energy budget. In this section
we provide an overview of the hardware architecture of a typical WSN node and a
detailed description of five popular WSN node platforms that were used as targets
for evaluating the solutions presented in this work. We conclude the section with
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ProcessorEnergy source

Transceiver
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Sensors

Figure 2.1: Generic hardware architecture of a WSN node

a detailed analysis of the design trends in WSN hardware over the last decade and
consider the impact that these trends have on the organization of the system software.

2.1.1 Generic Architecture

Despite a large diversity in target application domains, the hardware architecture of
a typical WSN node is fairly regular and reflects the three defining elements of the
technology: sensing, computation and wireless communication.

Figure 2.1 shows a schematic representation of this generic architecture. The
main elements are the processor, the transceiver, the sensors, the external storage and the
energy source. Although some designs include additional modules like coprocessors,
protocol accelerators, dual transceivers, actuators, etc. these five elements are present
on the majority of WSN platforms and comprise its technological core.

In the rest of this section we discuss the role that these elements play in the node
hardware architecture and the main selection criteria for their instantiation on a
specific hardware platform.

Processor

The processor is the cornerstone of the node hardware architecture and is responsible
for orchestrating the activities of the remaining elements: it controls the acquisition
of data, performs local data processing in preparation for data storage and com-
munication, etc. Due to this central role, the alignment between the application
requirements and the processor features is an important prerequisite for a successful
platform design.

Having a capable Central Processing Unit (CPU) that can sustain the required
processing throughput and limit the length of the active phases can be very beneficial
for data-intensive applications needing substantial local computation like signal
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processing, feature extraction, classification, etc. In these domains, 32-bit embedded
CPUs like the Intel PXA27x family [171] are often used, providing high computational
power, efficient data transfers and large addressable memory space. These high-end
chips also support standard Operating Systems (OSs) like Linux, and offer to the
developers a more familiar working environment. Unfortunately, all these benefits
come at a significant price in terms of increased energy consumption, component
cost and board space, and necessitate careful evaluation of the performance/energy-
efficiency trade-offs.

A wide majority of WSN applications, however, are characterized by relatively
modest processing needs but require long-term deployments under limited energy
budgets. In these scenarios, the nodes spendmost of the time in an energy conserving
state, interspersed by short periods of high activity to sample new data and to handle
communication with other nodes. This mode of operation reduces the importance of
the raw processing power of the processing element and brings other features like
its start-up time and energy-conservation capabilities to the foreground [134].

In these application domains, there is a tendency of using 8-bit or 16-bit Micro-
Controller Units (MCUs). Due to the low-cost and low-power requirements, the
MCUs offer limited program and data memory, but dedicate a part of the IC die for
additional hardware modules that offload the main CPU and enable higher event
handling rates and longer sleeping times. Figure 2.2 shows the functional block
diagram of a typical and popular representative of this class of processing elements—
the MSP430F161x family from Texas Instruments [194]. The MCU integrates a 16-bit
Reduced Instruction Set Computer (RISC) core and a number of additional modules:
a watchdog timer, two general-purpose 16-bit wide timers, 12-bit Analog-to-Digital
Converter (ADC) and Digital to Analog Converter (DAC), 3-channel Direct Memory
Access (DMA), a hardware multiplier and several pin-control and serial-interfacing
modules. With 10 KB, this family offers competitive amounts of Random-Access
Memory (RAM), a resource that is in high demand in WSNs for message buffering and
local preprocessing. The provided flash size (up to 55 KB), is more limited and might
be insufficient in applications with large code footprints.

The MSP430F16x family is a good example of the generic set of features necessary
for efficient operation in the low-duty cycle regime. It has a flexible clock distribution
system, wide timer registers and several DMA channels, maximizing the CPU sleep
time. It supports a number of energy conserving states with low RAM retention
currents, and has exceptionally fast wake-up time. In addition, the low cut-off
voltage helps to fully utilize the energy stored in a battery-based energy source.

Interconnect

The central role played by the processor in the hardware architecture of the WSN
node (Figure 2.1) requires an effective and efficient interconnection with the rest of
the platform.

The General Purpose Input/Output (GPIO) is one of the most basic and flexible
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Figure 2.2: Architecture of the Texas Instruments MSP430F161x MCU family.

interfacing options. Each GPIO pin can be addressed either individually or as a
member of a larger group of typically 8 or 16 pins, forming a parallel bus. The
pins can be used as inputs for reading, or as outputs for sending digital signals to
other chips. A typical use is to drive the chip select/chip enable lines of external
chips, as addressing support for other more complex interfacing schemes or as power
management mechanism. Some GPIO pins can also be configured to generate an
interrupt signal to the CPU upon detecting a particular digital signal level or signal
transition. This functionality is often used for low-latency signaling, for example, to
inform the MCU about the detection of an incoming packet by the transceiver. The
main selection criteria for the GPIO interface are the number ofGPIO pins, their driving
and sinking capability, the leakage currents, the number of pins supporting interrupt
generation, and the availability of additional integrated discrete components like
pull-up and pull-down resistors.

Although the GPIO interface offers maximal flexibility and minimal latency, to
save on pins and connection lines, most of the signaling between the MCU and the
external components on the WSN platforms is performed using low-cost serial buses.
There are many serial interfaces that can be applied to this end, differing in the
number of required signaling lines, the directionality of the communication, the
synchronization needs, etc. The most frequently used buses on the WSN platforms
are the Universal Asynchronous Receiver Transmitter (UART), the Serial Peripheral
Interface (SPI) and the Inter-IC (I2C).

The UART is a flexible, bidirectional, character oriented, serial interface that does
not require explicit clock signal between the sender and the receiver. Instead, the two
parties agree on the used data rate upfront and special start and stop bits are inserted
in the data stream as framing and to synchronize the receiver before each character
reception. In this way, the receiver can sample each individual bit at the right time
instance. The lack of explicit clock signal between the sender and the receiver means
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Figure 2.3: The SPI is one of the most popular serial interfaces used on the current WSN platforms. It
specifies four logic signals between the master and the slave: a clock line—SCLK; one data
line in each direction—SIMO and SOMI; and a slave select line—SS

that excessive clock drift between the communicating parties can result in erroneous
sampling times, leading to increased error-rates. OnWSN platforms, the UART is often
used for interfacing with on-board modules that support the Hayes command set
(Bluetooth transceivers, serial GPS units, etc.) [109] or for communicating with a PC
host through a RS-232 or USB connection.

The SPI is synchronous serial interfacing approach for full-duplex communication
between a master and a slave device (Figure 2.3). The protocol offers several different
synchronization modes, and imposes no limits on the message size and its content.
The SPI can support relatively high data rates, making it well suited for connecting the
MCUwith high-speed, data-intensive external chips like externalADCs, the transceiver
or the external storage.

One of the disadvantages of SPI is the lack of built-in addressing support for con-
figurations involving multiple slave devices. At the cost of a more complex protocol
and lower transfer rates, the I2C enables a single master device to communicate with
as many as 128 slave devices, using only two signaling lines. On the WSN platforms,
the I2C interface is predominantly used for interfacing theMCUwith various on-board
sensors like accelerometers, light sensors, temperature and humidity sensors, etc.

Due to the wide application of these buses, many MCUs provide built-in mod-
ules that implement the necessary signaling and offload the CPU. Very often, these
modules are implemented as multifunctional units that can run different serial bus
protocols over the same set of pins. This sharing reduces hardware costs, but compli-
cates the support in multi-client scenarios because the software now has to account
for the contention and reconfiguration of the hardware module among the different
clients.

Important selection criteria for the serial interface modules are the flexibility of
the data rate/clock generation system, the control over the frame formats, the level of
internal buffering and the interrupt generation capability. On some platforms, thanks
to the relative simplicity of the serial protocols, these interfaces are implemented
in software, using bit-banging on top of GPIO, at the cost of larger CPU load and
increased power consumption.
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Sensors

The sensing elements form the interface between the WSN node and the physical
reality. The fundamental purpose of the whole WSN node is to act as a carrier for
the sensing elements and conduit for the information that they extract from the
environment. The type of sensors used on the WSN platforms directly depends on
the target application and the physical phenomena that need to be monitored.

The advances in manufacturing, especially the successful repurposing of the
semiconductor production process for the creation of Microelectromechanical sys-
tems (MEMS), have led to a proliferation of affordable sensing elements which are
a perfect match for the specific requirements of the WSN technology. The low cost,
however, frequently implies lower fidelity, which has to be mitigated on system level
by exploiting the redundancy in the spatial and temporal domain [214].

Sensors export either digital or analog interfaces. In the digital case, their output
can be directly read via GPIO, or more complex interfacing can be achieved using SPI
or other fast interconnects. In the analog case, the interfacing is achieved through
an ADC. The way the sensors are physically connected to the platform also plays an
important role in the node design. The sensors can be either co-located with the MCU
on the motherboard or placed on a separate daughterboard. Having a standardized
electromechanical interface, combined with sensor self-description capability, can
lead to a more flexible and reusable platform designs [76, 95].

Many MCU provide integrated ADCs that tend to have low resolution and support
modest data sampling rates. Despite these limitations, the integrated ADCs are suffi-
cient for the majority of WSN applications. In more demanding scenarios, requiring
higher sampling rates and higher fidelity, external ADC can be used. These dedicated
modules are interfaced with the MCU via GPIO-based parallel buses or using fast
SPI. Important selection criteria for the ADC are the resolution, the implementation
principle, the number of channels, the flexibility in the conversion references, the
presence of internal reference voltage sources, etc. The interaction of the ADC with
the DMA is also of interest in applications needing high-speed, low-jitter sampling,
while keeping the active involvement of the CPU at minimum to conserve power.

The large diversity in WSN applications results in even larger diversity of used
sensing elements. According to the survey results published in [57], most popular are
environmental sensors for measuring temperature, humidity and pressure, followed
by optical sensors and sensors for measuring velocity, acceleration, position and
displacement, as well as voltage sensors and current gouges. The majority of these
sensors have low accuracy (12 bits on the average) and require modest sampling
rates (up to 1 kbps). The respondents of the survey have listed: sensor dependability,
longevity, cost, ease of diagnostics, size, operating range and energy consumption—as
the most important selection criteria for the sensing elements.

In some applications, the WSN node is tasked not only with sensing the envi-
ronment, but also with actively influencing it through actuator devices. For digital
actuators the interfacing with theMCU can be realized over GPIO or serial buses, while
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in the analog case, over MCU-internal or external DACs. Main selection criteria for the
DAC are the number of supported channels, their resolution and maximal driving
current.

Transceiver

The wireless communication is a defining characteristic of the WSN technology. The
radio, infrared, and visible light portions of the electromagnetic spectrum can all
be used for this purpose by modulating the amplitude, frequency, or phase of the
waves.

Communication using Infrared Radiation (IR) is license-free and robust to interfer-
ence from electrical devices. It is relatively directional, which makes it more resistant
to eavesdropping, but also unsuitable for many WSN scenarios where clear line-of-
sight is not available. Due to these constraints, only few WSN platforms have used IR
as the main communication medium [129]. The visible light part of the spectrum
has seen a similarly limited use [208]. The Radio Frequency (RF) is clearly the most
suitable transmission medium for the majority of application scenarios [166]. Al-
though they have differentiated communication needs, the majority ofWSN platforms
use narrowband and wideband radios in the Industrial, Scientific and Medical (ISM)
part of the spectrum, benefiting from its license-free nature and the freedom of
implementation that it offers [47].

Narrowband radios, with simple modulation schemes like Amplitude-Shift Keying
(ASK) or Frequency-Shift Keying (FSK), were the preferred choice on the early WSN
platforms [89]. These chips typically offer low level of abstraction, so that the sending
and receiving of each bit must be explicitly controlled by the MCU. This provides
great flexibility and enables innovation at the Physical Layer (PHY) and Medium
Access Control (MAC) layers of the protocol stack. However, it also puts significant
load on the CPU which has to take care of low-level aspects like proper bit sampling,
encoding/decoding, packet framing, etc. One approach for mitigating this overhead
is to use hardware accelerators, either as dedicated custom modules, or by inventive
re-purposing of some existing MCU-integrated module. For example, the original
mica [91] and the eyesIFX [81] platforms use the SPI and UART modules on the MCU
respectively, to offload this processing from the CPU.

One deficiency of radiating the RF energy in a narrow frequency band is the
increased sensitivity to interference. By contrast, wideband radios can spread their en-
ergy over wide frequency bands, using spread-spectrum approaches like Frequency-
Hopping Spread Spectrum (FHSS) and Direct-Sequence Spread Spectrum (DSSS),
giving them greater robustness to narrowband interference.

The majority of wideband radios that are used on the WSN platforms today are
compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4
standard which defines PHY interfaces based on DSSS and Offset Quadrature Phase-
Shift Keying (O-QPSK) modulation. The introduction of the IEEE 802.15.4 standard in
2003 had transformative effect on the selection process for the radio transceiver. Prior
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to this standardization effort, the WSN platforms used a variety of narrowband and
wideband transceivers, making interoperability between different platforms using
different transceiver chips extremely hard. The IEEE 802.15.4 standard satisfies the
requirements of a broad class of low-power, low-data-rate WSN applications, and has
become the preferred solution for the wireless interface onmajority ofWSN platforms,
despite the implied loss of fine-grained access to the PHY [164].

Today, the use of non-standard radios is mainly limited to applications that have
very specific communication requirements. Typical examples are outdoor deploy-
ments needing long-range links or indoor deployments in challenging environments
that can benefit from the better propagation properties in the lower frequency bands.
In applications requiring high aggregate data rates and where ranging between the
nodes is important, the IEEE 802.15.4a standard finds increased application, thanks to
the two PHY layers based on Direct-Sequence Ultra-Wide Band (DSUWB) and Chirp
Spread Spectrum (CSS).

The popularity of the IEEE 802.15.4 standard has led to a proliferation of compliant
radio transceivers, making the selection of the most appropriate chip for a given
platform a daunting task. The designer has to carefully consider a mix of factors
that determine the suitability of a given chip. For example, the majority of the chips
on the market today offer significantly better receiver sensitivity than the -85 dB
borderline defined by the standard [30]. Combined with variability in the maximal
transmit power, this provides a range of link budgets that one can select from.

On a typical WSN platform, the radio chip is one of the largest energy consumers.
Since the consumption is dominated by the internal radio electronics, these radios
typically consume similar amounts of energy in transmit and receive mode. The
traditional approach for reducing the energy spent while waiting for reception—
the so called “idle listening”—is to duty cycle the radio, keeping it off most of the
time and turning it on only to check the channel for an indication of an interested
sender [162]. In this regime, the most important selection factors for the radio chip
are the wake-up time and the mode switching times.

The signaling and the interconnect are also notable selection factors. The majority
of IEEE 802.15.4 compliant radios use the SPI interface for exchanging commands and
data with the MCU. In addition, many chips export important internal events on
dedicated GPIO pins, like the detection of a Start Frame Delimiter (SFD), the Receive
Signal Strength Indicator (RSSI) and the outcome from the Clear Channel Assessment
(CCA), thus compensating for some of the lost low-level access.

External Storage

The external storage finds many versatile uses on the WSN platforms. It is an es-
sential architectural element in those applications domains where data sampling
occurs at high rates, all data needs to be preserved, but there is an acceptable delay
in delivering this data to an external entity. For example, in many health-care ap-
plications the selected vital signs like an Electrocardiogram (ECG) can be sampled
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with high-frequency for a long period, only to be transmitted in bulk at the end of
the recording session. Similar use can be found in environmental monitoring and
structural health monitoring applications where the nodes proactively transmit only
small data summaries over the radio and send the real data-set, that is buffered in
the external storage, only on explicit demand [212].

The external storage also plays important role in system administration tasks, as
long-term memory for storing configuration information and event logs, as a safe
harbor for a “golden” program flash images or as temporary assembly space for
Over-The-Air Reprogramming (OTA).

The WSN platforms use external storage based on a number of technologies:
NAND and NOR flash, Ferroelectric RAM, etc. Due to the relatively high data rates,
the external storage chips usually interface with the MCU via an SPI bus. Important
selection criteria for the external storage are the implementation technology, capacity,
size of the erasure units, data transfer rate, read andwrite latency, power consumption
in active and sleeping state and wake-up latency.

Energy Source

In some application domains, like smart metering, the WSN nodes have the luxury of
an almost endless supply of energy, since they can draw power off the mains power
grid [106]. In the majority of applications, however, the nodes have to operate on
battery power. This maximizes the deployment flexibility, but at the same time results
in a limited energy budget. Frequent replenishing of this budget, by replacing or
recharging the batteries, is impractical for manyWSN application scenarios due to the
large deployment scales and the relative inaccessibility of the nodes. Thus, the energy
source has to be dimensioned so that it can cover the energy requirements of the node
for the intended lifetime of the application. Conversely, for a limited energy budget,
the energy-efficiency of the system determines the maximal obtainable application
lifetime.

The battery-based energy source is often the most bulky element on the node,
typically determining its total size. This makes the energy density of the battery, a
factor of its cell chemistry, one of the most important selection criteria for the energy
source.

Given the fact that the load curves in many WSN applications are characterized
by high dynamic ranges, the pulsed discharge behavior of the battery also has sig-
nificant impact on the system design. From one side, some cell chemistries exhibit
a recovery effect under pulsed loads, which can be exploited to extend the lifetime
of the system [28]. On the other side, many cell chemistries don’t support large
peak currents very well: a large internal resistance leads to a significant drop in the
terminus voltage with serious negative effects for the load electronics.

The cell chemistry also impacts the long-term stability of the terminus voltage
as the energy depletes. A flat discharge curve is preferred in many designs, since
the load can extract most of the stored energy at near nominal voltage levels. At the
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same time, such discharge curves complicate the assessment of remaining energy
in the source. In chemistries where the terminus voltage drops noticeably as the
energy is depleted, determining the remaining energy in the source is possible with
a simple voltage sensor, something that most MCU provide on-chip. To guarantee a
stable operating voltage regardless of the discharge behavior of the battery, many
node designs use voltage regulators, but these introduce significant inefficiencies.
Some MCUs, like the presented MSP430F161x, have on-chip brownout protection,
that detects the low-voltage condition and can put the system back into a consistent
state, by triggering a system reset.

In some application domains, enough power for the operation of the node can
be obtained by harvesting the available energy from the environment [161]. Solar
energy, mechanical vibration, thermal and pressure differentials, etc. are only few
of the energy sources that have been proposed as viable options. In many home
automation scenarios, for example, the energy for operating the nodes controlling
the lighting can be harvested from the mechanical action of the user as he flips the
switch [182]. Since the average power from the harvesting sources is low, to handle
the peak current draws, a temporary energy storage is often needed in the form of a
rechargeable battery or a large capacitor [104].

2.1.2 Typical Representatives

In this section we provide a more detailed overview of the features of five mature,
commercially available and popular platforms: mica2, micaz, telosb, eyesIFXv2.1 and
intelmote2. 1 They offer a representative sample of the hardware design space (Sec-
tion 2.2) and have been used for evaluation of aspects of the DASA design, as presented
in the subsequent chapters.

mica2

After experimenting with highly integrated Application-Specific Integrated Circuit
(ASIC) solutions like Spec [90], in the context of the SmartDust project [208] the
researchers at the University of California, Berkeley, in the late 1990s, turned their
focus to building more generic WSN prototyping platforms using Commercial Off
The Shelf (COTS) components. In this effort to approximate the envisioned hardware
capabilities of a WSN node with affordable components, the Berkeley researchers
have produced a long line of hardware designs, called motes that became a de-facto
template of what a WSN node is.

The mica2 [89] is one of the first platforms from the Berkeley motes that achieved
widespread use after its commercialization throughCrossbowTechnology. Following
in the footsteps of the WeC, Rene and the original Mica design [91], the mica2 uses a
processing element from the Atmel ATmega family, a simple 8-bit RISC architecture
with Harvard memory organization. With 128 KB flash, the ATmega128L provides

1There is wide variation in the capitalization and spacing of the platform names in the literature,
here we use the same format as in the TinyOS code-base.

18



2.1. Hardware Platforms

mica2
UC Berkeley and Crossbow Technology

Processor Atmel ATmega128L
Clock frequency 7.4 MHz
Flash 128 KB
RAM 4 KB
Current consumption 8 mA
Minimum operating voltage 2.7 V

Transceiver Chipcon CC1000
Modulation FSK
Frequency band 315/433 MHz; 868/916 MHz ISM
Data rate 38.4 kbps
Current consumption 27 mA (TX); 10 mA (RX)
Minimum operating voltage 2.1 V

External storage Atmel AT45DB041B
Capacity 512 KB
Current consumption 10 mA (R); 35 mA (W/E)
Minimum operating voltage 2.7 V

Energy source 2x AA batteries

Table 2.1: Summary of the mica2 platform features.

ample space for the program image, sufficient even for more complex stacks and
application code. The RAM size, with only 4 KB is much more constrained and can
be a limiting factor in solutions requiring significant amounts of message buffering
or local data processing.

In contrast to the previous Mica designs featuring a bit-oriented TR1000 radio,
interfaced through hardware accelerators (Section 2.1.1), the mica2 uses a Chipcon
CC1000, a more reliable byte-oriented radio interfaced via a SPI bus. The CC1000 is a
FSK transceiver chip with no internal buffering and supporting relatively low data
rates. The radio is attached to a simple λ/4 whip acting as monopole antenna.

Compared to the original Mica, the mica2 also brought increased external data
storage space in the form of an Atmel AT45DB041B serial flash chip, providing
additional room for data logging and OTA. The platform does not have on-board
sensors, but offers a 51-pin extension connector that can be used to attach external
sensor-boards.

micaz

The micaz is the latest design from the Mica mote line. It maintains the same process-
ing element, external storage and extension connector as the mica2 predecessor.

The main innovation is the inclusion of a wide-band IEEE 802.15.4 compliant radio
(Section 2.1.1), in the form of a Chipcon CC2420 chip [30]. The new radio raises
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micaz
UC Berkeley and Crossbow Technology

Processor Atmel ATmega128L
Clock frequency 7.4 MHz
Flash 128 KB
RAM 4 KB
Current consumption 8 mA
Minimum operating voltage 2.7 V

Transceiver Chipcon CC2420
Modulation O-QPSK
Frequency band 2.4 GHz ISM
Data rate 250 kbps
Energy consumption 17.4 mA (TX); 19.7 mA (RX)
Minimum operating voltage 2.1 V

External storage Atmel AT45DB041B
Capacity 512 KB
Current consumption 10 mA (R); 35 mA (W/E)
Minimum operating voltage 2.7 V

Energy source 2x AA batteries

Table 2.2: Summary of the micaz platform features.

the level of abstraction, providing a convenient packet-based interface at the cost
of the direct access to the PHY of the previous Mica designs. It offers many internal
hardware accelerators that offload the work from the MCU, while giving direct access
to time sensitive information like the SFD and other PHY parameters like the RSSI and
the Link Quality Indicator (LQI).

telosb

We use the name telosb as generic name for all sub-variants of this platform. After
the original development at UC Berkeley, the telosb developers commercialized an
improved version under the name Tmote Sky. The old Berkeley design is still available
from Crossbow Technologies as TelosB.

The design of the Telos mote line [164] focuses on integration of many on-board
componentswhilemaintaining low-power operation. This is achieved through higher
level of isolation between the components, enabling individual power supply control
and increased reliability.

The Telos motes and the WSN nodes developed in the EYES project [51] were
one of the earliest commercially available platforms using the Texas Instruments
MSP430 MCU family. As discussed in Section 2.1.1, this architecture is optimized for
fast wake-ups and has very flexible low power modes, making it well matched to the
specific WSN platform needs. In contrast to the first designs in these lines that used
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telosb
UC Berkeley, Crossbow Technology, Moteiv Corporation

Processor Texas Instruments MSP430F1611
Clock frequency 4 MHz
Flash 48 KB
RAM 10 KB
Energy consumption 1.8 mA
Minimum operating voltage 1.8 V

Transceiver Chipcon CC2420
Modulation O-QPSK
Frequency band 2.4 GHz ISM
Data rate 250 kbps
Energy consumption 17.4 mA (TX); 19.7 mA (RX)
Minimum operating voltage 2.1 V

Onboard sensors Light, Temperature, Humidity

External storage ST Microelectronics STM25P80
Capacity 1 MB
Current consumption 4 mA (R); 15 mA (W/E)
Minimum operating voltage 2.7 V

Energy source 2x AA batteries; USB

Table 2.3: Summary of the telosb platform features.

the MSP430F149MCUwith only 2 KB of RAM, the telosb features a MSP430F1611MCU
with 10 KB of RAM which provides support for more memory demanding software
solutions.

Like the micaz, the telosb uses the Chipcon CC2420 radio, but it has an integrated
inverted-F micro-strip antenna. Both the transceiver and the STM25P80 used as
external storage, share the same SPI interface to theMCU, requiring suitable arbitration
in software.

A significant innovation of the Telos design was the inclusion of an Universal
Serial Bus (USB) interface allowing power supply, programming, and data transfer to
be performed over the same connector. This simplifies the interfacing with external
devices, making it the preferred System Under Test (SUT) platform for many WSN
testbeds (Section 6.2.1).

The platform supports several on-board sensors: two light sensors and a hu-
midity and temperature sensor, in addition to the internal sensors for voltage and
temperature provided by the MCU. Additional sensors can be interfaced through an
expansion connector. For example, the Tmote Invent platform [147] features a sensor
daughterboard with light sensors, microphone, speaker and accelerometers that is
connected to a Tmote Sky node serving as a motherboard.
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eyesIFXv2.1
Infineon Technologies AG

Processor Texas Instruments MSP430F1611
Clock frequency 4 MHz
Flash 48 KB
RAM 10 KB
Energy consumption 1.8 mA
Minimum operating voltage 1.8 V

Transceiver Infineon TDA5250
Modulation ASK, FSK
Frequency band 868 MHz ISM
Data rate 19.2 kbps
Energy consumption 12 mA (TX); 9 mA (RX)
Minimum operating voltage 2.1 V

Onboard sensors Light, Temperature

External storage Atmel AT45DB041B
Capacity 512 KB
Current consumption 10 mA (R); 35 mA (W/E)
Minimum operating voltage 2.7 V

Energy source 1x CR2477 battery; USB

Table 2.4: Summary of the eyesIFXv2.1 platform features.

eyesIFXv2.1

The Eyes line of node designs has been developed in the framework of the European
research project EYES [51, 84]. Similar to the Telos line, the Eyes nodes use Texas
Instruments MSP430 MCUs. The node line developed by Nedap incorporated the
same RF Monolithics TR1001 transceiver like the original Mica motes. The eyesIFX
line, developed by Infineon Technologies AG in cooperation with TU Berlin, use an
Infineon TDA5250 transceiver.

The eyesIFXv2.1 is the latest node design in the eyesIFX line. It was sold by
Infineon as part of a development kit with eight sensor nodes and a base station. Our
group has been the core developer and maintainer of the software support suite for
the kits, based on our MSP430 abstractions included in the TinyOS 1.1.7 release [81].

Like the telosb platform, the eyesIFXv2.1 uses an MSP430F1611 as processing
element. It has the same external storage chip like the mica platforms and the telosa.
Figure 2.4 shows the characteristic oval shape and the main components of the board.
The top side is dominated by the TDA5250 chip, an ASK/FSK transceiver supporting
speeds up to 64 kbps. The TDA5250 is a general-purpose narrow-band radio normally
used at low data rates in automotive applications like remote key-less entry. The
radio operates in the 868-MHz ISM band which offers good indoor propagation char-
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Figure 2.4: Top and bottom view of the eyesIFXv2.1 board.

acteristics thanks to the lower frequency and the reduced interference in comparison
to the more crowded 2.4 GHz ISM band.

The radio provides SPI and I2C control interfaces, while the data interface remains
bit-oriented like in the original Mica designs. For reduced latency, several functions
of the transceiver like the modulation type, the switching between the Receive (RX)
and Transmit (TX) mode, etc., can be directly controlled using GPIO. The radio also
directly exports several PHY parameters allowing flexible experimentation with PHY
and MAC protocols.

The interfacing of the data line of the radio is the most interesting characteristic
of the platform. To reduce the interrupt load generated by separately handling every
data bit, the UART module from the MCU is used as hardware accelerator to build
a byte interface on top of the bit stream. In this way, the eyesIFX is similar to the
original mica mote and its use of the SPI interface for the same purpose. Each radio
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intelmote2
Intel Corporation, Crossbow Technology

Processor Intel Corporation PXA271
Clock frequency 13–416 MHz
Flash 32 MB
RAM 32 MB
Energy consumption 48 mA at 104 MHz and 0.95 V core voltage
Minimum operating voltage 0.85 V

Transceiver Chipcon CC2420
Modulation O-QPSK
Frequency band 2.4 GHz ISM
Data rate 250 kbps
Energy consumption 17.4 mA (TX); 19.7 mA (RX)
Minimum operating voltage 2.1 V

Energy source 3x AAA batteries; USB

Table 2.5: Summary of the intelmote2 platform features.

packet starts with a training preamble followed by a SFD that is constructed so that it
re-synchronizes the receiving UART for the reception of the data bytes, relying on the
fact that the sending UART always transmits an 0xFF pattern when there is no data.
Each data byte is encapsulated in one start and one stop bit which also help to satisfy
the DC-balancing requirements of the circuit.

In addition to the internal MCU sensors, the eyesIFXv2.1 provides on-board light
and temperature sensor. An expansion connector can be used for interfacing with
external boards. In contrast to the USB-A connector used in the Telos designs, it uses a
mini-USB, female connector, to reduce the size impact and to improve the mechanical
stability of the board.

Another specific of the eyesIFX platform is the use of a lithium-ion coin cell battery
as the main energy source, similar to the mica2dot platform. The CR2477 requires
small mounting space and provides about 1000 mAh of energy. Unfortunately, it also
has a rather low peak current limit (Section 2.1.1) which can have negative impact on
the system lifetime.

intelmote2

In contrast to the previous four platforms, the intelmote2 [3] design targets high-
performance sensing applications, like industrial monitoring, with large local data
processing and communication needs. It is also frequently used as a gateway platform
for connecting WSNs with external networks [152]. The platform is commercially
available from Crossbow under the name Imote2.

The intelmote2 is a successor of the original Intel Mote or IMote design [151],
developed by Intel Research Berkeley Lab in cooperation with UC Berkeley. It is a
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highly integrated platform, offering significant raw computing power in the form of
a PXA271 CPU featuring an Intel Xscale 32-bit core with 32 MB of flash and 32 MB of
RAM. The ample resources enable the use of traditional operating systems like Linux
or the Microsoft .NET framework, providing a more traditional system environment
for the software developers.

The PXA271 also integrates a Digital Signal Processing (DSP) coprocessor and
supports a rich set of Input/Output (I/O) interfaces. In addition, it has a voltage scal-
ing feature allowing dynamic control of the core supply voltage, so that applications
can trade off performance and power consumption which is one to two orders of
magnitude higher than on Telos and Eyes.

In contrast to the original imote, which had aZeevo TC2001P Bluetooth transceiver
for bandwidth hungry applications, the intelmote2 uses the same Chipcon CC2420
radio as the micaz and telosb. The core platform is designed as pure computational
and communication board, without any on-board sensors. It has stackable connectors
on the bottom and the top side, allowing easy integration of additional sensor and
power boards. Like the eyesIFXv2.1, it uses a mini-USB connector for interfacing with
a host computer.

2.2 Hardware Design Trends

Despite the relative simplicity of the general architecture, the various selection criteria
for the individual hardware components elaborated in Section 2.1.1, result in a very
wide design space. To detect the main hardware trends and analyze their impact
on the software architecture we surveyed over ninety WSN platforms introduced
over the last decade in both academia and industry. The complete list of surveyed
platforms including the characteristics of their core components is presented in full
in Appendix A.

Figure 2.5 depicts the release year structure of the collected platform sample.
It illustrates the rapid evolution in the WSN platforms in the last decade, with tens
of new platforms released each year. The fact that the distribution peaks in year
2005 is not a result of a recent reduction in the interest in the WSN technology, but
a consequence of the our sample collection process. Namely, we mostly relied on
primary academic papers and secondary sources like survey papers and books (listed
in Appendix A), producing a sample that is biased towards more mature platforms.
Some of the most recently released commercial platforms are not sufficiently covered
in the used literature and are consequently less represented in the sample.

2.2.1 Level of Reuse and Integration

Given the specific focus of WSN technology, it might be expected that highly cus-
tomized, ASIC solutions would dominate the WSN hardware landscape. The associ-
ated high design and production overheads, however, make them less commercially
attractive and our survey shows only a few such examples. On the contrary, the
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Figure 2.5: Overview of the release year and the level of integration of the platforms covered by our
hardware survey.

use of COTS components and the resulting economies of scale have been the most
common approach for reducing the unit prices of the WSN nodes. Consequently, the
majority of the surveyed platforms are build from readily available components.

We analyze this trend by investigating the “chip reuse” histograms that depict
the number of platforms on which a given hardware chip has been used. The results
show that for the processing element and the transceiver, these histograms resemble a
power-law curve: a small number of popular chips are used onmany platforms, at the
same time, there is a heavy-tail of chips that are only represented on a single platform.
Figure 2.6 highlights the ten most popular processor/transceiver combinations in the
survey sample. In comparison to these core elements, the diversity in the peripheral
chips and sensing elements is much larger.

With the increased use of the CMOS technology in the transceiver production
process, new opportunities were opened for further miniaturization and integration,
in the form of System-on-Chip (SoC) solutions that bolt the transceiver together with
a full MCU core. Despite the bias of the survey sample, Figure 2.5 highlights the
increased interest in platforms based on such highly-integrated components. Typical
examples of this trend are the plethora of solutions that have emerged lately on the
market which combine an IEEE 802.15.4-compatible transceiver with a simple 8-bit
MCU core, like the Ember EE250 or the Texas Instruments CC2430. The popularity
of the Intel MCS 8051 processing core in these offerings illustrates the increasing
importance of opendesigns and low royalties as selection criteria in this price sensitive
domain.
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Figure 2.6: Level of reuse of COTS chips in the surveyed platform sample. Only the ten most popular
processor/transceiver chip combinations are shown.

2.2.2 Feature Trends

The trending analysis of the hardware parameters of the surveyed platforms shows
that, over the last decade, there has been a relatively slow growth in the capabilities
of the nodes. Instead, most of the Moor’s Law gains were translated into reduction
of the size, cost and power-consumption parameters.

In the remainder of the section, we illustrate these trends by analyzing the evolu-
tion of the available resources on the surveyed platforms, focusing on the processing
element and the transceiver, as core elements of the node hardware architecture.
To extract the short-term trending information from the collected data set, we aug-
mented the raw time/parameter scatter-plots with Locally Weighted Scatterplot
Smoothing (LOESS) curves [34] including their 95%̇ confidence interval regions. For
visualization of the long-term trending we used simple linear model fitting.

Processing Element

Figure 2.7 shows a breakdown of the number of surveyed platform releases each
year depending on the “bitness” of the CPU. The bit-width of the architecture can be
taken as indicator for complexity of the processing element, and by that it can shed
some insight into the computational needs of the target application.

In the collected platform sample, the majority of platforms were equipped with
8-bit and 16-bit CPUs, confirming the relatively moderate data-processing demands in
manyWSN application domains. The data shows increased use of 16-bit CPUs (mainly
represented by the Texas Instruments MSP430 MCU) in the second part of the decade.

27



Background

Year

N
um

be
r o

f p
la

tfo
rm

s
0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

8−bit C
PU

16−bit C
PU

32−bit C
PU

Figure 2.7: Breakdown of platform releases per year depending on the bit-width of the CPU.

Although in minority, platforms leveraging more capable 32-bit CPUs have been
produced throughout the surveyed time window, indicating the need for higher
computational power in some specific high-end WSN application scenarios.

In addition to the bit-width, for each of the surveyed platforms, we also collected
information about the maximal clock rate, minimal core voltage, as well as the
amount of available program and data memory. An initial analysis of the data set
has indicated strong clustering of these parameters based on the bit-width of the
architecture, making a joint trending analysis over all platforms misleading, as the
data exhibits more than an order of magnitude variability across the different bitness
groups. To highlight this internal structure, in the following analysis we have resorted
to faceting based on the bitness.

Figure 2.8 shows the results for the trending analysis of the maximal clock rate.
For the surveyed platforms having an 8-bit or 16-bit processing elements, we can see
a slow trend toward higher clock rates, but the processing power on these platforms
remains relatively constrained and does not exceed low tens of MHz. For the 32-bit
platforms, the trend seems to even go towards lower CPU frequencies, but the small
number of such platforms in the sample prevents making strong conclusions.

Figure 2.9 shows the trending in the minimum allowable supply voltage of the
processing core. In addition to the clock rate, the supply voltage of the core is the
main determinant of the power efficiency of the processing element. The results
show clear improvement over the last decade for the 8-bit platforms, bringing the
minimum supply voltages for the CPU down in the sub 2V region, on par with the
capabilities of their 16-bit and the 32-bit counterparts.

The developments in the available program and data memory are illustrated
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Figure 2.8: Trends in the maximal clock rate of the CPUs, grouped by the bit-width of the architecture.
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Figure 2.9: Trends in the core voltage of the processing elements, grouped by the bit-width of the
architecture.
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Figure 2.10: Trends in the available program memory of the processing elements, grouped by the
bit-width of the architecture.

on Figure 2.10 and Figure 2.11, respectively. The trending analysis confirms that
memory remains one of the most constrained resources on the 8-bit and 16-bit WSN
platforms, which comprise the majority in our sample. The program memory shows
a very weak growth tendency, but still remains significantly constrained with typical
values in the range between 50–150KB. The data memory is even more scarce: over
the last decade it managed to grow up only into the range of about 10KB, exhibiting
similar growth rate as the program memory. Even for the 32-bit platforms, which
have one to two orders of magnitude larger memory resources, the trend does not
show substantial increase over the surveyed period.

Transceiver

Turning our attention to the communication subsystem, Figure 2.12 shows a break-
down of the number of platform releases per year in the sampled set, depending on
the communication standard supported by the used transceiver chip.

The distribution shows a strong interest in non-standard compliant transceivers,
throughout the surveyed period. The rapid rise in popularity of the IEEE 802.15.4
standard in the second part of the decade is well reflected in the sample set, and
the majority of platform releases after year 2004 are using transceivers supporting
this standard. Another wireless standard with substantial use is Bluetooth. Despite
loosing ground to the 802.15.4-based solutions, it is still often used as secondary
communication technology, on platforms supporting two transceivers. In contrast,
the number of platforms using WLAN and DECT compliant transceivers is almost
negligible in our sample.
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Figure 2.11: Trends in the available data memory of the processing elements, grouped by the bit-width
of the architecture.
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supported by the transceiver.

31



Background

Year

C
ar

rie
r f

re
qu

en
cy

 [M
H

z]

500

1000

1500

2000

2500

●

●

●●●● ●● ●● ● ● ● ●

● ●●● ●● ●●

●●●

● ●●

● ● ●● ●● ●

● ●●●●

●

●

●

●●

●

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Standard

● No standard

IEEE 802.15.4

Bluetooth

DECT

IrDA

WLAN

Figure 2.13: Trends in the maximal carrier frequency band supported by the transceiver.

To evaluate the trends in the capabilities of the transceiver chip, in addition to
their standard compliance, we have collected information about the frequency band
and the maximal data rate and current draw. The trending analysis was performed
following the same procedure as for the processing element, using a combination of
a LOESS fitting for the small-scale trends and a linear model for the global-trend. Due
to the dependence of the transceiver parameters from the supported communication
standard, we highlight the standard compliance for each sample with different
symbols in the presented raw scatter-plot. In addition, the points in the plot are
slightly horizontally jittered to make the overplotting (from the multiple platform
releases in each year) more evident.

Figure 2.13 depicts the trends in the operational frequency of the transceiver.
For the chips supporting multiple operational bands, we have selected the highest
frequency band as representative for the analysis. The results mirror the information
in the standards histogram, since the standard constraints the operational frequency.
Almost all non-standard compliant transceivers in the sample operate in the 868MHz
and 915MHz ISM bands. The popularity of the IEEE 802.15.4 transceivers is evident in
the jump of the small-scale trend line towards the 2.4GHz ISM band, after year 2003.
The overplotting in the jittered data points is a fitting image of the crowdedness that
exists in the band from the different coexisting wireless technologies. The resulting
interference problems are one of themain reason for a recent resurgence in the interest
for the sub 1GHz ISM bands that also offer better indoor propagation characteristics.

Figure 2.14 summarizes the developments in the maximal supported data rates.
Over the surveyed period, the typical data rate on the WSN platforms has remained
relatively low and has not followed the rapid growth in speeds characteristic for
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Figure 2.14: Trends in the maximal data rate supported by the transceiver.

other domains like wireless access and home networking, highlighting the different
application focus. In the early years of theWSN technology, themajority of the released
platforms featured non-standard compliant transceiverswith very lowdata rates. The
slow growth trend, introduced by the use of the IEEE 802.15.4 compliant transceivers
the with their standard 250 kbps rate, has been recently additionally strengthened
by platforms using modern, efficient non-standard compliant transceivers which
support higher data rates (500–1000 kbps). With the higher speeds, the new chips
can facilitate further shortening of the application’s active phases, leading to lower
duty cycles and better system lifetimes.

For this, the energy penalty of the increased speed should not undermine the
potential gains in the shorter active times. Figure 2.15 shows the trend in the current
draw of the transceiver on the surveyed platforms, while sending at maximal TX
power. The results confirm that the energy consumption of the chips has remained
relatively stable, moving in the range of few tens of milliamperes. Furthermore, the
increase in complexity and speed brought by the newer radios have been achieved
without prohibitive increase in the energy footprints.

2.2.3 Software Impact

This results from our platform survey indicate that, in foreseeable future, the hard-
ware on the WSN platforms will continue to be optimized for the specific deployment
scenarios, resulting in a wide hardware design space. To achieve the desired improve-
ments in the software development process that we motivated in Chapter 1, we need
to introduce flexible software support that can adjust to such application-specific
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Figure 2.15: Trends in the maximal current consumption of the transceiver.

optimizations while providing a stable base for a more rapid application develop-
ment. We need a strong base in the software architecture that will help in reducing
the dependence from the underlying hardware and will open a way for platform
independent development of services and applications, as necessary prerequisite
for breaking the tight vertical integration that is typical for the existing solutions.
The rapid development in the WSN hardware, illustrated by the results in our sur-
vey, highlights the value of such a software base serving the role of a portability
abstraction that protects the investment in developed code, by allowing easy reuse
and migration to new hardware.

The survey also provides insight in the preferred internal structure of this ab-
straction layer. The rapid development of the hardware and the moving hardware/
software boundary requires solutions that effectively mask this dynamics from the
remaining code in the system. Furthermore, the popularity of the COTS composition
approach motivates approaches that enable mirroring of this hardware design shar-
ing in the software process, resulting in reduced porting costs for new platforms
with common hardware elements.

The trending analysis confirms that, over the last decade, the processing power
of the WSN platforms has grown much slower than what is made possible by Moor’s
Law. Instead, the gains have been used to optimize other system parameters like
size, cost and power consumption. Extrapolating from this trend, we can expect that
in the near future a large class of the WSN platforms will remain severely resource
limited. Thus, the execution environment will have to provide means for accessing
the hardware through lean abstractions that provide complexity hiding, but still
allow full control over the hardware when this is needed. The tightly bounded
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memory resources also motivate rich compile-time customization and adaptation vs.
memory expensive run-time introspection and control.

2.3 Portability Architectures

One of the major roles of an execution environment is to create a unified abstract
computing environment for the application programmer that is independent from
the details of the underlying hardware. For this, the parts of the software that directly
interact with the hardware have to be isolated from the parts that have more general
applicability and can be reused over different platforms.

This hardware transparency is traditionally achieved with two related concepts:
an Hardware Abstraction Layer2 that mostly deals with the architectural differences of
the processing units; and a Device Driver Model that concentrates on the abstraction
and the interfacing of peripheral hardware devices.

Althoughwidely used, the realization of these concepts varies significantly among
the different OS and can lead to different trade-offs between efficient resource use
and portability. Before introducing our own framework in the form of the portability
anchor of DASA (Chapter 4), in this section we briefly review several prominent
portability architectures from the general-purpose computing and embedded systems
domain, including some existing WSN solutions.

2.3.1 General-purpose and Embedded Operating Systems

Because they have to operate on top of a large number of complex and diverse
processing units, the general-purpose and embedded OSs typically have mature
hardware abstraction layers. To hide the architectural differences across the different
processing units, the OS provides processor-independent mechanisms for handling
interrupts, exceptions, memory paging, I/O, Inter-Process Communication (IPC), etc.

The organization of the device drivers, in turn, is closely related with the abstrac-
tion of the chip interconnect (Section 2.1.1). For example, the NetBSD is claimed
to be the most portable of the modern UNIX-like operating systems. It currently
runs on top of more than fifty different hardware architectures. This extraordinary
portability is due to the specific design of the device driver framework which is
machine-independent and based on clean separation between the chip drivers and
the bus interfacing code. The access to the bus memory and register areas is im-
plemented in a fully machine-independent way, allowing the same device driver
source to be used on different system architectures and bus types [196]. The new
Linux device driver model [145], reuses a subset of these architectural approaches
and structures the hardware abstraction functionality in different elements like buses,
classes, devices and drivers.

2the typical acronym used is HAL, but in this work, this acronym is reserved for the Hardware
Adaptation Layer, part of the vertical decomposition architecture of the portability anchor (Section 4.2.2).
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Another important dimension in the organization of the hardware abstraction
code is the level of adaptability, i.e. the degree to which the hardware abstractions
code can be adapted to the specific needs of the application at hand. The embedded
OS eCOS is a typical example for a more adaptable organization of the hardware
abstraction functionality. eCOS is component-based and uses compile-time recon-
figuration to trim the execution environment to the specific requirements of each
application.

The hardware abstraction functionality in eCos is organized in twomain parts [138]:
an “abstraction layer” that provides architecture-independent support for handling
interrupts, virtual vectors and exceptions; and a group of “device drivers” that ab-
stract the capabilities of the hardware modules. The drivers are implemented as
monolithic components and are accessed by the rest of the system via the “I/O Sub-
System” that defines a standard interface for communication with the exposed driver
“handlers”.

In contrast, the device drivers in theWindowsCE embedded operating system from
Microsoft can be either monolithic or structured in two customized layers [150]. The
upper layer is formed by the platform-independent “Model Device Driver (MDD)”
that uses the services of the “Platform-Dependent Driver (PDD)” that forms the lower
layer. Unfortunately, the application is not allowed to directly access to the lower
Platform-Dependent Driver interface and has to communicate with the hardware
via single “Device Driver Interface (DDI)”.

In Section 4.1 we discuss why the monolithic organization of the driver com-
ponents like in eCOS, nor the two-layer model of WindowsCS, fully addresses the
specific requirements of WSNs, and the need to balance between system efficiency
and portability on these severely resource-constrained devices.

2.3.2 WSN Operating Systems

As discussed in Section 2.1.1, most of the WSN platforms use relatively simple MCUs
that don’t offer hardware-protected execution levels and lack a memory-management
unit. Consequently, an extended abstraction of the processing architecture, typical
for the general-purpose OSs is not needed in the WSN domain. Instead, aspects like
the abstraction of platform hardware modules, I/O concurrency management and
power management, become prime areas where the developer can benefit from the
services of the underlying execution environment.

We use TinyOS [88], MantisOS [15] and Contiki [42], to illustrate the level of
maturity of the hardware abstraction models in WSN execution environments at the
beginning of our work on the DASA portability anchor. Our discussion is based on
TinyOS 1.15, MantisOS 0.95 and Contiki 0.9.3.

TinyOS

TinyOS is one of the first execution environments specifically designed to meet
the requirements of resource-constrained, event-driven and networked embedded
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systems. Similarly to eCOS, the component-based nature of TinyOS (Section 3.2)
allows compile-time customization of the hardware abstraction functionality to the
specific needs of each particular application. The component-based model is also
instrumental in buffering the changes introduced by the fluid software/hardware
boundary by allowing software components to be replaced with real hardware
modules (that export the same interfaces) and vice-versa.

The organization of the components that encapsulate the platform hardware
modules, however, have been very inflexible and tightly coupled with the specific
properties of the mica family of nodes (Section 2.1.2). In Section 4.5 we discuss how
the situation was qualitatively changed in the next generation of the OS, TinyOS 2.x,
through the application of the decomposition principles of the DASA portability
anchor. The description here pertains to the organization of the platform abstraction
components in TinyOS 1.x before these changes.

Access to the services of the platform hardware modules can be provided using
either shared or virtualized services. A shared service gives clients full access to the
module at the cost of some form of access control. Virtualisation gives each client
its own (possibly simplified) “copy” of the module, at the cost of some runtime or
latency overhead.

TinyOS 1.x provides one significant virtualized service: the timer. The service
offers periodic and one-shot millisecond-resolution events, multiplexed from a single
compare register. TinyOS 1.x also provides abstraction for several standard data
buses like SPI, UART, I2C, 1-Wire, etc. which are also responsible for arbitration of
the shared access. The power control of the peripheral modules is being performed
through a standardized interface with a start and stop command.

Most of the differences between the processor architectures in TinyOS 1.x are
masked through the use of the nesC/C programming language [65] with a common
compiler suite like GNU C Compiler (GCC). The standard C library distributed
with the compiler creates the necessary architecture-dependent start-up code like
initialization of the global variables, the stack pointer and the interrupt vector table.
TinyOS puts the CPU in a low-power state whenever the event/task queue is empty
and no interrupts are pending. The selection of the most appropriate sleep mode
is computed using chip-specific function that examines the internal registers in the
CPU to determine which peripherals are being used at the current time.

MantisOS

MantisOS took a different approach in addressing the specific challenges of the WSN
domain than TinyOS. Rather than using a new language and code organization
model, it is C based and provides a micro-threaded UNIX-like environment with
blocking operations.

The driver architecture inMantisOS closely follows the Portable Operating System
Interface (POSIX)model—based on the "everything is a file" abstraction—and supports
a small number of system calls with a large number of parameters. For example, the
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complete interaction between the application code and the driver layer is constrained
to only four system calls: dev_read() and dev_write() for reading and writing data,
dev_ioctl() for passing device specific configuration information and dev_mode() for
explicit device power state control.

While the idea of UNIX-like calls might seem appealing initially, the reliability
drawbacks outweigh the benefits of comfort. The model pushes the error checking
to runtime, as the interfaces do not express the constraints underlying resources. For
example, a program can try to read from an sensor using a GPIO pin that does not exist.
Consequently, errors that are easily detectable at compile-time under the TinyOS
wiring model, can result in run-time errors in MantisOS, and require complicated
error detection and mitigation code.

For coordination of simultaneous access, a traditional mutual exclusion approach
is used. Each driver maintains a simple “mutex” When the peripheral is locked for
exclusive access, any other calling thread is queued in an associated waiting queue
and blocked pending the release of the mutex lock by the current owner.

MantisOS drivers that wants to be power managed, must implement a dev_mode()
function that can be called to modify the power state of the underlying peripheral.
Three distinct device power states are supported: on, off and idle. The CPU power
management inMantisOS is tightly coupledwith the thread scheduling and supports
two levels of power saving. When the scheduler ready queue is empty, the scheduler
implicitly puts the CPU into an idle state that consumes less power than the active
state, but still supports full peripheral functionality. For greater power savings,
the scheduler needs explicit information from the threads in order to determine
when it is safe for the CPU to go into a sleep state. The signaling is performed by a
mos_thread_sleep() function that threads use to declare the intended duration of sleep.
When all threads in the system are sleeping, the scheduler is free to put the CPU into a
deeper power-saving state, with only a single timer left running to wake the threads
up after the sleeping period is over.

Contiki

The hardware modules are typically accessed in Contiki by calling a particular set of
C functions to directly communicate with hardware (e.g., the telosb flash chip, serial
port support). In some cases, these functions also communicate with a protothread
(Contiki’s lightweight, thread-like abstraction for event-based systems [43]) that
implements part of the module functionality (e.g., the CC2420 transceiver). Events
are signaled by peripherals either by calling a particular function from within an
interrupt handler, or by signaling an event to a specific protothread.

There is no general-purpose support for implementing either shared or virtual-
ized services. Some peripherals provide ad-hoc virtualisation (e.g., timer library).
Others deal with sharing through variousmechanisms: providing only blocking func-
tions (e.g., flash, serial port), synchronization via global variables (e.g., the CC2420
transceiver and access to the I2C bus) and buffering (the TCP/IP networking).
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Contiki does not provide any standard mechanisms for managing the power
state of peripheral devices. Some peripherals implement on and off functions. Like
TinyOS, it puts the CPU in a low-power state whenever the event/task queue is empty
and no interrupts are pending.

2.4 Programming Models

In Chapter 1, we motivated the need for a distributed programming abstraction that
can enable more rapid development of typical WSN applications. The problem of
providing an effective abstraction representing the sensor network services has been
a focus of intensive interest in the community. The proposed solutions have ranged
from overlay-networks, mobile agents, and application-specific virtual machines to
database-like abstractions and publish/interaction schemes. In the following, we
briefly review the main properties of these models

2.4.1 Overlay Networks

The increasing availability of high-speed connections at the core but also at the
perimeter of the Internet has led to new applications with significantly different
characteristics then the traditional client/server model. The so called Peer-to-Peer
(P2P) file sharing, previously confined to the LAN environment, became possible on
an Internet-wide scale. The limited support from the TCP/IP stack for these new
applications was compensated with elaborate application level solutions [72, 93,
153], creating distributed overlay networks that run on top of the existing network
infrastructure.

The P2P file sharing bears some similarities with the WSNs domain:

• The users are interested in the offered data, and not in the identity of the
providers. In the case of the P2P file sharing application this is usually a file
with a given name and of a given type. In the sensor networks space this is the
sensed data or some other status information.

• The networks can be comprised ofmanynodes, so scalability and self-organization
are required properties.

• The nodes in the network have more or less the same capabilities and act as
end-systems and routers at the same time. Each node can be both a provider
and a consumer of information.

• The responsibilities of the communication infrastructure are similar: it has
to provide means for searching for the data (lookup) and then has to provide
efficient means for distribution of that data to the interested parties.

Yet the degree of applicability of the solutions from the P2P field into the WSNs
space is strongly determined by the actual implementation especially of the lookup
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and the routing component. The majority of the state-of-the-art solutions in this
area are based on the concept of Distributed Hash Tables (DHTs) [173, 178, 190, 224].
In these systems, the required data (e.g. the files), are associated with a key that is
usually created by hashing (e.g. hash of the filename). A small subset of the total
key space is assigned to each node in the network for storage. The overlay network
provides set of operations for searching, storing and retrieving data. The lookup(key)
operation returns the underlying network ID (e.g. the IP address) of the node that
stores the data corresponding to the requested key. This then allows the nodes to
perform get and put operations based on the keys.

The main difference between the proposed solutions lies in the routing algorithm
that routes the lookup from the source node to the node that most closely matches
the associated key value. In a network with n nodes, most of them achieve average
path lengths of O(logn) application-level hops with average O(logn) neighbors in
the overlay address space.

In the above we can detect several properties that can pose as a limiting fac-
tors if one would like to build a data-centric framework for WSNs using the same
mechanisms.

First of all, the key generation can not be directly applied to the sensed data
that is of interest in WSNs. Unlike the file names that are strings, the sensed data
is usually represented with real numbers. Directly hashing them into keys would
result in a naming interface that is unsuitable for theWSNs applications. The problem
arises from the nature of the matching. The look-up process typically performs exact
matching of the key, thus only answering the equality relation (IS temperature = 25).
This complicates the realization of interfaces using constraint based naming (e.g. IS
temperature > 20), that is very frequently required in the WSN applications. One
possible way around this limitation is to sacrifice the flexibility of the naming and
create predetermined and fixed categories of data, and then create the key as a hash
of the name of the category.

From performance point of view, a major weakness is the fact that the overlay
is oblivious to the underlying network topology. While the DHT solutions provide
good average number of hops in the overlay address space, this can translate into
much larger number of hops on the networking level. Also, the potentially large
number of neighbors in the overlay address space can translate to a large routing
state at each node. Lately, the work on building topology aware overlay networks
[120, 174, 207] shows promise in overcoming some of the identified limitations. Using
geographic routing is another way to increase the coupling between the overlay and
the underlying wireless topology. The authors in [175] propose such a Geographic
Hash Table (GHT) system as a basis for a Data Centric Storage (DCS) [185] for WSNs.
While the DCS approach has the potential to lower the overhead in querying the
network (by not requiring a flooding step), the expressiveness of the queries is still
limited by the DHT properties, supporting at most category or event granularity.
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2.4.2 Active Networks and Mobile Agents

In the active networks model, the users “inject” code in the nodes in order to cus-
tomize the operation of the network. The high expressive power of the customization
code and the fact that it can migrate into the network (in the form of mobile agents)
enables the specification of arbitrarily complex in-network manipulation of the data.

This flexibility of the active networks approach can be put to a good use in the
WSNs context:

• The possibility to modify or completely replace the software suite of a running
WSN is desirable for several reasons. Many of the planned scenarios ask for a
long term deployment of the network. During this time it is going to be neces-
sary to implement fixes for the detected software bugs or introduce completely
new services in order to support applications that were unforeseen at the time
of the initial deployment.

• The mobile agents approach brings a customized processing closer to the data
sources, cutting on the number of exchanged data messages. The code can be
individually molded for each different application resulting in more efficient
applications than using a more general purpose solutions. The efficiency can
be further increased if the code is dynamically optimized during its roaming
in the network.

But there are also several significant shortcomings that can hinder the active
networks model when applied to the WSNs:

• While it offers almost unlimited power of expression, the complete burden of
exploiting that flexibility is on the application programmer. One has to provide
customized active code for each new application. The middleware as such does
not provide much in the form of a general solutions that can be used for rapid
development of different applications.

• Although the active code can cut the number of required messages for a
given in-network data processing, this comes at a cost for the additional code-
distribution messages.

• The mobile agents model can introduce tight temporal coupling between the
agents. This complicates the correct operation in the face of link/node failures
or other types of transient node unavailability.

• The introduction of active code in the network can increase the security risk,
making the network more vulnerable to external and internal attacks.

The first problem can be overcome by providing additional APIs that wrap some
of the standard and recurring operations: sensing, networking, mobility, etc. But
even with these APIs there is still a trade-off between the programmer efficiency and
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the efficiency of the solution. The model is best suited for application scenarios that
require complex distributed algorithms and dynamic in-network processing.

The authors in [19] present SensorWare, an active code architecture based on
mobile Tool Command Language (TCL) scripts. These scripts define both the data
processing and the replication/migration pattern of the mobile code. The effective-
ness of the approach is demonstrated on a target tracking application that relies on
complex relations between the nodes participating in the execution of this coopera-
tive task. The use of a scripting language instead of a full-blown compiled language
also simplifies the creation of a protected “sandbox” execution environment that can
limit the unwanted effects of malicious or misbehaving code.

2.4.3 Virtual Machines

One approach for addressing this code-distribution overhead is the introduction of
virtual machines on the nodes. These virtual machines can support a customized WSN
instructions set that allows quite dense representation of even very large programs
and raise the level of abstraction, allowing more rapid application programming.

In [125], the authors present Maté, an application-specific virtual machine for
TinyOS. The customization of the virtual machine instruction set allows concise
representation of the most frequently usedWSN operations: reading a sensor, sending
a message, turning the Light Emitting Diodes (LEDs) on an off, for example, all take
just a single instruction. Similar to the work in [18], additional savings in the code-
overhead is achieved by segmentation of the program into smaller building blocks
or capsules and then implementing smart capsule caching on the nodes. Depending
on the application dynamics, the caching of the capsules can significantly reduce the
number of required messages. The distribution of the capsules in Maté is preformed
via density-aware broadcast mechanism based on the Trickle algorithm [126, 128]
that reduce congestion-inflicted capsule loss and by that the settling time for the new
program version.

Recently, there has been increased interest [21, 116] in developing optimized
virtual machines that share a level of compatibility with the Java Virtual Machine
(JVM) [132] and can run on the resource-constrained MCUs typical for the WSN plat-
forms.

2.4.4 Databases

Many of the WSN applications, or at least some of their parts, can be expressed in the
form of queries:

• What is the current average temperature in the building?

• What is the maximum humidity in Room 439?

• How many sensors in Room 943 detect movement?
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• What is the average humidity in the areas with temperature higher then 25 degrees?

This is quite similar to the way the users interact with the traditional databases.
The realization has fueled a very active research direction that abstracts WSNs as a
database [62, 74, 98].

According to this model, each sensor reading represents a database tuple. The
combination of these tuples creates an append-only, distributed relational table that
can be operated on. The specification of the queries is usually performed using the
standard Structured Query Language (SQL). There are some benefits from using this
model:

• It provides an application-independent data-centric interface that can increase
the efficiency of the application programmer.

• This interface already provides support for selection, grouping and simple ag-
gregation operations, very common tasks in the envisioned WSNs applications.

• It shields the programmer from the volatility of the network, letting him con-
centrate on the application requirements of the end-user.

As an illustration, the above queries can all be expressed using standard SQL
constructs over a virtual sensors table [137]:
SELECT AVG( temperature )
FROM sensors

SELECT MAX( humidity )
FROM sensors
WHERE l o c a t i on = "Room␣439 "

SELECT COUNT(movement )
FROM sensors
WHERE l o c a t i on = "Room␣943 "

SELECT AVG( humidity ) , temperature
FROM sensors
WHERE temperature > 25

The simplest and naive way to support the illusion of the WSNs as a database is to
send each sensor reading to a central processing node where they are collected in a
relational table over which the queries are run. Because of the WSNs limitations, this
will seldom be acceptable but for the most simple cases with few nodes. Leaning on
previous work in the areas of distributed databases, and the recent developments on
operating over “data steams”, attempts are being made to specify WSNs optimized
in-network implementation of the main database operators [74, 222].

The classical database problem of query-execution optimization is thus trans-
formed into a routing problem. The overall success of the model then largely depends
on the development of sufficiently efficient and adaptive tuple-routing mechanisms
that can support the main database operators, reflecting the specific needs of the
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WSN applications. In [137], for example, the authors discuss some of the peculiarities
of performing the simple stateless aggregation operations in a WSNs setting. Their
aggregation service for the TinyOS architecture runs on top of a tree, routed in the
“base-station” that issues the queries. As the values propagate from the leaves back
to the root node, they are aggregated according to the aggregation operator in the
query.

2.4.5 Publish/Subscribe

The rapid growth of the distributed systems in the last decade has prompted the de-
velopment of more flexible communication schemes that closely mirror the emerging
dynamic and decoupled nature of the applications. The publish/subscribe is one such
scheme that supports a form of loose interaction between the entities in a distributed
system [50]. It is event-based in nature, that is very different from the request/reply
behavior of the “classical” point-to-point and synchronized protocols.

Subscriber

Subscriber
Publisher

Publisher

Publisher

Brokering
Service

Subscription

Notification

Notification

NotificationSubscription

Notification

Notification

Figure 2.16: The publish/subscribe interaction pattern.

Instead of specifying the identities of the communicating parties, in the publish/
subscribe model, the parties specify the nature of the data/events that they are
prepared to provide or consume. Figure 2.16 illustrates the interaction pattern.
An abstract brokering service interposes between the parties and coordinates the
interaction, making sure that thematching data is delivered to the interested side. The
providers disseminate the data by publishing it in the form of notification messages.
The receivers declare their interest in certain notifications by subscribing. This is done
by sending a subscribe message that codifies the nature of the requested data. From
this point on, all produced data that is matching the issued subscription is going to
be delivered to the subscriber. This continues until the subscriber declares that he is
no longer interested in the data by unsubscribing with an unsubscribe message.

Identity and Time Decoupling

The publish/subscribe model is well aligned with the service needs of a large class
of WSNs applications. In many of them the item of interest is the generated data and
not the identity of the producer and they benefit from time decoupling between the
producers and the consumers of the data.
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The identity decoupling is the foundation on which the flexibility of the model
rests. It represents the fact that the communication between the subscribers and
the publishers is performed without knowing the identity of the other side. The
whole communication is performed based on the characteristics of the provided or
requested data. The publishers do not keep references to the subscribers and vice
versa. Even the number of the parties participating in the interaction is not known. It
can as easily be one-to-one, one-to-many, many-to-one or many-to-many interaction.

This anonymous interactionmakes the applications built using the publish/subscribe
model easily adaptive to the run-time changes in the network. New subscribers can
be introduced in the network at any time, and they will start immediately receiving
the notifications containing data matching their interest. Similarly, new publishers
can be introduced in the system and the existing matching subscribers will start
receiving their notifications without any additional readdressing.

In contrast, in the traditional distributed-systems, after the introduction of new
services or after changes in the existing ones, the name service must be updated. To
use the new service, the application has to first contact the name service in order to
obtain the identity of the provider and then establish a direct communication. In
the publish/subscribe model, as long as the subscribers and the publishers use the
same data specification model, there is no need for a naming service, as the data is
self-describing.

In addition to being identity oblivious, the publish/subscribe is time decoupled,
i.e. it does not require that the parties are actively participating in the interaction at
the same time. This is to say that a subscribers can subscribe to a given event even
when there are no available publishers, and start receiving them once a matching
publisher comes on-line. It can also happen, that a subscriber is notified about some
data only after the original publisher is disconnected. Similarly, a publisher can
start publishing while the subscriber is disconnected, and the subscriber will start
receiving the data once it comes on-line.

The same asynchronism is present inside the producers and the subscribers. The
publications and the notifications are not usually performed in the main program
flowof the application. They are non-blocking operations. The publisher is not blocked
while producing events, and the subscribers are asynchronously notified when a
matching publication is received.

The above decoupling of the production and the consummation of the information
increases the scalability by reducing the required coordination between the commu-
nicating parties. This makes the publish/subscribe model a suitable framework for
implementing large-scale asynchronous applications.

Brokering System

One possible classification of the publish/subscribe systems is depending on the
topology of the brokering system that performs thematching between the subscribers
and the publishers. Three different variants can be identified:
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Centralized In this topology, there is a single entity in the system that acts as a broker
for all subscriptions and notifications. When providing data, the publishers first
send the notifications to the broker. The broker then matches the publication
with the previously received subscriptions and sends the matching parts to the
subscribers. This approach is suitable for the applications that require high
levels of reliability, data consistency and transactional support. On the other
hand, the centralized topology introduces a bottleneck in the system that can
severely limit the data throughput. At the same time, the centralized broker is
a single point of failure that makes the whole system vulnerable.

Distributed On the other extreme, in the distributed topology, the functionality of
the broker service is shared between all entities in the system. Using intelligent
store and forward methods, the subscribers and the publishers interact directly
whilemaintaining the appearance of anonymity and asynchrony. Consequently,
there is no bottleneck that stands in the way of the scalability. The main short-
comings of this approach is the fact that it requires complex communication
primitives that are more error prone that in the centralized approach. As a
result, it is much harder to implement higher level services with guaranteed
semantics.

Hybrid The hybrid approach tries to combine the characteristics of the both ap-
proaches. Instead of using a single dedicated broker system, the broker function-
ality is distributed among several networked broker servers. The subscribers
and the publishers act as clients and associate themselves with a given broker.
Each broker server acts as proxy for the subscriptions/notifications of the lo-
cally attached clients. The broker network performs a distributed algorithm for
matching the various notifications and interests. Many of the properties of the
hybrid architecture depend on the topology of this broker network that can be
in the form of a tree, acyclic graph or completely peer-to-peer.

Expressiveness

Equally important is the classification of the publish/subscribe systems based on the
expressiveness of their service interfaces. This has profound influence on the flexibility
of the system and limits the type of the applications that can be effectively supported.
Currently, three different categories of publish/subscribe systems can be identified
based on the type of the naming that is used when expressing the interests for the
data:

Subject-based This group encompasses the representatives of the earliest publish/
subscribe systems that defined subscriptions based on specific subjects or topics.
It represents a publish/subscribe wrapper around the group concept in the
multicast communications. Each subject defines one such group. The act of
subscribing to a subject is the same as becoming a member to a multicast group,
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while the publishing an event on a given subject is equivalent to multicasting
the event to all members of the group.

Although the tight integration enables straightforward implementation of the
middleware (by direct mapping to the multicast support in the network layer),
it also results in an inflexible and coarse naming style. The partitioning of the
event space using the subject keywords has to be performed upfront, and the
parties have to agree on this set before they can effectively communicate.

One useful extension is the introduction of hierarchical dependencies between
the subjects. In this type of systems, subscribing to a node in the subject
hierarchy tree also implies the subscription to the events published under the
keywords in the subtree. The subject tree provides a mechanism for controlling
the coarseness of the subscriptions and in that sense amortizes some of the
negative properties, but it the nature of the partitioning remains static.

Type-based The type-based publish/subscribe naming casts the subjects approach
in an Object Oriented (OO)-framework. It enables filtering of the notifications
based on their type. The subject tree is here replaced by an inheritance graph.
The act of subscribing to notifications of a given type means an automatic
subscription the inherited notifications types.

While similar with the hierarchical subjects model, the type-based systems
provide some additional conveniences on the programming side. Through
a tight integration of the middleware and an OO-programming language, a
compile time type checking can be performed, significantly simplifying the
debugging of the applications.

Content-based This is the most flexible of the publish/subscribe schemes. It allows
the specification of the interests in the form of predicates over the content of
the notification message. The service interface of the DASA interoperability
anchor leverages this model, and we describe its properties in greater detail in
Chapter 5.
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CHAPTER 3
Double-anchored

Software Architecture

In this chapter we introduce the main features of the Double-Anchored Software
Architecture (DASA), focusing on the core organizational principles. We provide
arguments for the use of the component framework model as effective vehicle for
expressing the architectural constraints, and we argue about the optimal delineation
points in the WSN software stack. The two anchors of the architecture are presented
in detail in the subsequent Chapter 4 and Chapter 5.

3.1 Cost of Abstractions and Decoupling

In many ways, the existing WSN software development landscape is characterized
with inefficiencies similar to the ones that triggered the discussion about the impend-
ing “software crisis” in the software engineering community in the 1960s and the
ways to combat it through software reuse. Our understanding about the practical
relevance of the different reuse techniques has advanced significantly since these
early days, and the community focus has turned to broader artifacts of reuse like
design patterns and architectural specifications [117]. In Chapter 1 we pointed the
important role that common architectural guidelines can play in promoting indepen-
dent implementation, isolation, and reuse in the WSN software development process.
These benefits rely on the specification of effective APIs and abstractions that enable
decoupling and provide complexity hiding, as crucial enablers of reuse.

As we aspire to incorporate these classical methods for increasing the software
development productivity, we must remain sensitive to the specific constraints in
the WSN domain. The decoupling and the complexity hiding increase the portability
and provide opportunities for reuse, but come at a price in fidelity and efficiency.
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The higher the level of abstraction, the less control one has over the services in the
underlying levels, leading to diminished performance in comparison to an integrated
solution. As a result, there is a constant tension between the need to raise the level of
abstraction as prerequisite for improving portability and productivity, and the need
for lean abstractions and vertical integration that maximize fidelity and efficiency.

This intrinsic conflict cannot be easily side-stepped. The exponential growth
of the hardware capabilities in the general-purpose computing systems has merely
enabled this tension to remain relatively well hidden in this domain, due to the
hardware over-provisioning. Our hardware survey (Section 2.2) shows that the rate
of increase in the capabilities on the WSN platforms is more flat, as the gains from
the technological advances are predominantly being applied towards making the
nodes smaller and cheaper. Due to this, in the WSN domain, we can not rely solely
on the technology to compensate the fidelity and efficiency costs of the software
abstractions. On the contrary, balancing between the benefits that abstractions carry
and the costs that accompany their use, has to be promoted to a core design goal of
the software architecture.

3.2 Component-based Development

Component modularization is an approach in which the functionality of the traditional
monolithic abstraction layers is broken-up in smaller, self-contained building blocks
that interact via clearly defined interfaces [141]. These building-blocks, called compo-
nents, represent a basic “ unit of composition with contractually specified interfaces and
explicit context dependencies only”. [191].

The internal structure of the component cleanly separates between the specifica-
tion of the service in the component signature, and its implementation (Figure 3.1(a)).
This decoupling promotesmodularity and reuse, while at the same time allowing rich
interaction between the individual building blocks. The services and applications can
now be composed by “wiring” together the necessary building-blocks (Figure 3.1(b)).
This typically entails explicit specification of the involved components, their roles in
the interaction (as providers or consumers of services), and the connecting interfaces.

The component-based software model supports rich composition of services. The
interaction between the composition units is no longer constrained to a strict up/
down direction like in the traditional layered models, but starts to resemble a graph.
This enables finer extraction of common functionality and allows reuse across the
layers of abstraction, but comes at the cost of more complex dependency relationships.
This organizational principle represents a good fit to the requirements of a wide
class of embedded systems [61]. Breaking the design into fine, self-contained and
richly interacting components provides a viable way for addressing the intrinsic
friction between the need for reusability and the cost of abstractions. The flexibility
of the model enables the system to better absorb the tension between reusability and
efficiency, and to adapt itself to the dynamic hardware/software boundary. These
features make the component-based model a suitable tool for breaking the vertically

50



3.2. Component-based Development

Signature

Implementation

(a) Component structure:
there is clean separation be-
tween the service specification
in the component signature
and its implementation

A B
I

A.I→ B.I

(b) Component composition: component A accesses services from
component B via the interface I

Figure 3.1: Component-based software model

integrated WSN development approach. The model empowers the developers to
select the appropriate level of abstraction for the task at hand and to customize the
services appropriately.

The flexibility enabled by the component modularization, however, carries a
risk of overwhelming the developer with the wide range of options for compo-
nent selection and composition. Figure 3.2 provides a simplified depiction of the
component-based protocol architecture we have developed in the context of the EYES
project [51] and illustrates the complexity of the dependency relationships.This cre-
ates a strong need for reusable design templates that can impose additional structure
on top of the component-based organization and can increase the productivity of the
development process.

Many of the existing architectural proposals for WSNs, offering such design tem-
plates, have been constrained to the component organization of the communication
stack. In [37], for example, following the “narrow waist” approach of the Internet
architecture, a new Sensornet Protocol (SP) is proposed as interoperability spanner
offering “best-effort, single-hop broadcast” service. In [45], this architecture is further
extended with a modular framework for implementing network protocols, NLA, that
promotes code reuse and run-time sharing.

We argue that substantial progress in promoting reuse and rapid development is
only possible by spreading the structured development approach over wider parts
of the software stack, despite the fact that a single architectural framework can not
cover the full diversity in WSN applications and hardware platforms.
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3.3 Double-anchored Software Architecture

This dissertation contends that a broad software architecture for WSN, expressed
as component framework [107, 124], can strike good balance between rigidity and
decoupling—which maximizes opportunities for design and code reuse—and flexi-
bility and configurability—which enable graceful handling of abstraction and decou-
pling costs.

We propose a DASA, that follows these principles and effectively promotes porta-
bility and interoperability while maintaining high sensibility towards abstraction
costs. DASA enables adaptive enforcement of design-constraints in different parts
of the software stack. The architecture is structured in a set of anchors, zones with
strong design-constraints and composability restrictions that introduce rigidity and
decoupling, and a set of hot spots [167], zones with high performance impact and
potential for application-specific customization, which remain highly flexible.

The effectiveness of this organization principle crucially depends on identification
of salient points in the software stackwhere fixation of the interfaces and the resulting
decoupling brings biggest opportunity for design and code reuse. One approach
for detecting the optimal delineation is to find the interfaces that contribute towards
better separation of concerns among the different stake-holders in the WSN software
development process. Looking at the current software development landscape,
we can identify three major classes of WSN developers with specific interests and
skill-sets:

Platform developers These developers are intimately familiar with the low-level
behavior of a particular hardware platform. They use this knowledge to design
and implement support code that abstracts the capabilities of the underlying
hardware and forms basis for implementation of higher-level services and
applications.

Distributed service developers These developers are experts in communication
technologies and distributed systems and are interested in the design and
implementation of reusable service building blocks like the communication
and sensing stacks, localization and time synchronization protocols.

Application developers These developers are experts for a particular application
area like building-automation, asset-tracking, personal health monitoring, etc.
They are interested in developing domain-specific applications and are familiar
with the application logic, but are not confident with the low-level aspects of
the technology. They prefer that all of the complexity of the WSN as a system
remains hidden behind a convenient high-level programming abstraction.

The feasibility and the effectiveness of the decoupling between the different
stake-holders in the software development process is best exemplified with the ap-
parent success of the POSIX [96] and Berkeley socket [189] abstractions in decoupling
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the application from the underlying operating system and networking stack in the
general-purpose software. To achieve the goals for more structured software de-
velopment process we need comparable interfaces in the WSN software architecture
that will promote decoupling and reuse, while maintaining the required levels of
efficiency. Out of these considerations, DASA defines two anchors of rigidity in the
WSN software stack (Figure 3.3):

Portability anchor that abstracts the local services provided by the underlying hard-
ware; and

Interoperability anchor that abstracts the services in remote contexts and allows
more rapid development of distributed WSN applications.

Interoperability Anchor

Portability Anchor

Hardware Platform

hardware/software boundary

Platform-Independent Hardware Interface

Local Services

Distributed Applications

Content-based Publish/Subscribe Interface

D
ou

bl
e-

an
ch

or
ed

 S
of

tw
ar

e 
A

rc
hi

te
ct

ur
e

Platform-Specific Hardware Interface

Figure 3.3: High-level functional decomposition of DASA.

In the following we briefly introduce the two anchors and their general features.
The detailed specification of their internal organization and the evaluation of the
achievement of our design goals is presented in the two subsequent chapters, Chap-
ter 4 and Chapter 5, respectively.
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3.3.1 Portability Anchor

Breaking the tight coupling between the software and the underlying hardware
through a hardware abstraction is a crucial requirement for amending the ineffi-
ciencies of the vertically-integrated development model in WSNs. By hiding the
hardware-dependent code from the rest of the system, hardware abstractions play
important role in promoting portability and reuse and are thus core element of many
execution environments (Section 2.3).

According to the definition in [146], a software artifact is portable “. . . to the degree
that the effort required to transport and adapt it to a new environment in the class is less than
the effort of redevelopment.”. The aim of the portability anchor in DASA is to improve
the source-level portability of the WSN software, by establishing standard hardware-
independent interface to the services provided by the underlying hardware platforms.

In this, we are following a similar goal as the POSIX standard [96]which “. . . specifies
Application Programming Interfaces (APIs) at the source level, and is about source code
portability. Its neither a code implementation nor an operating system, but a stable definition
of a programming interface that those systems supporting the specification guarantee to
provide to the application programmer”. The POSIX approach of narrow interfaces and
monolithic abstractions, however, is not suitable for direct application in the WSN
domain.

As discussed in Section 3.1, in theWSN context, the cost of abstractions cannot be as
easilymasked by hardware over-provisioning as in traditional systems. Consequently,
mechanisms are needed for avoiding some of the abstraction overhead in cases when
the need for performance overshadows the benefits of the complexity hiding. The
hardware abstraction in WSN has to be more modular. It has to accommodate a fluid
hardware/software boundary and it has to delineate between the development of
complexity hiding abstractions and their equalization across different platforms.

The portability anchor in DASA codifies these design-constraints that we deem nec-
essary for effective organization of software along the hardware/software boundary.
The anchor is structured as a three-level component framework that progressively
abstracts the capabilities of the underlying hardware platform. The top-level compo-
nents offer public hardware-independent interfaces for building portable services and
applications, and the middle-level components offer public hardware-specific interfaces
which provide access to the full capabilities of the underlying hardware.

This organization of the hardware abstraction functionality provides a solid
foundation for developing hardware-independent services and applications, allowing
significant code reuse across different hardware platforms. At the same time, the
design offers mechanisms for flexible control of the performance penalty for this
portability. In situations where the performance loss is too high, the developer can
skip the portability abstraction and directly tap to the hardware-specific interfaces.
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3.3.2 Interoperability Anchor

The lower anchor inDASAdecouples the evolution of the software from the underlying
hardware but does not provide sufficient complexity hiding for significant gains
in productivity of the development process. To enable more rapid development of
distributed WSN applications, a higher-level interoperability spanner is needed that
will protect the developer from the complexity of accessing services both in the local
and remote execution context.

In many WSN application domains, a classical networking API like the Berkeley
socket does not provide adequate levels of abstraction for substantial productivity
gains. Unlike the identity-centric, any-to-any communication patterns, characteristic
for the traditional communication networks, the focus in WSNs is on the sensed
data and its context, and less on the identity of the node that acquired it. This
creates a need for customized communication abstractions that can better support
the specific interaction patterns of the WSN applications. Many of the existing WSN
standardization activities like ZigBee [225], WirelessHART [217], and ISA100 [101],
try to address this demand through vertically integrated service architectures that
have narrow scope and lack flexibility and extensibility.

The interoperability anchor in DASA offers a more generic and flexible approach.
It exports a light data-centric abstraction that shields the application from the evo-
lution of the underlying service code and provides a sufficient complexity hiding
enabling rapid development of distributedWSN applications. The anchor is organized
as component framework with a service interface that follows the Content-Based
Publish/Subscribe (CBPS) model, tailored to the specific requirements of the WSN
domain.

The framework fully decouples the implementation of the service API from the hot
spots in the architecture, like the communication and the sensing stacks, that have high
impact on the application performance. From one side, this promotes independent
evolution of the solutions below the anchor. From the other side, the decoupling
enables easy application-specific customization of the service abstraction through the
use of different communication substrates and extension components. For example,
by choosing between a flooding protocol and a dissemination protocol [130, 198], the
application developer can select between reliable and unreliable distribution of the
subscriptions.

3.3.3 Configurability

Our architectural proposal is tailored to the specific challenges associated with
software development for resource constrained WSN platforms. The presented
component-based organization and the decoupling constraints are enforced only at
the source-level organization and the architecture explicitly allows collapsing of the
decoupling barriers and interface optimization during the code compilation process.
In this way, the additional structure in the software stack is maintained only during
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the development phases where it generates maximal benefits in terms of reuse and
improved productivity.

In contrast to run-time component frameworks like RUNES [156], we believe that
for the class of resource constrained WSN devices, the memory and the invocation
overheads associated with maintaining full run-time component-based organization
negate the gains resulting from the increased flexibility. The ability to dynamically
exchange components at run-time also has to be weighed against the potential for
introducing subtle composability problems which are expensive to detect and fix.

In line with this view, DASA does not provide rich mechanisms for run-time
adaptation like introspection and reflection, and lacks dedicated cross-layer data
sharing services [115, 121]. Instead, DASA relies on explicit exchange of metadata—
comprised of simple attribute/value pairs—as versatile run-time control signaling
mechanism both “vertically”, among components in a local execution context, as
well as “horizontally”, across different WSN nodes and contexts (Section 5.4.2).

3.4 Related Work

The ARPA project on Domain-Specific Software Architecture (DSSA) [1] in the 1990’s
has marked the start of increased interest in the software engineering community
in developing reference architectures for specific application domains. This interest
has lead to designs like IBM’s ADAGE reference model for avionics [8] or Philips’
Koala model for consumer electronics [203]. More recently, a group of leading
automotive manufacturers and suppliers has initiated AUTOSAR [86], a joint initiative
for developing an open reference architecture for automotive electronics systems
that is agnostic from the implementation language and the execution environment.

As a broad domain-specific architectural proposal, DASA shares many high-level
goals with initiatives like AUTOSAR. Both attempt to address the existing complexity
and inefficiencies in the software development process through the identification of
core abstractions, standardization of interfaces and interaction patterns. Despite the
fact that both initiatives target resource constrained embedded devices, the different
application contexts have led to significantly different architectural decisions. These
differences highlight the adaptation of DASA to the specific needs of the WSN domain.

The “Basic Software” in AUTOSAR serves the same role as the DASA portability
anchor. It abstracts the rest of the system from the differences in theMCU architectures
and offers common device-driver API. Unlike DASA, however, the abstraction is
monolithic and does not allow flexible selection of the portability/efficiency trade-
offs. Another crucial difference is in the scope of the architecture. TheAUTOSAR “basic
software” incorporates a full specification of the execution model [159], while DASA
is OS agnostic and does not impose strong constraints on the concurrency model.

The interoperability anchor inDASA sharesmany design goals with reconfigurable
middleware solutions like the Y distributed application platform [165], Gridkit [75]
and BASE [10]. In contrast to these approaches, DASA is optimized for hardware
platforms that have orders of magnitude less available resources and is thus much
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less general. Although we share the same goal of decoupling between the imple-
mentation of the service and the underlying communication substrate, DASA does
not support different transactional models or different concurrency classes in the
service invocation. Like BASE, the component framework of theDASA interoperability
anchor follows the micro-broker approach, and allows extensibility with plug-in
components. However, due to the resource constrained nature of the WSN platforms,
we focus on compile-time configuration supported by simple metadata-based control
signaling at run-time.
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CHAPTER 4
Portability Anchor

In this chapter we present the low-level foundation of DASA that paves way for
portable development through progressive abstraction of the resources on the under-
lying hardware platform.

The architecture of this portability anchor is based on a set of vertical and horizontal
composability rules that augment the generic component-based organization model
and allow for flexible organization of the hardware abstraction code. The resulting
component framework provides efficient support for building platform-independent
services and applications, while still allowing direct access to the full features of the
underlying hardware, when the need for performance and efficiency outweigh the
need for portability.

We conclude the chapter with an evaluation of the level of achievement of the
main design goals through micro-benchmarking and analysis of the application
of the proposed component framework in the code-base of TinyOS 2.x, a popular
execution environment for WSN.

4.1 Design Goals

The existence of a hardware abstraction layer in traditional software architectures
has proved to be an indispensable method for simplifying application development
and for breaking the tight vertically-integrated development method.

The first goal of a hardware abstraction layer is to shield the rest of the system from
the intricacies associated with low-level hardware access through wrapping of the
hardware resources into more convenient higher-level abstractions. This complexity
hiding reduces the cognitive burden when developing higher-level services and
contributes towards safe sharing of the available hardware resources.

59



Portability Anchor

The hardware abstraction layer achieves its second goal through equalization
of these abstractions across the different supported platforms. Through this, it pro-
vides basis for developing portable services and applications by defining a platform-
independent API against which portable code can be written [146]. This portability
barrier decouples the higher-level services from the evolution of the underlying hard-
ware as long as the platform-independent API can be realized on each new platform.
In this way the overhead of porting N applications onM new platforms is reduced
from O(N×M) to O(N+M).

Existing portability frameworks, like the ones reviewed in Section 2.3.1, frequently
conflate these two aspects of the hardware abstraction functionality. Their interfaces
are narrow, rigid and expose the capabilities of the hardware at a single level of ab-
straction. This unavoidably leads to suboptimal utilization of the available resources
when developing platform-specific services and applications. While the portability
penalty might be acceptable for hardware over-provisioned systems, the resource
constrained nature of WSNs requires a more flexible approach that offers streamlined
access to the hardware when necessary.

Ins-trad in our view, a successful hardware abstraction layer forWSNsmust enable:

• creation of effective abstractions for the hardware resources of the underlying
platform;

• development of portable applications that can run with minimal change on
different hardware platforms; and

• effective control over the portability/performance trade-offs.

To achieve these goals, the hardware abstraction in WSN has to be modular: it
has to accommodate a fluid hardware/software boundary and it has to delineate
between the development of complexity hiding abstractions and their equalization
across different platforms.

We argue that these challenges can be effectively met through the introduction of
a portability anchor in the software architecture that combines the flexibility of the
component-basedmodel with a set of vertical and horizontal decomposition guidelines
which we present in detail in the next sections. The combination of these decom-
position guidelines with the component-based organization results in a component
framework for organizing the hardware abstraction functionality in WSNs that strikes
a fine balance between the conflicting needs for complexity hiding and portability,
from one side, and system efficiency from the other.

4.2 Vertical Decomposition

To achieve the above goals, we propose that the hardware abstraction functionality
should be organized in three distinct layers of abstraction components. Each layer in
this decomposition has clearly defined responsibilities and is dependent on interfaces
provided by the lower layers.
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Figure 4.1: Vertical decomposition of the portability anchor

Figure 4.1 depicts the proposed component framework. For each hardware
platform the hardware abstraction functionality is organized in three layers of compo-
nents. Sitting on top of the hardware/software boundary, the Hardware Presentation
Layer (HPL) structures access to hardware registers and interrupts, the Hardware
Adaptation Layer (HAL) promotes efficiency through rich hardware-specific abstrac-
tions, while the Hardware Interface Layer (HIL) fosters portability across the ab-
stracted platforms by exporting a platform-independent hardware interface.

Through this gradual abstraction of the capabilities of the underlying hardware,
on each layer the components become less and less hardware dependent, giving the
developer more opportunity for designing and implementing reusable services and
applications.

The separation between the hardware-specific abstractions in the HAL and the
portability wrappers in the HIL is a core feature of the proposed architecture and its
main mechanism for resolving the implicit conflict between the need for portability
and the price associated with raising the level of abstraction.

When there is a need for maximal performance, the architecture facilitates writing
efficient platform-specific code by offering public access to HAL interfaces, effectively
circumventing the portability penalty associated with HIL components.

Thanks to the component-based nature, the portability anchor also supports
flexible mixing of these two public interfaces. The higher-level code can be organized
in such a way that the majority of the implementation remains platform-independent
while only the performance critical parts tap into the platform-dependent HAL inter-
faces. In spirit, this is similar to the possibility of using inline assembly for imple-
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menting the most performance sensitive operations in a C program, or the ability to
extend interpreted languages like Python with C/C++ routines.

In the following we describe in more detail the core design principles for each of
the component layers comprising the DASA portability anchor.

4.2.1 Hardware Presentation Layer

The components belonging to the Hardware Presentation Layer (HPL) are positioned
directly over the hardware/software boundary. As the name suggests, their major
task is to “present” the capabilities of the hardware using the native concepts of the
component-based organization model. They access the hardware in the usual way,
either by memory or port-mapped I/O. In the reverse direction, the hardware can
request servicing by raising interrupts. The goal of the HPL is to wrap this low-level
interaction with the hardware in the form of components that export more structured
interfaces to the rest of the system.

The HPL components are stateless and expose interfaces that are fully determined
by the capabilities of the hardware module that is abstracted. This tight coupling
with the hardware leaves little freedom in the design and the implementation of the
components. Even though the actual interface signatures of the HPL components
will be as unique as the underlying hardware, having a common general structure
simplifies the interaction with the rest of the architecture. To this aim, each HPL
component should provide:

• commands for initialization, starting, and stopping of the hardware module,
necessary for effective power management;

• “get” and “set” commands for the register(s) that control the operation of the
hardware;

• commands with descriptive names for the most frequently used flag-setting
and flag-testing operations;

• Interrupt Service Routines (ISRs) for the interrupts generated by the hardware
module; and

• commands for enabling and disabling these interrupts.

In addition to facilitating better integration with the rest of the architecture,
these interface guidelines also bring benefits for the programmer: instead of cryptic
macros and register names whose definitions are hidden deep in the header files of
compiler libraries, the low-level services of the hardware module are now directly
exposed in the interface signature of the HPL component, making their use much
more convenient and less error-prone.

In terms of complexity hiding, theHPL components do not provide any substantial
abstraction beyond automating frequently used command sequences. The interrupt
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service routines in theHPL components perform only themost time critical operations
(like copying a single value, clearing some flags, etc.), and delegate the rest of the
processing to the higher level components that have extended knowledge about the
state of the system.

Despite this, by hiding the most hardware-dependent code, the HPL enables
easier development of higher-level abstraction components which can be reused with
different hardware-modules of the same class. For example, many of the MCUs used
on the existing WSN platforms have two USART modules for serial communication.
They have the same functionality but are accessed using slightly different register
names and generate different interrupt vectors. The HPL components can hide these
small differences behind a consistent interface, making the higher-level abstractions
resource independent. The programmer can then alternate between the different
Universal Synchronous Asynchronous Receiver Transmitter (USART) modules by
simple switching of the HPL components, without any changes to the implementation
of the higher-level services.

4.2.2 Hardware Abstraction Layer

The Hardware Adaptation Layer (HAL) components form the core of the portability
anchor. They use the raw interfaces provided by the HPL components to build
powerful high-level abstractions that mask the intricacies associated with the use of
hardware resources. In contrast to the HPL components, they are free to maintain
internal state for implementing their services and for performing access arbitration
and resource control (Section 4.4).

HAL abstractions offer effective and convenient access to the full capabilities of the
underlying hardware, without compromises in favor of increased portability. This
goal has parallels with the Exokernel concept that calls for banishing heavy hardware
abstractions from the OS and their transformation into libraries that offer finer control
over the abstraction penalty [46]. The complexity hiding in the HAL is tailored to the
specific features of the abstracted hardware module. Instead of hiding the individual
features of the hardware class behind generic models, HAL components provide the
“best” possible abstraction that simplifies the development of higher-level code while
maintaining effective use of resources.

This customized abstraction approach of the HAL layer is reflected in the exported
interfaces. Rather than using a generic “everything-is-a-file” model for all devices—
the approach that is used in the POSIX-inspired hardware abstraction architectures [15,
23, 48]—we propose that theHAL components should provide access to these services
via rich interfaces built on top of domain-specific models like Alarm (Section 4.5.3),
ADC, EEPROM, etc. In [82] we provide several examples of such domain-specific
models and illustrate how they can be effectively used to encapsulate the capabilities
of the major hardware modules on a typical WSN platform.

At a glance, the narrow-interface approach of the POSIX model seems more conve-
nient to the developer. The functionality of each hardware device is hidden behind
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a small generic set of commands like dev_read(), dev_write(), dev_mode(), dev_ioctl().
This sense of simplicity, however, is misleading: all important aspects of the call
are hidden in the command arguments, often in non-transparent pointers to con-
figuration structures that are hard to test for correctness, especially on mote-class
devices. In contrast, the use of rich, expressive domain-specific interfaces enables
implementation of stronger compile-time invocation checks, which increases the
robustness of the code in light of complex component composition.

4.2.3 Hardware Interface Layer

The final tier in our architecture is formed by the Hardware Interface Layer (HIL)
components that take the hardware-specific abstractions provided by the HAL and
convert them to hardware-independent interfaces used for writing portable code.
In effect, the HIL components encapsulate the “portability penalty” of the hardware
abstraction. The overhead contained in the HIL components represents the additional
price, relative to the HAL, that the application has to pay to be able to run on different
platforms.

As a result, the relationship between the level of abstraction expressed by the com-
mon HIL interface with respect to the capabilities of the platforms whose differences
it needs to hide, poses as crucial design decision. A typical, but counterproductive
option, is to anchor this interface at the Least Common Denominator feature set,
which is readily provided by all of the abstracted platforms. This approach does not
require significant upfront costs associated with developing portability wrappers,
but needlessly constrains the performance of the system on all but the least capable
platform, since the platform-independent code can not benefit from the increased
function set and performance offered by the more advanced platforms.

In our view, this platform-independent API “contract” has to track the typical set
of hardware services that are needed for effective implementation of the current
state-of-the-art services and applications. Consequently, the complexity of the HIL
components mainly depends on the gap between the capabilities of the abstracted
hardware and the established platform-independent interface. When the capabilities
of the hardware exceed the current API contract, the HIL must “downgrade” the
platform-specific abstractions provided by the HAL until they are leveled-off with
the chosen standard interface. Correspondingly, when the underlying hardware is
inferior, the HIL has to resort to software emulation of the missing capabilities.

As newer and more capable platforms are introduced in the system, the pressure
to break the current API contract will increase. When the performance requirements
outweigh the benefits of the stable interface, a discrete jump can bemade that realigns
the platform-independent API. This will force a reimplementation of the affected HIL
components. On one side, for newer platforms, the new HIL will be much simpler
because the new API contract and theirHAL abstractions will be better aligned. On the
other side, the cost of boosting up (in software) the capabilities of the old platforms
will increase.
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The periodic realignment of the platform-independent interface can lead to com-
patibility issues in long-lived deployments. The standard solution to this problem
is to associate a unique version number to each iteration of an HIL interface. This
versioning of the HIL interface allows applications to safely reference legacy interfaces
and maintain compatibility with previously deployed devices.

4.3 Horizontal Decomposition

As affirmed by our extensive survey in Section 2.2, the majority of WSN platforms are
built out of COTS and there is a substantial reuse of components across the different
platforms. This fact should be reflected in the organization of the hardware abstrac-
tion functionality in order to promote reuse of those abstractions which are common
on different platforms. Thus, in addition to the vertical decomposition presented in
the previous section, the abstraction code needs horizontal modularity that tightly
follows this platform composition.

The COTS components used on the WSN platforms use well-defined physical
interfaces like GPIO, UART, SPI, etc. By reflecting these physical interfaces into software
as platform-independent interconnection abstractions, it becomes possible to reuse
the abstractions corresponding to the shared chips across different platforms, which
significantly reduces the porting overhead.

The horizontal decomposition using platform-independent interconnection ab-
stractions is also a prerequisite for establishing more decentralized device driver
development model in theWSN domain, one that can mirror the established practices
for Personal Computer (PC)-class systems where hardware manufacturers develop
their own drivers against a well-defined API supported by the execution environ-
ment [118].

In the followingwedescribe inmore detail the threemain concepts: chips, platforms
and interconnect that the portability anchor uses to achieve the required horizontal
modularity.

4.3.1 Chips and Platforms

Chips are self-contained abstractions of a particular “hardware chip” (MCU, transceiver,
flash-chip, etc.). Each chip abstraction follows the vertical decomposition principle
defined in Section 4.2, providing both a public chip-specific HAL interface, as well as a
public chip-independent HIL interface. Consequently, a platform abstracts a particular
“hardware platform”, and is built as composition of platform-independent chip com-
ponents which are connected together using platform-specific “glue” components
that perform the necessary interface mapping and configuration.

Figure 4.2 illustrates the relationship between these two core concepts of the
horizontal decomposition. It shows the organization of the abstraction functionality
of a WSN platform as a collection of platform-independent, chip-specific abstractions
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Figure 4.2: Horizontal decomposition of the portability anchor in chips and platforms.

(chip1, chip1,. . . ) that are interfaced together with the help of platform-specific glue
components (glue1−2,. . . ).

Thanks to their platform-independent nature, the chip abstractions are reusable
across different platforms, resulting in amuchmore efficient platformporting process.
In Section 4.5.4, we illustrate in more detail this decomposition and the resulting
portability gains, using the interfacing between the CC2420 and MSP430 chips on
the telosb platform as an example.

4.3.2 Interconnect

Figure 4.2 also highlights the central role that the abstraction of the interconnect
(Section 2.1.1) plays in enabling reuse of chip-specific code across different platforms.

Our architecture would support greatest portability and reuse by following a
generic interconnect model like the one in NetBSD that abstracts the different inter-
connection protocols under one common memory access scheme (Section 2.3.1). In
this approach the abstraction of the chip is completely decoupled from the abstraction
of the interconnect, potentially allowing the same chip to be used with different con-
nection protocols on different platforms. This generalization, however, is associated
with notable performance penalties due to the involved access translations. Although
this additional overhead may be acceptable on more capable hardware, it is highly
undesirable in the case of the resource-constrained WSN platforms.

We believe that adopting a less generic approach offers more favorable trade-offs.
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Consequently, we have opted for maintaining separate abstractions for the main
interconnect protocols. These distinct interconnect abstractions offer possibility for
protocol-specific optimizations: the SPI bus abstraction (Figure 2.3), for example, does
not have to incorporate the concept of client addresses, while the I2C abstraction must
do so.

The platform-independent abstraction of these interconnection protocols enables
easy reuse of chips on any platform as long as it provides support for the required
interconnection protocol. For example, the CC2420 chip abstraction can be reused
both on the telos and micaz platforms because the abstractions of the serial modules
on the MSP430 and Atmega128 MCUs support common SPI interface (Section 4.5.4).
One potential opportunity for reuse that is not optimally handled by our approach
relates to SoC designs where the SoC chip incorporates a sub-element that is also
available as a stand-alone chip. For example, the integrated transceiver in the Texas
Instruments CC2430 SoC is very similar to the stand-alone CC2420 design. In this
case, direct reuse of the stand-alone CC2420 chip abstraction for easy composition
of a new CC2430 chip abstraction is not possible because the CC2420 abstraction
references the SPI abstraction as specific interconnect protocol [9].

The clean abstraction of the interconnect is also instrumental for structuring the
development of hardware abstraction code in separate domains of expertise and
enabling more streamlined device driver development process. For example, the
separation between the abstraction for the ADCmodule and the one for the connected
sensors opens way for platform-independent development of sensor drivers. The
platform-independent nature of the ADC HIL allows a sensor device-driver developer
to code a sensor transfer function in his driver code, without knowing the exact
nature of the sensor connection on a given platform (channel number, ratiometric or
absolute configuration, etc.), parameters that are separately provided by a platform
integrator in the platform-specific “glue” components.

4.4 Concurrency and Power Management

Following the vertical decomposition principles presented in Section 4.2, the services
of each hardware resource in the system can be accessed through two public APIs: at
the hardware-independent HIL, for portable code, and at the hardware-specific HAL,
for high-performance code. As a result, the code above the portability anchor can
attempt concurrent access to an underlying hardware resource from different call-
sites and using different levels of abstraction. Similar concurrency issues also arise
in the context of the horizontal decomposition when multiple chips are connected
to the same interconnect. For example, the CC2420 transceiver is connected to a
dedicated SPI bus on the micaz platform, but on the telosb platform it shares the SPI
bus with the external storage chip, leading to potential access conflicts.

To handle these types of access concurrency, the portability anchor mandates
the inclusion of proper arbitration and resource control functionality in the HAL
components. Before accessing a potentially shared resource, the client component
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has to ask and be granted exclusive access by interacting with a special Arbiter
component that acts as concurrency lock. Each shared resource is protected by a
separate arbiter which coordinates the access among the set of client components
that have preregistered with the arbiter’s interface as candidate lock holders.

Due to their sentinel role, the arbiter components have direct insight into the I/O
access patterns in the system. This valuable information can be leveraged to build
more advanced higher level services. This observation has led us to propose the use
of power locks, a novel synchronization primitives that couple concurrency, power
management and hardware configuration [113].
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Figure 4.3: Integrated management of concurrency, configuration and power using power locks.

Figure 4.3 depicts the internal structure of a power lock and its external interfacing.
It is comprised out of three types of components: an Arbiter, responsible for access
arbitration, Configurators responsible for client-specific configuration, and a Power
Manager responsible for enforcing a specific power management policy.

Before using the services of the Shared Resource through a resource-specific set of
service interfaces, the clients (Client1,Client1,. . . ,Clientn) have to first acquire exclusive
access by sending a corresponding request to the power lock’s Arbiter. The Arbiter
queues the client’s requests and grants access to the shared resource according to
some specific granting policy (FIFO, round-robin, etc.). As part of the access granting
path, the Arbiter calls an optional Config component which encapsulates all the
client-specific configuration that is needed at each grant event.

The Power Manager component acts as a default owner of the lock and receives
exclusive access to the underlying resource whenever the lock is idle and there are
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no pending requests from the clients. When holding the lock, the Power Manager
can enforce a specific power management policy for the resource through the explicit
power management interface offered by the resource (Section 4.2.1). In the most
simple case, as soon as the lock goes idle and the Power Manager get access to the
resource, it can use the explicit power management interface to immediately power
down the hardware module. Consequently, on receiving an access request from
any of the clients, the Arbiter informs the Power Manager that the resource needs
to be used. The Power Manager powers up the hardware module before releasing
the lock back to the Arbiter who runs the client-specific configuration in the Config
component before granting access to the client.

In this way even applications with no explicit energy management can operate at
energy-efficiency levels very close to a hand-tuned solution. The energy management
policy of the Power Manager can be either preselected at compile time or modified at
run-time, through integration with a more comprehensive framework for node-level
or network-wide dynamic energy management like the ones presented in [11, 105,
122, 209], offering even larger savings.

From the point of view of the client components, the additional configuration and
power management services provided by the power lock are visible only as increase
in the latency of the access granting process. This additional delay is primarily
determined by the time overhead of the power-state switching in the underlying
hardwaremodule. In cases where this overhead is significant, the PowerManager can
apply more sophisticated management policies, like keeping the module powered
on until some timeout, in expectation of an early new client access request.

In some situations, such uncertainly in the latency of the granting path might be
unacceptable for the client. To support these use-cases, the power lock also offers
a separate, streamlined access requesting interface which either immediately grants
access to the resource, or returns an error code informing the client that such low-
latency arbitration is not possible, allowing the client to take mitigating actions, like
retrying at later more convenient and for the client deterministic time.

4.5 Implementation in TinyOS 2.x

The early releases of TinyOS 1.x were lacking a clear organization of the hardware ab-
straction components and the exported hardware abstraction interfaces were strongly
biased by the features of the Atmel ATmega MCUs used on the mica family of nodes
(Section 2.3.2). This has hampered porting to new platforms and was deemed as one
of the most serious shortcomings preventing wider adoption of the OS.

The situation was somewhat improved when we introduced the msp430 platform
in TinyOS 1.1.7, that abstracted the capabilities of the Texas Instruments MSP430
MCU family. This new platform, used as basis for the TinyOS 1.x telos and eyesIFX
ports, featured a novel hardware abstraction approach with gradual formation of
platform-independent interfaces [81].
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The lessons that we have learned through these early porting efforts have lead
us to the specification of a three-layer hardware abstraction architecture [82] which
became a cornerstone for TinyOS 2.x [127], the new version of the operating system.

TinyOS 2.x maintains many of the basic concepts of its successful predecessor
TinyOS 1.x (Figure 4.4), but extends the design in key areas like greater portability,
improved robustness and reliability.

2000

TinyOS 0.4

2001

TinyOS 0.6

2002

TinyOS 1.0

2006

Tiny
OS 2.0

2009

TinyOS 2.1
.1

2010

TinyOS 0.4 Initial public release by UC Berkeley.
TinyOS 1.0 First version using the nesC language.
TinyOS 2.0 Complete rewrite, TinyOS Alliance formed.
TinyOS 2.1.1 Latest release.

Figure 4.4: TinyOS release history and development milestones.

The development process in TinyOS 2.x is organized around “Working Groups”
that focus on different design and engineering aspects with the goal of improving
and adding new services to the OS. The organization of the hardware abstraction
functionality and the reference implementations fall in the responsibility area of
the TinyOS 2.x Core Working Group [197]. Through the activities of the Core WG,
we have refined our original three-layer hardware abstraction architecture with a
horizontal dimension, and have added more advanced concepts like power locks,
resulting in the architecture presented in this dissertation.

In the following, we first provide a briefly review of the other novelties in
TinyOS 2.x with respect to TinyOS 1.x, before turning our attention to the implemen-
tation of the portability anchor in the TinyOS 2.x code-base.

4.5.1 General Features of TinyOS 2.x

TinyOS 2.x is based on a new version of nesC [66], which extends the original com-
ponent model used in TinyOS 1.x with the concept of generic components and generic
interfaces. Similar to classes in object-oriented programming, a generic component
can be used to create multiple component instances. The instances can be customized
using a list of parameters that can also include type arguments. All generics are
instantiated at compile-time and the instances are completely independent copies,
similar to the way C++ templates work.
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The newnesC version also improves the networking interoperability of TinyOS 2.x
code, through the definition of a network type at the language level. Using this new
concept, programs can declare structures and primitive types that follow a cross-
platform (1-byte aligned, big-endian) layout and encoding. This allows services to
specify platform-independent packet formats without resorting to macros or explicit
serialization [27].

In addition to the underlying language changes, TinyOS 2.x introduces a new
task posting semantics. In the original TinyOS 1.x design, all components share a
fixed-size task queue and a given task can be posted multiple times. This causes a
wide range of robustness problems because if a component is unable to post a task,
due to the queue being full, it may cause the whole system to hang. To mitigate this
problem, in TinyOS 2.x, every task has its own reserved slot in the queue and can
be posted only once. The new semantics leads to simplified code and more robust
components.

This approach of compile-time allocation and binding is applied to all aspects of
the system: components preallocate all the state they might possibly need at compile-
time and important invariants are explicitly reflected through interface signatures,
rather then through parameters that need run-time checking. This design principle
limits the flexibility, but makes many of the OS behaviors more deterministic.

4.5.2 Portability Anchor’s Implementation

Like other mandatory design specifications, the hardware abstraction architecture
in TinyOS 2.x is described in TEP2, a “Best Current Practice” TinyOS Enhancement
Proposal (TEP) document [79]. The application of the architecture to each hardware
subsystem is codified in separate TEPs. They document the design considerations
and mandatory specifications for the HIL layer interfaces for a particular hardware
subsystem, and provide pointers to reference implementation of these interfaces in
the TinyOS 2.x code base.

TEP Title
TEP2 Hardware Abstraction Architecture
TEP101 Analog-to-Digital Converters (ADCs)
TEP102 Timers
TEP103 Permanent Data Storage (Flash)
TEP108 Resource Arbitration
TEP109 Sensors and Sensor Boards
TEP112 Microcontroller Power Management
TEP113 Serial Communication
TEP115 Power Management of Non-Virtualized Devices
TEP117 Low-Level I/O
TEP126 CC2420 Radio Stack
TEP131 Creating a New Platform for TinyOS 2.x

Table 4.1: TEPs specifying the hardware abstraction architecture and its implementation in TinyOS 2.x
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Due to their platform-specific nature, the organization of the HAL layers is not
subject to specification in TEPs. Despite this, the hardware subsystem TEPs often
provide useful design suggestions and examples about the organization of the HAL
components on particular platforms. Special focus is put on documenting useful
hardware-independent interfaces for HAL and HPL components that enable writing
platform-independent utility components, that can reduce the porting overhead. A
typical example is the Timers TEP, which, in addition to the mandatory HIL specifica-
tion, also documents a utility library for easy development ofHIL andHAL abstractions
on different hardware. Table 4.1 provides an overview of the current TEPs that relate
to the specification and application of the hardware abstraction architecture.

Level of Portability

According to the portability anchor specification, the HIL interfaces should provide
full hardware independence. The specification, however, defines the required API
only at source code level and can effectively only mandate source code portability,
like the POSIX interfaces.

In real-life use of the HIL abstractions, the expected behavior of the portable code
written on top of the HIL abstractions plays equally important role as the code porta-
bility. To differentiate between thoseHIL abstractions that guarantee both source code
and behavioral portability and the ones that only guarantee source code portability,
the TinyOS 2.x community uses the concepts of “Strong HIL” and “Weak HIL” with
the following meaning:

Strong HILs indicates that “portable code using these abstractions can reasonably be
expected to behave the same on all implementations”, which matches the origi-
nal definition of the HIL level according to DASA. Examples include the HIL for
the timer (TimerMilliC, TEP102), forLEDs (LedsC), active messages (ActiveMes-
sageC, TEP116), sensor wrappers (DemoSensorC, TEP109), storage (TEP103),
etc. Strong HILs may use platform-defined types if they also encapsulate their
modification (i.e., they are platform-defined abstract data types), for example,
the TinyOS 2.x message buffer abstraction, message_t (TEP111).

Weak HILs indicates that “portable code using these abstractions might exhibit
platform-specific behavior”. For example, the existing ADC abstraction requires
platform-specific configuration and the returned data must be interpreted
in light of this configuration. The ADC configuration is exposed on all plat-
forms through the AdcConfigure interface that takes a platform-defined type,
adc_config_t, as a parameter. However, the returned ADC data may be processed
in a platform-independent way, for example, by calculating the max/min or
mean of multiple ADC readings. So despite this platform-specific behavior,
weak HILs still enable writing portable utility code, e.g., a repeated sampling
for an ADC on top of the normal single-sample interface.
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Code Organization

To provide the necessary context for the examples and the evaluation in the rest of the
chapter, we briefly review the organization of the TinyOS 2.x code-base (Figure 4.5)
and the association between its directory structure and the vertical and horizontal
decoupling principles of the portability anchor.

$TOSROOT

apps

doc

support

tools

tos

types
chips

platforms
sensorboards

interfaces
system

lib

Figure 4.5: Directory structure of the TinyOS 2.x code-base.

• /apps contains a collection of standard platform-independent and platform-
specific applications used for demonstration and release testing.

• /tos contains the core components of the OS including the ones for hardware
abstraction, organized as follows:

– /tos/chips contains the platform-independent, chip-specific abstractions
of all supported hardware chips in the OS, following the horizontal de-
composition. Each of these chip-specific abstraction, in turn, is comprised
of a collection of components resulting from the three-level decomposi-
tion of the abstraction functionality, following the vertical decomposition
principle.

– /tos/platforms contains the platform-specific, chip-independent com-
ponents for all supported hardware platforms, following the horizon-
tal decomposition. Each /tos/platforms subdirectory contains a special
“.platform” definition file that specifies the list of platform-independent
chip abstractions and platform-specific “glue” components that comprise
the platform.
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– /tos/interfaces contains the system OS interfaces and the platform-inde-
pendentHIL interfaces for all hardware subsystems, in effect specifying the
top-level signature of the portability anchor as implemented in TinyOS 2.x.

– /tos/system contains basic system components like the scheduler and
platform-independent HIL wrapper components.

– /tos/lib contains component libraries for different aspects of the system,
including reusable utility code for building HIL and HAL abstractions, like
the already mentioned timer library, in /tos/lib/timer, or the power
manager library, in /tos/lib/power.

4.5.3 Vertical Decomposition Example

To illustrate the application of the vertical decomposition principles presented in Sec-
tion 4.2 in the TinyOS 2.x code-base, we present the implementation of the platform-
independent timer service for the Texas Instruments MSP430 MCU.

According to TEP102 [184], the portable HIL abstraction for timers in TinyOS 2.x
is a millisecond-precision timer with a width of 32-bits. The precision is expressed
in binary units, i.e. the millisecond HIL timer ticks 1024 times per second, and not
1000 times per second.

Due to the large diversity in the number of hardware timers on theWSN platforms
and their features, the implementation of the HIL timer service is typically based
on top of a single hardware timer which is then virtualized into as many timers as
needed.

Figure 4.6 shows a simplified version of the component graph used to imple-
ment this service on the Texas Instruments MSP430 MCU. The graph concentrates
only on the main components, their interfacing and classification in the three ab-
straction layers. Apart from TimerMilliC and LocalTimerMilliC which are portable
and reside in /tos/system, all other components are chip-specific and reside in
/tos/chip/msp430/timer. Many of them, however, internally use portable utility
components from the timer library in /tos/lib/timer.

Hardware Timers

Below the hardware/software boundary, theMSP430MCU offers two 16-bit hardware
timers (Figure 2.2): TimerA with three Capture/Compare Registers (CCRs), and a
TimerB with seven CCRs. Each timer can be driven by a separate clock source which
can be configured with a limited set of prescalers. In TinyOS 2.x, the TimerA is
typically connected to the same clock source as the CPU, but scaled down to 1MHz,
while the TimerB is typically driven by an external 32768Hz quartz crystal. The HIL
timer service on the MSP430-based TinyOS 2.x platforms is built on top of the TimerB
using one of the seven available CCRs.
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TimerMilliC LocalTimeMilliC

HilTimerMilliC

AlarmMilli32C

CounterMilli32C Alarm32khz16C

Msp430Counter32khzC Msp430Timer32khzC

Msp430Timer32khzMapC

Msp430TimerC

H
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H
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hardware/software boundary

Texas Instruments MSP430 MCU

Figure 4.6: Vertical decomposition of the timer abstraction for the Texas Instruments MSP430 MCU.

HPL Components

Following the guidelines for HPL components (Section 4.2.1), the implementation of
the timer abstraction starts by wrapping the low-level access to TimerA and TimerB
in the form of a Msp430TimerC component which provides convenient configuration
and service interfaces for the timers and their CCRs.

The Msp430Timer32khzMapC and Msp430Timer32khzC components reserve one
of the TimerB CCRs from Msp430TimerC and export its services to the HAL level
components. At the same time, Msp430Counter32khzC transforms the Msp430Timer
interface for TimerB into a standard Counter interface (Figure 4.7). Counters count
time with some precision and width, signaling overflow events when they happen.

As suggested by its name, the Counter provided by Msp430Counter32khzC has
32 kHzprecision andperforms no transformation on thewidth, maintaining the 16-bit
size of the underlying hardware timer, which results in the signature Counter<T32khz,
uint16_t>.
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in t e r f a ce Counter<prec i s ion_ tag , s ize_type >
{

async command s ize_ type get ( ) ;
async command bool isOverflowPending ( ) ;
async command void clearOverf low ( ) ;
async event void overflow ( ) ;

}

Figure 4.7: The Counter interface: get() command returns the current time, isOverflowPending()
and clearOverflow() are used to check and clear a pending counter overflow flag, while
the event overflow() signals that an counter overflow has happened in the current time.

HAL Components

The low-level interfaces exported from the HPL components are subsequently used
by the HAL component to build-higher level services. First, CounterMilli32C trans-
forms the Counter<T32khz, uint16_t> service from Msp430Counter32khzC into a
millisecond-precision, 32-bitwideCounterwith the signatureCounter<TMilli, uint32_t>.

At the same time, Alarm32khz16C creates a 32 kHz Alarm with a 16-bit size on top
of the CCR exported by the HPL component Msp430Timer32khzC. Alarm components
are extensions of Counters that signal an event when their CCR detects that the alarm
time has been reached, forming the basis for precise, HAL-level timing (Figure 4.8).

in t e r f a ce Alarm<prec i s ion_tag , s ize_type >
{

/ / b a s i c i n t e r f a c e
async command void s t a r t ( s ize_ type dt ) ;
async command void stop ( ) ;
async event void f i r ed ( ) ;

/ / e x t end ed i n t e r f a c e
async command bool isRunning ( ) ;
async command void s t a r tA t ( s ize_ type t0 , s ize_ type dt ) ;
async command s ize_ type getNow ( ) ;
async command s ize_ type getAlarm ( ) ;

}

Figure 4.8: The Alarm interface: start(dt) sets the alarm to fire in dt time units from the time of the
command invocation, stop() stops any running timer and startAt(t0, dt) sets an alarm to
fire in dt time units measured from some time t0 in the past. The event fired() signals
that the alarm has expired.

TheAlarmprovided byAlarm32khz16C, has the signatureAlarm<T32khz, uint16_t>.
The next HAL component, AlarmMilli32C, uses the services of CounterMilli32C to
transform this Alarm to a new millisecond-precision, 32-bit wide Alarm. The result-
ing Alarm, with signature Alarm<TMilli, uint32_t>, represents the top public HAL
interface.
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HIL Components

As coreHIL level component,HilTimerMilliC is responsible for the final transformation
of the hardware-specific HAL service into a portable timer abstraction. As a first step,
HilTimerMilliC transforms the alarm provided by the HAL into a Timer, the basic
HIL-level timing service in TinyOS (Figure 4.9).

in t e r f a ce Timer<prec i s ion_tag >
{

/ / b a s i c i n t e r f a c e
command void s t a r t P e r i od i c ( u in t32_ t dt ) ;
command void startOneShot ( u in t32_ t dt ) ;
command void stop ( ) ;
event void f i r ed ( ) ;

/ / e x t end ed i n t e r f a c e
command bool isRunning ( ) ;
command bool isOneShot ( ) ;
command void s t a r tPe r i od i cA t ( u in t32_ t t0 , u in t32_ t dt ) ;
command void startOneShotAt ( u in t32_ t t0 , u in t32_ t dt ) ;
command uin t32_ t getNow ( ) ;
command uin t32_ t ge t t 0 ( ) ;
command uin t32_ t getdt ( ) ;

}

Figure 4.9: The Timer interface: startOneShot(dt) and StartPeriodic(dt) start a single or periodic
timer with duration dt units from the time of invocation; their extended versions star-
tOneShotAt(t0,dt) and StartPeriodicAt(t0,dt) start timers anchored at some instant t0
in the past. Similarly to the Alarm interface, the event fired() signals that the timer has
expired for the “OneShot” timers, or that it was repeated for the “Periodic” timers.

In the second step of the implementation, HilTimerMilliC virtualizes the single
Timer<TMilli> into 255 virtual timers and offers them through a parametrized in-
terface TimerMilli[uint8_t]. For this, it stores the deadlines for all of the timers it
provides and schedules the underlying single timer to fire at the next upcoming
deadline. In addition, the HilTimerMilliC offers a LocalTime<TMilli> interface that
provides a service that is similar to a 32-bit Counter (without the overflow() event),
and is typically used to track the time expired from the last system boot.

Finally, TimerMilliC and LocalTimeMilliC, are platform-independent wrappers
that simplify the client wiring to the interfaces exported by HilTimerMilliC and
provide the top hardware-independent interface for the timer abstraction.

Abstraction Overhead

By following the vertical decomposition principles, the resulting component stack
provides both convenient and portable millisecond timer service through the virtual-
ized Timer abstraction at HIL level, as well as streamlined access to the platform’s
hardware timers through the Counter and Alarm concept at HAL.
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An important difference between the Alarm and Counter HAL service and the HIL
Timer service is the concurrency class of their commands and events. To guarantee
optimal control over the underlying hardware timers, all commands and events from
the HAL interfaces are asynchronous, i.e. they execute in interrupt context. In contrast,
the commands and the events of the HIL Timer interface are executed in synchronous
context, as part of tasks, the deferred execution mechanism provided by nesC. As a
result, their execution latency is more sensitive to other code in the system because
tasks run to completion and can not be interrupted by other tasks.

In Section 4.6.4 we illustrate the practical effects from the loss of control fidelity
between the HIL and HAL interfaces using a simple micro-benchmark application for
Pulse-Width Modulation (PWM) servo motor control.

4.5.4 Horizontal Decomposition Example

To exemplify the application of the horizontal decomposition principles presented
in Section 4.3 and their impact on the porting process, we briefly summarize the
integration of the cc2420 chip—the platform-independent abstraction for the CC2420
radio transceiver—on the telosb platform. The CC2420 radio transceiver has multiple
physical interfaces and is thus representative of the binding requirements for similarly
complex chips.

Chips

Following the horizontal decomposition rules, the physical interfaces of the CC2420
transceiver are reflected as external services on which the cc2420 chip depends. The
existing cc2420 implementation requires seven such services. Some of them, like
Random Number Generator (RNG), Finite-State Machine (FSM) and Light Emitting
Diode (LED) are provided by platform-independent components in /tos/system. The
remaining ones, however, have to be wired by the platform. In particular, the cc2420
chip requires platform binding for:

• the SPI bus used for accessing the transceiver’s packet buffers and command
registers;

• the GPIO pins used for signaling time-critical events like Clear Channel As-
sessment (CCA), Start Frame Delimiter (SFD), First In, First-Out (FIFO) buffer
overflow, etc.;

• the 32 kHzAlarmused for timingCarrier SenseMultiple Access (CSMA) back-off
and acknowledgments timeouts; and

• the interrupts that are triggered by the chip.

On the telosb platform, these services are provided by the MSP430 MCU, which is
abstracted in the form of a platform-independent msp430 chip. Therefore, the role of

78



4.5. Implementation in TinyOS 2.x

the platform-specific telosb glue code becomes one of binding the services on which
the cc2420 chip depends to the ones provided by the msp430 chip.

Platform

Figure 4.10 illustrates the implementation of this service binding. The telosb platform
provides four glue components that bridge between the provided and the used
interfaces on the two chips:

• HplCC2420SpiCwires theCC2420SpiWireC component in /tos/chips/cc2420/spi

to the platform-independent abstraction of the SPI bus, provided byMsp430Spi0C
in /tos/chips/msp430/usart;

• HplCC2420AlarmC wires the AlarmMultiplexC component in
/tos/chips/cc2420/alarm to the 32 kHz-precision, 32-bit wide Alarm service
provided by Alarm32khz32C in /tos/chips/msp430/timer;

• HplCC2420PinsC wires the GPIO pins used in various cc2420 components like
CC2420ContolC, CC2420ReceiveC, CC2420TransmitC, etc., to the msp430 GPIO
pins abstracted as Msp430GPIOC components in /tos/chips/msp430/pins;
while

• HplCC2420InterruptsC wires the interrupts generated by the above components
to msp430 interrupt-enabled pins, abstracted as Msp430InterruptC components
in /tos/chips/msp430/pins, as well as to a CCR register for SFD timing, ab-
stracted as GpioCaptureC in /tos/chips/msp430/timer.

SPI HplCC2420SpiC SPI RNG RandomC

Alarm HplCC2420AlarmC Alarm FSM StateC

GPIO HplCC2420PinsC GPIO LED LedsC

Interrupt HplCC2420InterruptsC Interrupt

msp430 cc2420telosb system

Figure 4.10: Platform-specific components for binding the cc2420 and msp430 chip abstractions on
the telosb platform.

These platform-specific glue components, actually reside in the telosa platform
directory, in /tos/platform/telosa/cc2420, which the telosb platform inherits.
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Code Reuse

The amount of binding code that is required to “attach” a complex chip like the
cc2420 to a given MCU can give an approximate indication for the overall effort that a
developer needs to invest in order to build a new platform out of already available
chip abstractions. As long as this non-portable glue code remains small compared
to the portable code written for each chip, the horizontal decomposition results
in significant reuse gain which reduces the porting overhead for new platforms.
For the above example, the four telosb glue components with 74 Source Lines of
Code (SLOC) are only 1.6% of the total size of the cc2420 chip, abstraction which has
4704 SLOC. Attaching the same chip on the micaz platform requires only 154 SLOC in
glue components, which is only 3.3%. In Section 4.6.3 we provide a more detailed
evaluation of the ratio between chip-specific and platform-specific code for several
hardware modules and platforms.

4.6 Evaluation

A realistic evaluation of the DASA portability anchor, like any other architectural pro-
posal, is a challenging task that ultimately requires collection and analysis of feedback
from developers with long exposure to the design, gathered through development
and use of multiple independent implementations of the architecture.

Lacking the necessary time perspective for a comprehensive “look-back” study,
the evaluation presented in this section leverages the TinyOS 2.x code-base, as a
mature and widely-used implementation of the proposed architecture by large pool
of developers, to asses howwell the DASA portability anchor achieves the main design
objectives of:

• enabling effective abstraction of the hardware resources on the underlying
platforms;

• supporting easy development of portable applications that can run with mini-
mal changes on different platforms; and

• offering flexible control over the abstraction/performance trade-offs in the
lowest levels of the software stack.

4.6.1 Composing Portable Applications

To illustrate its core features and demonstrate the level of achievement of the first
two objectives, we have performed a comparative analysis of the portability anchor’s
implementation in TinyOS 2.1.1, focusing on the static resource utilization in the
different component categories resulting from the application of the vertical and
horizontal decomposition rules, for several portable applications and hardware
platforms.
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In the following, we first briefly summarize the used evaluationmethodology and
metrics, before presenting the results of the study, organized in two views reflecting
the two main decomposition principles.

Test Applications

A substantiated assessment of the design goals achievement requires evaluation of
the portability anchor’s implementation using a broad range of test applications,
representative of the service requirements that typical WSN applications have from
the underlying hardware platform.

The set of testing applications needs to be carefully selected to maximize the
informative value of the evaluation results. First of all, the applications should
“exercise” the most important hardware subsystems, providing opportunity to assess
how successfully the architectural principles of the portability anchor can be applied
for abstracting the services of different hardware resources. In this, the testing
applications have to strike good balance between simplicity and realism. The first
one allows easier observation of the effects that the architectural decisions have on
the resulting implementation, while the second one provides better insight into the
involved challenges. Finally, the applications should have a well defined behavior
and sufficient visibility, facilitating easy replication and comparison with alternative
solutions.

To satisfy these requirements, we have based our evaluation on a set of six stan-
dard applications distributed with the TinyOS 2.x code-base. These applications,
like their TinyOS 1.x predecessors, have a tradition of being used as a de facto bench-
marking suite in various areas of WSN research [23, 41, 77, 92, 139, 140, 186, 215, 220].
Below, we provide a short description for each of the used applications, focusing on
the leveraged hardware subsystems and the portability anchor features they help
illustrate.

Null This is an empty application skeleton with no application-level logic. The appli-
cation tests the initialization sequence and demonstrates the proper functioning
of the automatic power management of the MCU and the peripheral hardware
devices (Section 4.4). The Null application component is not leveraging any
hardware services. Thus, the results establish a useful baseline for evaluating
the resource usage in the different hardware systems used by the remaining
test applications.

Blink A simple application that blinks three platform LEDs on the overflow events
from three independent timers with periods of 1000ms, 500ms and 250ms.
It tests the proper functioning of the scheduler and allows us to evaluate the
abstraction of the timer system (Section 4.5.3) and the LEDs.

RadioCountToLeds The application can be used for coarse assessment of the ra-
dio connectivity between two nodes. On the sender side, it increments and
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broadcasts a counter value every 250ms. On the receiver side, it displays
the three low-order bits of the received counter on the platform LEDs. In our
study, RadioCountToLeds facilitates the evaluation of the transceiver abstrac-
tion(Section 2.1.1), in addition to the timer system.

Oscilloscope This is a basic data-collection application that periodically samples
the platform’s default sensor every 250ms. The sensor readings are buffered
and after 10 readings they are broadcasts as a message over the transceiver.
Oscilloscope enables us to evaluate the abstractions for the ADC and the sensing
elements (Section 2.1.1), in addition to the abstractions for the timer system
and the transceiver.

StorageLog The application performs a set of random log record writes to the ex-
ternal storage using the StorageLog abstraction (TEP103). Subsequently, it
reads the log and tests the records for correctness. The results from the test are
conveyed through the platform LEDs and by sending a status message over the
serial interface. In our study, the StorageLog is used to asses the abstraction of
the external storage element (Section 2.1.1) and the serial stack (Section 2.1.1).

BaseStation transfers packets between the serial and the transceiver interfaces, at
the platform-independent Active Messages abstraction (TEP116) level. The
application includes queues in both directions that enable more graceful han-
dling of the traffic load spikes. BaseStation allows us to evaluate the hardware
abstraction code for the transceiver and the serial interfaces.

Table 4.2 provides a summary of the hardware resources used by the different test
applications. It shows that the selected application set provides sufficient coverage
of the hardware abstraction code and allows comparative analysis across different
hardware resources.

Test Application Hardware Resources
Null
Blink timer, LEDs
RadioCountToLeds transceiver, timer, LED
Oscilloscope sensor, transceiver, timer, LED
StorageLog storage, serial, timer, LED
BaseStation serial, transceiver, timer, LED

Table 4.2: Overview of the main hardware resources used in each of the test application.

Test Platforms

Similarly to the test applications, the selection of the testing platforms requires
careful balancing between two conflicting goals. From one side, the platforms need
sufficient variability in the hardware elements, to demonstrate the portability anchor’s
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capacity for abstracting differences in diverse platforms behind a common hardware-
independent interface. From the other side, the test platforms must have enough
common hardware elements to illustrate the reuse gains in the porting process
enabled by the horizontal decomposition of the portability anchor.

To satisfy these goals, we have selected a set of five prominent WSN hardware
platforms: mica2, micaz, telosb, eyesIFXv2.1 and intelmote2, as our evaluation targets.
They provide a representative sample of the WSN design space, as confirmed by our
platform survey (Section 2.2). Table 4.3 briefly summarizes the hardware chips
used for the processing element, the transceiver and storage on each platform and
highlights the commonalities. The test platforms have been reviewed in greater detail
in Section 2.1.2.

mica2 micaz telosb eyesIFXv2.1 intelmote2

Processor ATmega128L ATmega128L MSP430F1611 MSP430F1611 PXA271

Transceiver CC1000 CC2420 CC2420 TDA5250 CC2420

Storage AT45DB041B AT45DB041B STM25P80 AT45DB041B PXA27XP30

Table 4.3: Common components on the mica2, micaz, telosb, eyesIFXv2.1 and intelmote2 designs.

As shown in Table 4.3, the five test platforms feature three different processing
architectures: mica2 and micaz share an 8-bit Atmel Atmega128L MCU, telosb and
eyesIFXv2.1 both use an 16-bit Texas Instruments MSP430F1611, while the intelmote2
is based on a much more capable, 32-bit Intel PXA271 CPU.

Three of the five platforms—micaz, telosb and intelmote2—share the same Chip-
con CC2420 transceiver, while mica2 and eyesIFXv2.1 have narrow-band transceivers.
The mica2’s Chipcon CC1000 is byte-oriented and interfaces through the SPI bus
for both control and data. The Infineon TDA5250—used on the eyesIFXv2.1—is
bit-oriented, and is interfaced through the UART module on the MCU which serves as
hardware accelerator.

The storage elements on the test platforms show comparable level of diversity.
The Atmel AT45DB041B serial flash is reused on three platforms: mica2, micaz and
eyesIFXv2.1. The telosb uses the ST Microelectronics STM25P80, while intelmote2
leverages an internal PXA27XP30 flash chip as storage.

In summary, the selected platforms offer a good trade-off between design diversity
and component reuse, allowing us to illustrate the challenges and benefits associated
with the implementation of the two decomposition principles of the portability
anchor.
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Component Classification

The first step in the evaluation process involves the extraction of the employed
software components and their classification into categories, according to the decom-
position principles of the portability anchor. We used the nesC compiler’s dump
option -fnesc-dump, to extract the component graphs for each test application on
each hardware platform, and leveraged this data to create a master list of 376 unique
non-generic components used in the implementation. These components were sub-
sequently classified in different categories (Table 4.4).

Decomposition Component Categories
Vertical HPL, HAL, HIL, application, system
Horizontal chip, platform, application, system

Table 4.4: Classification of the components in different categories according to the vertical and hori-
zontal decomposition principles of the portability anchor.

The “HPL”, “HAL” and “HIL” tags denote that the component belongs to the
respective layer in the vertical decomposition of the portability anchor. The “appli-
cation” tag denotes application-level components, while the “system” category is
reserved for system components like the ones implementing the scheduler or other
services not dependent on the underlying hardware resources.

Correspondingly, for the horizontal decomposition, the “chip” tag denotes that
the component belongs to a platform-independent, chip-specific abstraction of a
hardware resource. The platform-specific configuration and binding components
are marked with the “platform” tag. The “application” and the “system” tags have
the same semantics as in the vertical classification.

The classification of the non-generic components in this master list was per-
formed in a semi-automatic fashion. Although TEP3 [221] includes useful naming
guidelines—like prefixing the Hardware Presentation Layer components with the
HPL acronym, and the Hardware Adaptation Layer components with the chip name—
these rules are not consistently followed in the TinyOS 2.x code-base. As a result,
the identification of the vertical decomposition level of a given component is not
straightforward and can not be easily automated. Thus, we have performed this
step of the classification by manual annotation. The classification of the components
according to the horizontal decomposition rules can be performed much easier, be-
cause the category is readily deduced from the component location in the directory
tree (Section 4.5.2).

In contrast to the non-generic components, the proper classification of the generic
components—frequently used in the hardware abstraction code—is more challeng-
ing. The implementation of the test applications, for all test platforms, employs 51
unique generic components. Like classes in object-oriented systems, the nesC generic
components can be instantiated multiple times and the category of the instance can
vary. Hence, both the classification and the calculation of the evaluation metrics
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has to be performed on an instance-by-instance basis. Using the instantiation tree
information extracted from the nesC dump files, and for each unclassified generic
component instance, we have backtraced over the instantiation branch—potentially
across several nested instantiation levels—up to a parent component in the master
component list with a known category. Subsequently, all generic instances in the
chain were annotated with the category of this parent component.

Metrics

To asses the implementation’s conformance with the architectural specification and
the level of achievement of the core design goals, we have evaluated three metrics
reflecting the static resource usage in the different vertical and horizontal component
categories for each application/platform combination. In the following we overview
their definitions and the methodology we used for their calculation.

Source Lines of Code We use the physical Source Lines of Code (SLOC) metric as an
approximate indication for the developer effort that needs to be invested for the
implementation of a given component [5]. Our SLOC evaluation is concentrated
on the nesC code and does not take into account external header or source
files written in C. For the counting of the SLOC in a given nesC component, we
leveraged the SLOCcount tool [213], using the same source line counting logic
as for C source files.

Code size The SLOC metric is sensitive to coding style preferences and can exhibit
high variability even for similar algorithmic content. Many of these differences,
however, are reduced during the compilation and linking process. The elimina-
tion of dead code and other optimization steps also contribute to leveling out
the diversity in the source code. Thus, the code footprint of the resulting binary
can be a better indication for the static resource usage in the different com-
ponent categories and correlates better with more advanced code complexity
measures [131].

The compilation and optimization steps in nesC, unfortunately, also destroy
the component boundaries, making the attribution of binary code to individual
source-level components very challenging. To reestablish the link, we disabled
the nesC inlining and analyzed the names and sizes of the symbols in the
code sections of the binaries, as reported by the nm tool from the GNU binutils
suite [59].

Data size Due to the static allocation nature of TinyOS, the size of the data sym-
bols in each component is a good indication of the total “state” required for
implementing the component logic. To calculate the RAM footprint of each
component, we applied the same approach as for the code size metric, only
focusing on the names and sizes of the symbols in the data segment.
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Since the SLOC metric is not context-dependent, it was independently calculated
for each entry in the list of unique components that we leveraged in the classification
step. The code size and data size metrics were evaluated individually for each
application/platform combination. This information was then fused with the SLOC
counts and the category tags to produce a summary statistics for the three metrics
per vertical and horizontal decomposition category.

We analyze the obtained results in the next two sections, organized along the two
decomposition axes.

4.6.2 Vertical Decomposition View

This section presents the static resource usage in the different vertical component
layers of the portability anchor’s architecture. The data is faceted in a grid structure,
enabling easy visual comparison of the metrics across the different test applications
(for a specific test platform) and across the different test platforms (for a specific test
application).

Total Development Effort

The results from the evaluation of the SLOC counts in the different component lay-
ers according to the vertical decomposition of the portability later are shown in
Figure 4.11.

The total development effort for the selected test applications on the target plat-
forms ranges from relatively low to moderately high. At the one end, the imple-
mentation of the baseline Null application on the intelmote2 platform requires only
1674 SLOC. At the other end, the components used in the implementation of the
BaseStation application on the eyesIFXv2 have sizeable 13938 SLOC.

For all applications and platforms, the bulk of this effort is concentrated in the
components comprising the portability anchor. Ignoring the Null baseline, the ratio
of the SLOC in the portability anchor’s components with respect to the total SLOC
ranges from 85.2% for Blink on intelmote2 to 97.1% in the case of RadioCountToLeds
on eyesIFXv2. The results confirm that these components encapsulate significant
amounts of intricate hardware abstraction code behind their interfaces, which enables
more efficient development of higher-level code. The ratio between the SLOC in the
application components and the one in the portability anchor averages 1.9% across
the different target platforms. Although these numbers are also influenced by the
complexity of the selected test applications, the evaluation of theDASA interoperability
anchor’s prototype (Section 5.6), confirms that even in the case of more complex
portable applications, the hardware abstraction code remains a significant fraction of
the total development effort.
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Figure 4.11: Vertical decomposition of six TinyOS 2.x applications on five hardware platforms: source
lines of code.

HPL Overheads

In terms of the internal distribution of the development effort among the three com-
ponent layers in the vertical decomposition, the evaluation results seem to indicate
very high SLOC overheads for the HPL components. Following the design guidelines
(Section 4.2) the bulk of the development effort is expected in the writing of HAL
abstractions and HIL portability wrappers. The results, however, show high SLOC
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counts in the HPL components which contribute between 16.2% (BaseStation on
intelmote2) and 81.9% (Blink on telosb) of the total portability anchor’s code.

A closer inspection of the code shows that the elevated SLOC counts in the HPL
components are mainly due to the selected methodology for evaluating generic com-
ponent instances. The individual accounting of the SLOC in each instance (necessary
for a more fair comparison with the remaining evaluation metrics) overstates the
significance of generic HPL code that has low algorithmic complexity.

Platform specifics also play a significant role. For example, on the mica2 platform,
theHPL component of the transceiver is included in the default platform initialization,
independently from the fact if the application uses the transceiver or not, elevating
the HPL counts. Similarly, the timer abstractions on the MSP430-based platforms
carry high HPL overhead due to the flexible low-level wrapping of the individual
hardware timers. In contrast, the ATMega128-based platforms use a single dedicated
hardware timer for the creation of the platform-independent Timer service, leading
to simpler HPL components (139 SLOC in comparison to 1858 SLOC for the MSP430
platforms).

HAL and HIL Overheads

The development effort for the HAL components mainly depends on the complexity
of the hardware chip and on the abstraction level of the raw services provided by
the hardware, which are wrapped by the HPL. The large jump in the SLOC counts
of the HAL components between Blink and RadioCountToLeds confirms that the
transceiver is typically the most complex hardware resource on the platform, and
illustrates the large development effort required for encapsulating its services behind
more convenient high-level abstractions. The HAL components make on average
47.2% of the total portability anchor SLOC in RadioCountToLeds across the different
platforms.

In comparison to the transceiver, the increase in HAL counts due to the ADC and
sensor abstractions in Oscilloscope is almost negligible. Here, the contribution of the
HAL components jumps only to 48.3% of the total SLOC. The inclusion of the serial
stack in BaseStation has similarly low impact on the HAL counts.

For the majority of the evaluated hardware subsystems, the invested effort in the
development of the streamlined domain-specific abstractions in the HAL is larger
than the effort for the development of the portability equalizers in the HIL. The ratio
of the SLOC counts in these two component levels can be indicative of the alignment
between the current HIL contract in TinyOS and the platform-specific HAL interfaces
on each platform. For the evaluated applications, this ratio ranges between 1.03 for
mica2 and 1.81 for intelmote2.

Blink and StorageLog are exceptions, with “inverted” HAL vs. HIL ratio of 0.77
and 0.43, respectively. The reasons lay in the relatively high level of abstraction
directly provided by the raw hardware interfaces. In the case of the timer system,
the HAL Alarm and Counter abstractions are very close to the services provided by
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the underlying hardware, so the components are relatively thin. In comparison, the
vitalization of the HAL services necessary for creating the platform-independent HIL
Timer service (Section 4.5.3) requires more effort, resulting in this inverted HIL to HAL
ratio. Similarly, in the StorageLog case, the HAL level services towards the external
storage are close to the low-level services exported at the HPL level, while significant
effort is concentrated in the development of the portable Log abstraction on top of
the HAL. The ratio is further amplified by the internal decomposition of the serial
stack which follows a similar pattern.

Code Footprint

Figure 4.12 summarizes the evaluation results for the code size metric. As discussed
in the metrics section, it provides better indication of the intrinsic algorithmic com-
plexity in the components than the SLOC counts, but is sensitive to theCPU architecture
and the used compiler and linker suite.

The disabling of the nesC cross-component inlining—necessary for establishing a
link between the binary image and the source-level components—has varying impact
on the code size for different toolchains. For the MSP430-based platforms using
the msp430-gcc toolchain, the non-inlined binaries are on average 1.58 times larger
than their inlined versions. On the ATmega128-based platforms, with the avr-gcc
toolchain, the increase is much larger and averages 3.77 times. On the intelmote2,
with the xscale-elf-gcc toolchain, the increase is 2.50 times.

Despite these influences, the relative ratio of the code sizes in the different compo-
nent categories can be compared across applications on a single platform, and across
different platforms, as long as they share the same CPU architecture and toolchain:
i.e. across eyesIFXv2 and telosb; and across mica2 and micaz. The obtained results
mainly corroborate the conclusions from the SLOC study. Across all applications and
platforms, the code in the portability anchor’s components contributes on average
84.8% of the total binary size.

The internal distribution of the code size between the different component cate-
gories shows much lower contribution of the HPL components (on average, 27.6% of
the total code size) than for the SLOCmetric (on average 51.7% of the total source lines
of code), thanks to the low algorithmic complexity and the dead-code elimination in
the compilation step. The average ratio between the footprint of the HAL and the HIL
components ranges between 0.74 for micaz and 1.84 for intelmote2.

Similarly to the SLOC metric, the transceiver remains the main contributor to the
HAL and HIL footprints in RadioCountToLeds, Oscilloscope and BaseStation. The
difference in the code sizes for these applications between micaz and mica2 illus-
trates the higher complexity of the CC2420 transceiver abstraction vs. the one for
the CC1000. At the same time, the comparison between telosb and eyesIFXv2 shows
consistently higher footprints for the TDA5250 transceiver that requires extensive
software support for interfacing and hardware acceleration through the UART inter-
face. On eyesIFXv2 and mica2, the CCA is performed in software by direct sampling
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Figure 4.12: Vertical decomposition of six TinyOS 2.x applications on five hardware platforms: code
size.

of the RSSI signal of the transceiver. As a result, Oscilloscope and RadioCountToLeds
show almost no difference in the code footprint because the sensor stack is already
incorporated in the transceiver code. The comparison of the results between Radio-
CountToLeds and BaseStation on all platforms shows that the serial stack mainly
contributes to the HIL footprint, due to the relatively low level of abstraction in the
UART interfaces, combined with a more complex encoding, framing and dispatching
framework for serial communication which is built on top.
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Memory Footprint

The data size evaluation results are presented in Figure 4.13 and provide additional
insight in the state requirements in the different component levels of the portability
anchor. The results show that for the majority of test applications, the bulk of the
data state is maintained by the portability anchor’s components. Ignoring the Null
baseline, the state allocated in these components ranges between 45 bytes for Blink
on micaz and 753 bytes for BaseStation on eyesIFXv2. As expected, StorageLog and
BaseStation exhibit disproportionately large state allocations at application level.
Their application components use this memory for storing the test log records and
message queues, respectively Thememory footprints of their application components
average 1101 bytes and 1387 bytes, across the different platforms.

The results confirm that with small exceptions, the implementation follows the
design guidelines for keeping the HPL components stateless. With 15 B of space, the
largest violation happens in the SPI interfacing component for the Atmel AT45DB041B
storage chip. The distribution of the memory footprint between the HAL and the
HIL components mirrors the results for the code size metric. Due to the transceiver
abstraction, the bulk of the state allocated in RadioCountToLeds and Oscilloscope (on
the average, 75.7% and 77.9%of the total allocation in the anchor, respectively) resides
in the HAL components that implement the complexity-hiding abstractions and
perform concurrency and power management. In contrast, the timer abstraction and
the serial stack in Blink and StorageLog have larger footprints in the HIL portability
wrappers (on the average 75.4% and 82.9% of the total allocation in the anchor,
respectively), while BaseStation has almost balanced allocation in the two component
categories.

Summary

The presented evaluation results from the vertical decomposition illustrate the posi-
tive impact from the increased rigidity in this part of the software architecture that
is introduced by the portability anchor concept. They corroborate our claims for
successful achievement of the main design goals by showing that:

• The hardware abstraction code in TinyOS successfully follows the vertical
decomposition principles of the design: the low-level interaction with the hard-
ware is wrapped in HPL components, on top of which streamlined complexity-
hiding HAL abstractions are being built, and subsequently transformed into
hardware-independent services, through the portability wrappers in the HIL;

• The implementation provides usable interfaces to the resources on the test
platforms. The exported HAL abstractions match the hardware service require-
ments of WSN applications and simplify the development process by hiding
the intricate low-level interaction with the hardware; and
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Figure 4.13: Vertical decomposition of six TinyOS 2.x applications on five hardware platforms: data
size.

• The HIL wrappers effectively mask the diversity between the test platforms.
Their hardware-independent interfaces decouple the software development
from the evolution of the underlying hardware and pave a way for developing
portable system services and applications.
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4.6.3 Horizontal Decomposition View

The main objective of the portability anchor’s horizontal decomposition (Section 4.3)
is the establishment of an architectural basis for a more efficient platform porting pro-
cess. In the following, we presents the results from our analysis of the static resource
usage in the different component categories resulting from this decomposition, and
argument how they support our claims for successful achievement of the core design
objective.

Development Effort

Figure 4.14 summarizes the results from the SLOC count evaluation. As already
discussed in Section 4.5.4, in this context, we use the SLOC metric as approximate
indication for the amount of effort the platform developer has to invest in order to
build a new platform out of already available chip abstractions. A low number of
SLOC for the platform-specific inter-chip binding (development effort invested once
per platform) is desirable, when compared with the connectivity requirements of the
involved platform-independent chips and the number of SLOC in their abstractions
(development effort invested once for many platforms).

Across all test applications and platforms, the results clearly show that the devel-
opment effort is strongly concentrated in the platform-independent chip abstractions.
Excluding the Null baseline, their contribution in the total SLOC ranges from 52.8%
for StorageLog on intelmote2 and 82.8% for Blink on eyesIFXv2. Correspondingly,
the portability of the code is very high. The ratio of the SLOC counts in the plat-
form components—from one side—and the platform-independent chip and system
components—from the other side—ranges between 2.51% for Oscilloscope on telosb
and 25.0% for Blink on intelmote2.

The comparison of the results for RadioCountToLeds with the ones for Oscillo-
scope and BaseStation confirms that the transceiver is the most complex hardware
resource and responsible for the bulk of the chip SLOC counts. Only on mica2, the
more simple CC1000 chip abstraction has a comparable number of SLOC with the one
for the external storage and serial stack as represented by StorageLog.

Across platforms, the transceiver is also the most demanding chip in terms of the
interconnection requirements. As a result, the binding and configuration components
for the transceiver form the bulk of the SLOC counts in the platform components
in RadioCountToLeds, Oscilloscope and BaseStation. The binding requirements,
however, vary between the different transceiver chips. For example, due to the low-
level of abstraction, the TDA5250 on eyesIFXv2 requires more extensive interconnect
with the rest of the platform than the more compact CC2420 and CC1000 designs
on the other platforms. Consequently, the eyesIFXv2 features the largest absolute
platform-specific SLOC count in these three applications.

When compared with the results for StorageLog, it is evident that the binding
and configuration requirements for the external storage and the serial interfaces are
more modest than the ones for the transceiver, across the different platforms.
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Figure 4.14: Horizontal decomposition of six TinyOS 2.x applications on five hardware platforms:
source lines of code.

Code Footprint

The results from the code size evaluation are presented in Figure 4.15 and strengthen
the above insights. For all applications, on all platforms, the amount of platform-
independent code (chip, application and system) outweigh by a large margin the
platform-specific code. The chip abstractions contribute between 40.8% (for Blink on
mica2) and 75.1% (for Oscilloscope on telosb) of the total code size.
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Figure 4.15: Horizontal decomposition of six TinyOS 2.x applications on five hardware platforms:
code size.

The results confirm that the majority of algorithmic complexity is concentrated in
the chip-specific code. The platform-specific glue is not only smaller in terms of SLOC,
it also has very small intrinsic complexity and results in small code footprint. The
“non-portability” ratio (platform code size vs. chip and system code size) averages
13.2% across the different applications and platforms.
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Figure 4.16: Horizontal decomposition of six TinyOS 2.x applications on five hardware platforms:
data size.

Memory Footprint

The memory footprint evaluation presented in Figure 4.16, further corroborates
the conclusions from the previous two metrics. Apart from the application level
buffering that dominates the results in StorageLog and BaseStation, most of the
state in the implementations is maintained in the chip-specific components of the
portability anchor. In contrast, the platform-specific glue and configuration code is
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mostly stateless, because it normally just wires the interfaces between the different
chips on the platform, without any significant intermediate buffering that would
require significant data memory allocation.

Summary

The presented evaluation confirms the successful implementation of the horizontal
decoupling principles of the portability anchor in the TinyOS codebase. The selected
test applications cover the major hardware subsystems on a typical WSN node. For
all of them, and across the three evaluated metrics, the results show high levels of
portability, with the platform-independent chip components clearly dominating the
platform-specific binding and configuration components.

Given the significant degree of hardware component reuse on the typical WSN
platforms (Section 2.2), these facts support our claim that the horizontal decompo-
sition establishes a useful architectural base for a more efficient platform porting
process.

4.6.4 Controlling Abstraction Costs

The flexible control over the abstraction costs is core objective for the portability an-
chor’s design and main motivation for separating the hardware-specific abstractions
comprising the HAL and the portability wrappers comprising the HIL. In this section,
we want to illustrate the need for the decoupling and to show how the two public
interfaces at HIL and HAL level facilitate better control over the abstraction costs. In
particular we want to demonstrate that:

• HILprovides convenient, platform-independent interfaces for developing portable
applications, but the portability may come at a cost in performance and fidelity;

• HAL provides efficient, chip-specific abstractions that offer streamlined access
to the underlying hardware resources; and

• using these two public interfaces, the application developer can effectively select
the acceptable level of abstraction cost and control the associated portability/
fidelity trade-offs.

In the following, we first present our experimental setup, before presenting the
used metrics and the evaluation results.

Test Application

To support the above claims, we use a simple test application for servo motor control,
a canonical task in many robotic applications which is frequently used to evaluate
the fidelity of timer services in real-time OS research [168].

Figure 4.17 illustrates the standard PWM signal waveforms for servomotor control.
The period of the control signal is fixed at 20ms. As the name suggests, the turning
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20 ms
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-90◦
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Figure 4.17: PWM signal waveforms for servo motor control.

angle of the motor is controlled via the width of the control pulse at the beginning of
the control period. A pulse with a duration of 1.5ms keeps the servo lined-up (0◦).
Any shorter/longer pulse than 1.5ms makes the servo motor turn left/right. The
lower and the upper limits are 1ms and 2ms, respectively: a pulse with a duration
of 1ms makes the servo turn full left (-90◦), and a pulse with a duration of 2ms turns
the servo full right (90◦).

The millisecond-resolution of the platform-independent Timer interface (Fig-
ure 4.9) is insufficient to support the needs of a realistic servo motor control ap-
plication, where the control pulse duration can dynamical vary between 1ms and
2ms. Our goal is to compare the fidelity of the timer abstractions at the HIL and the
HAL level, thus, we have constrained the requirements of the test application to the
generation of a fixed control waveform that keeps the servo motor turning full right.
In other words, the objective is to generate as precisely as possible, a control signal
waveform with a pulse width of 2ms and a period of 20ms, under moderately high
dynamic load in the system.

We have based the implementation on the standard RadioCountToLeds application
(Section 4.6.1), using the telosb platform as a target. To emulate higher dynamic load
in the system, we have modified the message sending frequency from the default
one message every 250ms, to sending one message per uniform random interval
with maximal duration of 50ms.

In parallel to the message sending, the application generates the required PWM
control signal on a GPIO pin of the MCU. The application is implemented in two
variants described in more detail below: a platform-independent variant using only
HIL interfaces, and a platform-specific variant that uses a HAL level timer abstraction.
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Platform-Independent Theplatform-independent implementation uses twoTimers
for timing the period and pulse duration of the PWM signal:

module RadioCountToLedsC @safe ( ) {
uses {

. . .
in t e r f a ce GeneralIO as ControlPin ;
in t e r f a ce Timer<TMil l i > as TimerPeriod ;
in t e r f a ce Timer<TMil l i > as TimerPulse ;

}
}

On system boot, after initializing the control pin, a periodic TimerPeriod is started
with a 20ms period:

event void Boot . booted ( ) {
. . .
c a l l ControlPin . makeOutput ( ) ;
c a l l TimerPeriod . s t a r t P e r i od i c ( 2 0 ) ;

}

When TimerPeriod fires, the control pin is set high, and a 2ms one-shot TimerPulse
is scheduled:

event void TimerPeriod . f i r ed ( ) {
c a l l ControlPin . s e t ( ) ;
c a l l TimerPulse . s tartOneShot ( 2 ) ;

}

When TimerPulse fires, the control pin is driven low, which concludes the gener-
ation of the pulse:

event void TimerPulse . f i r ed ( ) {
c a l l ControlPin . c l r ( ) ;

}

The whole process is repeated on the next TimerPeriod firing, thus generating
the required control waveform on the GPIO ControlPin.

Platform-Specific In contrast to the portable implementation, the platform-specific
variant uses streamlined HAL level access to the timing system abstraction for the
performance sensitive parts. Instead of two Timers, this implementation uses two
Alarms (Figure 4.8):

module RadioCountToLedsC @safe ( ) {
uses {

. . .
in t e r f a ce GeneralIO as ControlPin ;
in t e r f a ce Alarm<TMil l i , u int16_t > as AlarmPeriod ;
in t e r f a ce Alarm<TMil l i , u int16_t > as AlarmPulse ;

}
}
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For easier comparison between the platform-independent and the platform-
specific implementation, the AlarmPeriod and AlarmPulse also have a millisecond-
precision like the HIL Timer interfaces. While this is sufficient for generating the fixed
2ms pulses required by the test application, a real servo motor control code would
leverage Alarms with microsecond or 32 kHz (jiffy) precision.

Since the Alarm interface does not support periodic Alarms, on system boot only
a single-shot 20ms AlarmPeriod is started:

event void Boot . booted ( ) {
. . .
c a l l ControlPin . makeOutput ( ) ;
c a l l AlarmPeriod . s t a r t ( 2 0 ) ;

}

When AlarmPeriod fires, in addition to setting the ControlPin, the Alarm is
manually rescheduled, anchored at the last firing time, and a new 2ms AlarmPulse
is started, for timing the duration of the control pulse:

async event void AlarmPeriod . f i r ed ( ) {
c a l l ControlPin . makeOutput ( )
c a l l AlarmPeriod . s t a r tA t ( c a l l AlarmPeriod . getAlarm ( ) , 20) ;
c a l l AlarmPulse . s t a r t ( 2 ) ;

}

Finally, when AlarmPulse fires, the ControlPin is cleared:
async event void AlarmPulse . f i r ed ( ) {

c a l l ControlPin . c l r ( ) ;
}

The whole process is repeated on the next AlarmPeriod firing. As a result, the
required PWM signal waveform is reflected on the selected GPIO pin of the MCU.

4.6.5 Portability/Fidelity Trade-offs

The above code snippets illustrate how the portability anchor provides convenient
domain-specific abstractions for controlling the underlying hardware timers, both at
HIL and HAL level. Although their interfaces are very similar, however, the Timers
and Alarms encapsulate two very different levels of abstraction, acting as lever for
controlling the trade-offs between portability and fidelity in the hardware abstraction
code.

As discussed in Section 4.5.3, the portability of the Timer abstraction comes at
the cost of higher sensibility to other synchronous code, because its implementation
includes deferred processing using tasks which run to completion and can not be
preempted by other tasks. The Alarm abstraction, on the other hand, offers a stream-
lined access to the hardware timers in interrupt context, but at the cost of reduced
portability.

To demonstrate the portability/fidelity trade-offs resulting from the use of the
HIL and the HAL interfaces, we experimentally evaluated the two implementation
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variants, focusing on the jitter in the generated control signal, because this ultimately
bounds the quality of control over the actuator.

In each experiment, the platform-independent and the platform-specific variants
have been evaluated for the duration of 1024 generated control cycles. The experi-
ments have been repeated using five different seeds for the random number generator
that controls the message sending frequency and thus the dynamic background load.
During the experiment runs, the signal produced on the GPIO pin was captured using
a high-speed digitizer and the waveform was post-processed to extract the durations
of each period and pulse.

To analyze the jitter in the generated waveform, we have calculated the median
and the outer 0.025 and 0.975 quantiles for the extracted pulse and period durations.
Figure 4.18 and Figure 4.19 show the results from the analysis of the pulse and the
period jitter, respectively. Each point on the graph represents the duration of the
pulse/period for a single control cycle. The rectangle depicts the area between the
outer quantiles containing 95% of the readings, while the thick horizontal line is the
median duration. The vertical time axis is expressed in binary milliseconds.

Figure 4.18: Differences in PWM control fidelity: jitter in the pulse duration.

Although majority of the pulse and period durations are clustered closely around
the median, in the platform-independent HIL implementation, significant jitter is
evident, making precise control of the servo motor almost impossible. We can
observe high level of clustering in the durations, indicating that the observed jitter is
predominantly caused through the interference between the message sending task
and the task in the HIL implementation of the Timers. As the Timer task can not

101



Portability Anchor

Figure 4.19: Differences in PWM control fidelity: jitter in the period duration.

be run before the other task finishes, this results in delayed TimerPeriod and/or
TimerPulse fire events. This in turn, introduces jitter in the duration of the generated
pulses and periods.

In contrast, the two Alarms at the HAL level enable much more stable timing, re-
sulting in very good fidelity of the control signal. In this case, the timing is performed
in interrupt context. Even if the Alarm expires while message sending tasks are being
run, their execution can be interrupted and the time-sensitive alarm rescheduling and
GPIO control can be executed without significant delay. The small remaining jitter in
the signal is due to atomic blocks in the task implementation during which interrupt
servicing is disabled, and the fact that the current msp430 chip implementation
prevents interrupt nesting.

The difference in the service fidelity between the two implementations vari-
ants demonstrates the need for streamlined access to the underlying hardware in
performance-sensitive parts of WSN applications. It shows that changing only a small
part of a portable implementation to use the more efficient HAL interfaces can result
in significant gains in performance. Switching the PWM signal timing from HIL to
HAL level services in the test application required changing only 12 SLOC (most of
them substring changes from “Timer” to “Alarm”), representing less than 10% of
the code in the application level components, and a negligible fraction of the total
RadioCountToLeds implementation that has more than 10000 SLOC.
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CHAPTER 5
Interoperability Anchor

In this chapter we present the design, implementation and evaluation of the interoper-
ability anchor of DASA that exports an interoperable CBPS service, while allowing the
application designer to adapt the service by making orthogonal choices about the
communication components for subscription and notification delivery, the supported
data attributes, and a set of service extension components. The framework uses
an extended attribute-based naming scheme which is augmented with metadata
containing soft requirements for the publishers and run-time control information
for the service extension components. It supports different addressing schemes and
interaction patterns.

5.1 Design Goals

The internal architecture of the DASA interoperability anchor is driven by the need
to customize the generic publish/subscribe model to the specific needs of the WSN
domain:

• The standard model fully decouples publishers from subscribers (Section 2.4.5),
which means that publishers will often produce data although there are no
interested subscribers. Given the tight resource constraints in sensor networks,
we believe that publishers should voluntarily be notified of existing subscrip-
tions and given the chance to stop the data gathering process every time a
constraint in a subscription cannot be met.

• Due to the large diversity in the needs of the different WSN applications, the
publish/subscribe core should be decoupled from the local services like the
communication and sensing substrate.
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• The application developer should be allowed to customize the aspects of the
service with highest performance impact in order to align themwith the specific
requirements of the target application.

• The implementation architecture needs to be extensible and should allow fine-
grained control over the functional and non-functional properties of the service.

In the next two sections we present the main features of the interoperability
anchor in a top-down fashion, covering the naming scheme and API as well as the
internal decomposition and extension facilities of the component framework. Due
to its importance, the discussion on the implications of the decoupling between the
publish/subscribe core and the communication protocols is covered in greater detail
in Section 5.4.

5.2 Naming Scheme and Service API

Because of the powerful expressiveness, the service interface of the interoperability
anchor is based on the Content-Based Publish/Subscribe (CBPS) naming scheme. In
contrast to the static channel abstraction of the subject-based publish/subscribe, the
interests in CBPS are defined as predicates over the whole content of the notification
messages [25, 26]. The subscription represents a content-based address that filters-in the
data of interest, and filters-out the rest. This results in a very flexible and expressive
naming that enables the subscribers to select the interesting notifications with an
arbitrary level of detail.

5.2.1 Attribute-based Naming

Theoretically, the CBPS filters can be defined by any function that evaluates to true or
false, when applied to the content of the notificationmessage. In practical systems this
freedom has to be somewhat constrained in order to facilitate the effective execution
of the matching and the routing/forwarding tasks. One of the most widely used
content-based naming subclass is the so called name/value or attribute system [26].
In this type of naming, the elementary subscriptions are defined as conjunction of
simple attribute constraints in the form of (attribute, value, operator) tuples. The event
notifications, on the other hand, are conjunction of (attribute, value) tuples.

The various parts of the attribute filter have the following meaning:

Attribute This part of the content-based address specifies the property of the notifica-
tion that will be subjected to inspection during the filtering process. The usage
of a preselected set of attributes does limit the expressiveness to a degree, but
the complexity of the matching and forwarding tasks is largely simplified.

The attributes are usually typed. Most of the implementations line-up the
attribute types to those available in the used programming language. In addi-
tion to the basic number and boolean types, almost all of the implementations
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support string attributes and provide means for extending in the form of User
Defined Types (UDTs).

Value The value is selected from the allowed range for the given attribute type and
has to be aligned with the operation part of the name, i.e it has to belong to its
valid domain. Some of the operations also allow the use of values with special
meaning like “ANY”, “ALL”, etc.

Operator The last part of the name tuple contains the binary predicate operator
used for the filtering. Primarily, it is one of the common equality and order-
ing relations (=, >, >, <, 6). For the more complex attributes, type-specific
operators can be defined (e.g. substring, prefix, suffix operators for strings).

A notification n = (attributen, valuen) matches a given attribute constraint
a = (attributea, valuea,operatora) if and only if:

attributen = attributea ∧ operatora(valuen, valuea) = ⊤

When a notification n matches a subscription s (i.e. n ≺ s), it is also said that the
subscription covers the notification.

5.2.2 DASA Naming and Service API

If a subscription consisted only of constraints over attribute values a subscriber would
not be able to explicitly influence the properties of the communication or sensing
process like, for example, the sampling rate. Such control properties are conceptually
different from the data constraints and can usually not be matched by corresponding
(attribute, value) tuples in the notification.

We extended the basic naming scheme by allowing subscribers to include metadata
in subscriptions. Metadata is either exchanged between publisher/subscriber compo-
nents or plays a key role in controlling service extensions (Section 5.3). It represents
control information with soft semantics and is excluded from the matching process.

Metadata is represented by one or more (attribute,value) pairs, for example (Sam-
plingRate, 10). Conceptually, it represents a notification that the subscriber “attaches”
to the subscription. This metadata is specified per subscription and multiple ac-
tive subscriptions may have different values for the same metadata attribute. Since
metadata is non-binding a publisher may apply local optimization techniques: for
example, in order to reduce sampling overhead the publisher may decide to combine
two subscriptions that address the same attribute by sampling only once with an
average sampling rate when the rates are similar, or using the maximal sampling
rate when not.

Table 5.1 summarizes the differences between the DASA extended API and the
classical publish/subscribe service. The modified naming scheme is supported by
two extensions of the basic publish/subscribe service: a “listener” service and a
“matching” service. The “listener” service can be used to inform the application
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Basic publish/subscribe API DASA publish/subscribe API
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Subscribe( C ) Subscribe( C M )
Unsubscribe() Unsubscribe()
Notify( A ) Notify( A M )
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Publish( A ) Publish( A M , push)
Listener( C M )

M
at

ch
in

g

Matching( C , A )

Table 5.1: The basic publish/subscribe service API and the DASA adaptations. A square represents a
set of constraints (C), metadata (M) or attribute-value pairs (A). The extended Publish
primitive takes an additional push parameter which influences the matching point and is
explained in Section 5.4.2.

about newly arrived subscriptions, which it then can inspect to decide whether
to start or stop publishing notifications. The “matching” service may be used by
the publisher to check whether a set of attributes disqualifies it from matching
a registered subscription. If, for example, the first collected attribute violates a
constraint, collecting further data is pointless. When used, these primitives may
result in a tighter coupling between publishers and subscribers than in the traditional
model, but they have the potential to increase the efficiency of the data collection
process, resulting in overall application performance gain.

5.3 Functional Decomposition

These considerations have led to the internal functional decomposition depicted in
Figure 5.1 . The publish/subscribe service is distributed and the figure represents an
instance of the framework on one sensor node. Each publish/subscribe application is
divided into a variable number of Publisher and Subscriber components. A Publisher
component can listen for subscriptions, collect data and publish notifications and
Subscriber components can issue subscriptions and receive matching notifications.
The Broker component provides the publish/subscribe service to the application, it
manages the subscription table and it can apply the matching algorithm to filter out
notifications that do not match a registered subscription.

The data that the subscribers can subscribe to and publishers can publish is
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Figure 5.1: High-level functional decomposition of the DASA interoperability anchor.

encapsulated in Attribute components. In addition to a data collection interface,
an Attribute component must provide a matching interface that compares two of
its data items based on an attribute-specific operator. The motivation is twofold:
first, an Attribute component represents functionality that Publisher components
should be able to reuse and access independent of the specific attribute properties.
Secondly, matching operators are usually attribute dependent: for example, when
sensor readings are affected by hardware-related jitter, the operator “=” should not
be interpreted as the exact equality of two values. To increase modularity and keep
the core matching algorithm decoupled, this information should be provided by the
particular Attribute component.

Within the network, all attributes and operators are represented by integral iden-
tifiers. Attribute identifiers are globally unique, while operator identifiers are unique
within the scope of a particular attribute. On the edge of the network a translation
between identifiers and attribute semantics is performed, for example, using Exten-
sible Markup Language (XML) document maps. The AttributeCollector component
structures access to the attributes: it maps a request based on the attribute/operator
identifier to an actual registered Attribute component.

By including metadata in a subscription a subscriber can influence the commu-
nication and sensing process. Often, such control functionality can be isolated in
self-contained components for reuse in different applications. For example, a caching
component could decrease sampling overhead by buffering frequently accessed at-
tribute data when the considered data attribute has high direct sampling costs or is
computationally intensive, like feature extraction from acoustic signals. We call such
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components Service Extension Component (SEC).
A SEC represents reusable functionality that can be plugged into the framework

without modification of existing code. A SEC can realize an additional service (as
in the caching example) or extend the communication path with additional control
information (timestamps, message sequence numbers, etc.). A SEC is associated
with one or more dedicated metadata attributes, for example the maximum allowed
caching duration, and made available by the application designer at compile time (it
could even be added at runtime by dynamic over the air code updates). A SEC can
be activated dynamically by a subscriber on a per-subscription basis by including an
appropriate metadata attribute in the subscription.

The framework supports two different types of extension components, Commu-
nication Service Extension Component (CSEC) and Attribute Service Extension Compo-
nent (ASEC). A CSEC can intercept incoming packets before (and outbound packets
after) they are processed by the Broker in order to scan the included metadata at-
tributes and, if applicable, perform a specific operation. It can, for example, be used to
aggregate notificationmessages in order to reduce overall network traffic. Since CSECs
can also be used to add control information (timestamps, etc.) a subscriber can use
the CSECs located on the publisher nodes to (conceptually) assemble its own message
header by adding appropriate metadata attributes. ASECs are used analogous for
attribute access: they can intercept the requests for attribute data and instead return
buffered or processed data dependent on the metadata included by the particular
subscriber.

In combination, metadata and SECs realize a soft “control path” in parallel to the
basic publish/subscribe “data path”. Since SECs are self-contained components and
can usually be designed agnostic to data attribute semantics they are easily reusable
in different applications and on different platforms. However, when multiple SECs
are in use, their ordering must be defined by the application designer because it may
influence their overall semantics.

5.4 Communication Decoupling

Any CBPS brokering network has to guarantee the delivery of the relevant notifications
to the interested parties. The naive approach would be to flood each notification in
the broker network, and then locally apply the subscription filters to sort out the
relevant notifications from the rest. While stateless, this can lead to wasteful usage of
the communication resources as the notifications are also delivered to brokers whose
clients are not subscribed.

5.4.1 Integrated CBPS Routing

Amore efficient alternative is to perform an integrated content-based routing where
each broker maintains a routing table whose entries associate filters and destinations.
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When a filter F is applied to an notification it evaluates to true or false: F(n) →
{⊤,⊥}. The set of the matching notifications N(F) is defined as {n|F(n) = ⊤}. Given
this, two filters F1 and F2 are identical (F1 ≡ F2) if and only if N(F1) = N(F2). The
filters are overlapping if N(F1) ∩ N(F2) ̸= ∅, otherwise they are disjoint. The filter
F1 covers the filter F2, written F1 ⊇ F2, if and only if N(F1) ⊇ N(F2). The relation is
transitive and (F1 ⊇ F2 ∧ F1 ⊆ F2) is equivalent (F1 ≡ F2).

The integrated CBPS routing leverages these properties of the filters in order to
optimize the routing process. In the following we briefly discuss some proposed
solutions in this domain, in order of increasing complexity following the classification
in [149]:

Subscription flooding The reverse approach to the naive solution is to flood the
subscriptions instead of the notifications. This ensures that each broker has
global information about every subscription in the network. Having this infor-
mation, the broker network can guide the subscriptions only to the interested
clients. The result is a reduction in the number of messages that comes at the
cost of substantial state in the brokers that severely limits the scalability of the
system.

Identity-based Building on the above approach, one simple way to reduce the sizes
of the routing tables is to make sure that only one entry is kept for identical
filters [148]. This means that a subscription is not forwarded to the neighboring
brokers if that was done for an identical one in the past, because they match
the same notifications.

Covering-based Further improvements can be achieved by exploiting the covering
property to reduce the number of forwarded subscriptions [24, 26]. In this
approach, the new subscriptions and unsubscriptions are not distributed to
the neighbors if covering ones have already been distributed. Depending on
the level of overlap this can noticeably increase the scalability of the system. A
significant drawback is the need to resubmit some of the subscriptions when
an unsubscription is issued for the covering subscription.

Merging-based Instead of passively examining the relation between the filters, the
merge-based model [148] suggests a more active approach where a group of
subscriptions are first merged in a single covering subscription, and then this
single subscription is distributed to the neighbors. In addition to the problem
with the unsubscriptions, the merge-routing also requires some heuristic about
when and to what extent this merging of the subscriptions is performed.

The performance gains from the above optimizations are dependent both on
the level of overlapping between the subscriptions as well as on their spatial distri-
bution in the network. Despite its increased efficiency, the integrated CBPS routing
tightly couples the service with the underlying networking infrastructure, making
application-specific optimizations very hard.
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5.4.2 DASA Routing

The interoperability anchor departs from this tradition and decouples the commu-
nication mechanisms from the publish/subscribe core (Fig.5.1). The core broker
component has clean interfaces towards the external protocol components, thus trad-
ing some of the optimization potential for increased flexibility in selecting the subscription
and notification protocols.

By exposing the choice of the protocols to the application designer, our frame-
work allows the adaptation of the publish/subscribe service to the specific needs
of the application. The type of the communication protocols as well as their energy
consumption are likely to have a huge impact on the overall performance, and the
application designer should be aware of these implications [85] to make an optimal
selection for the particular application. In the following we concentrate on three im-
portant aspects of this decoupling and on the architectural features of the framework
that address them.

Addressing Support

In contrast to the integrated solutions that rely on a pure content-based routing
and forwarding mechanisms, the flexibility of our framework raises the challenge
of interfacing with communication protocols that support different dissemination
patterns like broadcast, multicast, convergecast, point-to-point, etc., using various
addressing models like address-free, id-centric or geographic addressing.

To support this wide range of communication mechanisms we rely on three ar-
chitectural features. First, the core of the framework is agnostic to the underlying
addressing model, and all information relevant for operation of the service is encap-
sulated in the form of metadata, subscription filters or notification data. Secondly,
the interfaces towards the subscription and notification delivery components are kept
address-free. Finally, all the addressing information for the communication protocols
is provided/consumed by their respective components or wrappers, while the frame-
work provides hooks that facilitate its encapsulation and tunneling when so required.
To illustrate this process, we examine the handling of the address information on the
subscription and notification path separately.

On the subscription path, a common delivery pattern is one-to-all (broadcast): a
subscriber wants to receive notifications from any publisherwithmatching data in the
network. This pattern is naturally supported by the address-free interface. In the case
of one-to-many (multicast), the subscriber application defines the scope of the sub-
scription delivery expressed as metadata attribute (hop-count, geographic scope, etc.)
inserted in the subscription. The metadata is transparent to the publish/subscribe
core and after registration of the subscription in the subscription table its content is
passed onto the respective subscription delivery protocol component. The protocol
component (or a thin wrapper) extracts the scoping attributes from the subscription
content (via suitable accessor functions provided by the core) so that they can be
used or translated into corresponding protocol parameters. Depending on the nature
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Figure 5.2: Enabling different addressing schemes by tunneling address information as metadata
between a subscriber and a publisher. Squares represent constraints (C), metadata (M) or
attribute-value pairs (A).

of the scoping parameters, this mechanism might increase the coupling between the
subscriber and the subscription delivery protocol, but the publish/subscribe core
does not require any adaption. An id-centric, point-to-point subscription delivery,
although very atypical communication pattern for a publish/subscribe application,
can also be supported with the this mechanism.

On the notification path, the message delivery patterns are potentially more
diverse. To abstract from address information and decouple the application from
the particular addressing scheme of the notification delivery protocol, we employ
the mechanism visualized in Fig.5.2: after a subscription has been issued by the
application (1), the notification delivery protocol component (on the subscriber node)
can use a hook provided by the core to add the local address of the subscriber
as metadata information in the subscription, just before it is disseminated in the
network (2).

The addressing information may be expressed using any naming/addressing
scheme because the metadata value is transparent to the publish/subscribe core.
After the subscription has been disseminated (3) and registered in the subscription
tables of potential publishers (4), whenever a notification is published (5, 6) the
notification delivery protocol instance on the publisher node can extract the particular
source address of the subscriber and use it as address parameter (7).

Thus, the core provides two hooks to the notification delivery protocol: one for
attaching the local address to a subscription on the subscriber node and one for read-
ing it out on the publisher node. Both hooks are used optionally – if the notification
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delivery is, for example, based on flooding or uses data-centric addressing, it will
neither add nor read any metadata to/from a subscription. In this way, the Broker,
Publisher and Subscriber components remain shielded from the addressing models
used by the communication substrate. Even more, the addressing on the subscription
and the notification path is decoupled so different addressing models can be used
with respect to each other.

At the cost of increased coupling between the core and the communication sub-
strate, the same architecture can even be used to support a “classical” integrated
content-based routing protocol. Through single-hop subscription scoping, the core
can relinquish complete control over subscription injection and forwarding to the
underlying integrated protocol, allowing complex schemes like subscription coverage
or merging to be implemented. The resulting duplication of state (subscription table
entries, etc.) can be reduced to a certain degree using hooks exported by the core
facilitating buffer space sharing. The design of this support is one focus of our future
work.

Control of the Matching Point

The departure from the integrated content-based routing and forwarding approach,
brings to the surface the question of the “matching point” in the network, i.e. the
point where the published notifications are matched against the content filters in
the subscriptions. Since the subscription and the notification messages are delivered
by potentially separate protocols that do not explicitly share common state, a con-
scious decision has to be made about where in the network this information would
confluence so that it can be passed to the core for matching.

A misplacement of the matching point with respect to the application require-
ments and the selected communication protocols can result in significant performance
penalties as notifications or subscriptions needlessly consume precious networking
resources. In general, the optimal location of the matching point depends on many
factors like network topology, ratio of publisher to subscriber nodes, frequency of
subscription/unsubscription and publication, selectivity and locality of filters, etc.

Our framework supports two major scenarios by default: the filter matching is
either applied on the publisher or on the subscriber nodes. Our decision is motivated
by several observations. In many sensor network applications, we are faced with
either a “pull” or a “push” interaction pattern, i.e. either a small set of subscribers
is interested in notifications generated by a much larger set of publishers, or vice-
versa, many subscribers are interested in the notifications from a smaller number of
publishers. This means that the optimal approach involves either a network wide
subscription dissemination with filter matching performed on the publisher nodes or
network wide notification dissemination with matching performed at the subscriber
nodes [85].

For the cases in between these two extremes, the framework can be extended
with a CSEC that determines the optimal points using an integrated content-based
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routing and forwarding protocol, or from a dedicated “matchmaker” service [67]. The
broker component provides a hook that CSECs can then use to execute the matching
algorithm, without introducing tight coupling between the underlying protocols and
the publish/subscribe core.

Protocol Impact on the Service Semantics

The selection of the subscription and notification delivery protocols is also influenced
by the non-functional requirements of the particular application. For example, the
application designer may be faced with a scenario where subscriptions need to be
updated frequently and not reaching exactly all of the available publishers is accept-
able. In this case a protocol for probabilistic best-effort subscription dissemination
may be sufficient. On the other hand, an application may require more reliable
dissemination of subscriptions and is willing to accept continuous control traffic
in the background. In this case a reliable dissemination algorithm would be more
suitable. If sufficient resources are available, the application designer might even
choose multiple subscription or notification protocols in parallel.

Our framework does not impose any limits on the quality of service provided
by the underlying communication protocols, effectively treating them as black box
components. Whenever a subscription is issued or a notification is published, the
framework will eventually convert the subscription/notification content into payload
of the selected protocol component. The choice of protocols therefore has direct
impact on the delivery semantics of the publish/subscribe messages, and with that
on the semantics of the provided service.

The core itself is not influencing the quality guarantees of the underlying proto-
cols, but SECs can be used to this aim, for example, by periodically retransmitting
subscription messages, temporarily storing notification messages, etc.

We contrast the performance and the semantic effects of different types of sub-
scription dissemination protocols in Section 5.6.2.

5.5 TinyCOPS

Assessing the full impact of a component framework like the interoperability anchor
of DASA is a difficult task. As with any architecture, the most reliable feedback
ultimately comes from surveying programmers after extended periods of day-to-day
use.

The development of a reference implementation and its evaluation, however, can
be considered as an important first step towards this goal. A real prototype demon-
strates that the general design can be implemented under the specific constraints of
the target domain. Furthermore, through careful micro-benchmarking executed in
controlled, yet realistic setting of modern sensor network testbeds, it provides an
opportunity for gaining deeper insight into the specific feature set and the involved
design trade-offs.
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To this end, we have developed a reference implementation of the interoperability
anchor, called TinyCOPS, using the TinyOS 2.x (Section 4.5) execution environment.

The internal structure of the TinyCOPS framework closely follows the generic
architecture of the DASA interoperability anchor presented in Figure 5.1. In the
following we overview the main components and their interfaces in a top-down
fashion, focusing on the features involved in the evaluation experiments presented
in Section 5.6.

5.5.1 Publishers and Subscribers

The interaction between the applications and the core is abstracted in individual
Publisher and Subscriber components. A Publisher component can listen for subscrip-
tions, collect data and publish notifications and Subscriber components can issue
subscriptions and receive matching notifications. The service API provided by these
components is shown in Figure 5.3.

in t e r f a ce Subscr ibe
{

command e r r o r _ t subscr ibe ( subscr ip t ion_handle_ t handle ) ;
event void subscribeDone ( subscr ip t ion_handle_ t handle , e r r o r _ t e ) ;
command e r r o r _ t unsubscribe ( subscr ip t ion_handle_ t handle ) ;
event void unsubscribeDone ( subscr ip t ion_handle_ t handle , e r r o r _ t e ) ;
event no t i f i c a t i on_hand l e _ t no t i f i c a t i onRece ived ( no t i f i c a t i on_hand l e _ t

handle ) ;
}

in t e r f a ce Publish
{

e r r o r _ t publish ( no t i f i c a t i on_hand l e _ t handle , bool push ) ;
void publishDone ( no t i f i c a t i on_hand l e _ t handle , e r r o r _ t e ) ;

}

in t e r f a ce Subsc r ip t i onL i s t ene r
{

void subscr ipt ionRece ived ( subscr ip t ion_handle_ t handle ) ;
void unsubscribed ( subscr ip t ion_handle_ t handle )
command e r r o r _ t ge tReg i s t e redSubscr ip t ion ( subscr ip t ion_handle_ t

∗handle ) ;
}

Figure 5.3: The publish/subscribe communication API in TinyCOPS.

The Publish and Subscribe interfaces are defined in the typical TinyOS split-phase
style: an event signals back the result of a command. Both, notifications and subscrip-
tions, are represented by handles and realized as abstract data types, and the core
provides additional interfaces with operations to create, inspect and manipulate their
content (Figure 5.4). The publish/subscribe API is provided in multiple instances,
one set for each Publisher/Subscriber component.
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A call to Subscribe.subscribe() overwrites the previous subscription instance from
the same subscriber. A single Subscriber component therefore cannot register more
than one subscription in parallel, but it can always modify or unsubscribe this sub-
scription. To issue more than one subscription in parallel an application must instan-
tiate multiple interface instances. On the one hand this means that an application
designer must predefine the maximimum number of parallel subscriptions, on the
other it increases application robustness, because following the TinyOS 2.x design
principle of static allocation, i.e. pushing resource allocation, in this case the sub-
scription table entries, to compile-time.

The Publish.publish() command includes a special push parameter, which defines
whether the notification is disseminated based on the “pull” or “push” interaction
pattern. In the first case a matching subscription must have been registered on the
publisher node, otherwise the notification is filtered out by the publish/subscribe
core. In the second case notifications are disseminated into the network irrespective of
any registered subscriptions on the publisher node. Before a notification is signalled
to a Subscriber component the matching algorithm is applied (possibly once more)
by the publish/subscribe core instance on the subscriber node. This ensures the
filtering property of the publish/subscribe API: at any time a subscriber is signalled
only the data that matches its current interest.

As motivated in Section 5.2 the SubscriptionListener interface (Figure 5.3) can
optionally be used to inform the application about newly arrived subscriptions.

5.5.2 Broker and Attribute Collection

BrokerC is responsible for implementing the publish/subscribe service exported to
the application. It manages the subscription table allocating one entry for every
Publisher/Subscriber component. The BrokerC applies the matching algorithm to
filter out those notifications that do notmatch a registered subscription and it provides
functions to access notification/subscription content. BrokerC is also responsible for
mapping the CBPS API to different network protocols. In Section 5.5.4 we discuss the
specific interfaces and mechanisms in greater detail.

AttributeDispatcherC functions as a switch that decouples from attribute semantics
and allows to access attribute data based on attribute identifiers. It provides generic
functions to query the size and collect attribute data or determine the matching
between attributes and constraints (Figure 5.4).

This enables the BrokerC component to apply the matching algorithm indepen-
dent of the selected attribute components. In addition, Publisher components can
collect sensor data by providing only the attribute identifier and an empty buffer, but
without the need to know, for example, the particular attribute metric. Thus, intro-
ducing new attributes does not require adaptation of the core code, and publisher
logic can be decoupled from attribute semantics.

The AttributeDispatcherC also plays central role in supporting Attribute Service
Extension Components (ASECs), introduced in Section 5.3. The component provides
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in t e r f a ce At t r i bu t eCo l l e c t i on
{

command bool i sReg i s t e r edAt t r i bu t e ( a t t r i b u t e _ i d _ t a t t r i bu t e ID ) ;
command uin t8_ t getValueSize ( a t t r i b u t e _ i d _ t a t t r i bu t e ID ) ;
command bool isMatching ( avpa i r_ t ∗ avpair , c on s t r a i n t _ t ∗ cons t r a i n t ) ;
command e r r o r _ t ge tAt t r i bu t e ( a t t r i b u t e _ i d _ t a t t r ibu te ID , avpa i r_ t

∗ avpair , u in t8_ t maxValueSize , subscr ip t ion_handle_ t handle ) ;
event void getAttr ibuteDone ( avpa i r_ t ∗ avpair , u in t8_ t valueSize ,

subscr ip t ion_handle_ t handle , e r r o r _ t r e su l t ) ;
}

Figure 5.4: Attribute collection API in TinyCOPS.

Subscription
Delivery
Protocol

Publisher

Subscription
Delivery
Protocol

AttributeCollection

AttributeDispatcherC

Attribute

AttributeValue

Attribute-
Intercept

Attribute-
Intercept

DataProcessC (0)

CacheC (1)

Figure 5.5: Attribute processing using two ASECs, DataProcessC and CacheC, with developer-
assigned priorities of 0 and 1.

means for intercepting the application’s request for attribute data and manipulating
the returned attribute values. When no ASEC is present, an application’s request
for attribute data is served directly by the AttributeDispatcherC. When an ASEC is
present, it becomes part of the attribute processing loop: it may intercept the request
and return buffered or processed data. This action is controlled by the subscriber
via respective metadata attributes on a per-subscription basis and by the client of
AttributeDispatcherC which can enable/disable ASECs for its call by (not) passing the
handle to its subscription. The sequence of interactions for two ASECs is illustrated
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in Figure 5.5. The ASECs process the request according to the developer-assigned
priorities. In the depicted scenario, first DataProcessC, and then CacheC can intercept
and serve the request, otherwise it is served by AttributeDispatcherC with the help
of the particular Attribute component. The result is then propagated back, allowing
CacheC to update its cache tables and DataProcessC to process the attribute value
before it is returned to the publisher.

5.5.3 Attributes

Attribute components define the content that subscribers can subscribe to and pub-
lishers can publish. One part of the application design is about selecting the set
of Attribute components that will be available for subscription. Every attribute is
represented by a unique attribute identifier, which is an integral numbers that can
be extracted from subscription and notification content.

The framework supports an arbitrary number of Attribute components. Each
Attribute component provides two interfaces: AttributeValue to acquire the attribute
value and AttributeMatching to evaluate an attribute-specific constraint, both depicted
in Figure 5.6.

in t e r f a ce Attr ibuteValue
{

command uin t8_ t valueSize ( ) ;
command e r r o r _ t getValue ( void ∗value , u in t8_ t maxSize ) ;
event void getDone ( void ∗value , u in t8_ t _s ize , e r r o r _ t r e su l t ) ;

}

in t e r f a ce AttributeMatching
{

command bool isMatching ( const avpa i r_ t ∗ avpair , const c on s t r a i n t _ t
∗ cons t r a i n t ) ;

}

Figure 5.6: TinyCOPS interfaces for acquiring attribute data and matching attribute-specific con-
straints, exported by the Attribute components.

Through these interfaces, the Publishers and BrokerC remain fully decoupled
from the attribute-specific collection andmatching tasks. Leveraging this decoupling,
TinyCOPS also includes a generic StdPublisherC component that can automatically
generate notifications from all registered Attribute components, simplifying the
development of application code.

Within a givenWSN, all attributes and their operations are identified by an integer
number. To map attribute identifiers to their semantic definition, TinyCOPS includes
an XML representation for every attribute, which defines the data type, the possible
operations or metric conversions as shown in Figure 5.7. Backend applications can
use the XML representation to visualize data to the user.
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<ps_a t t r i bu t e id= ’ 0 ’>
<attr ibute_name>EyesIFXTemperature</attr ibute_name>
<a t t r i bu t e _ type>uint16</a t t r i bu t e_ type>
<at t r ibute_min>0</at t r ibute_min>
<attr ibute_max>4095</at tr ibute_max>
<ps_metric name="Degree␣Cels ius ">

<metr ic_convers ion>(X − 1638) / 27 .3</metr ic_convers ion>
</ps_metric>
<ps_operat ion id=" 0 ">

<operation_name>=</operation_name>
<opera t ion_desc r ip t ion>equals</opera t ion_desc r ip t ion>

</ps_operat ion>
< !−− . . . −−>

</ps_a t t r i bu t e>

Figure 5.7: An excerpt of the XML representation for the temperature sensor on the eyesIFX platform.

5.5.4 Protocol Components

For each Publisher and Subscriber component, the application developer has to select
a network protocol for subscription and notification delivery, respectively. For this,
the application developer connects to BrokerC a pair of desired routing protocols.

The framework requires the protocol components to provide a set of standard
TinyOS interfaces (Table 5.2). The subscription delivery protocol must provide the
address-free Send interface (on the subscriber side) and the Receive interface (on the
publisher side). The interface for the notification delivery protocol must allow a
publisher to send a message back to a subscriber via the TinyOS AMSend interface.
The protocol component must also provide an Intercept interface in order to perform,
for example, in-network aggregation in CSECs and all protocols must provide the Get
interface to return the protocol’s Active Message ID.

Interface Required Provided by Used by Role

Send yes protocols core message delivery
Receive yes protocols core message reception
Intercept no protocols core message interception
RootControl no core notification start beaconing, etc.
Get no notification core retrieve protocol identifier
AttributeValue no notification notification acquire local address
PSMessageAccess no core notification extract destination address

Table 5.2: Interfaces between the TinyCOPS core and the notification/subscription delivery components.
The first five interfaces are standard TinyOS interfaces.

The addressing scheme transparency is achieved following the approach de-
scribed in Section 5.4.2. When the application issues a subscription, by default,
BrokerC inserts an additional metadata attribute (SUSBSCRIBER_AM_ADDR, N),
where N is the node identifier of the subscriber node (its Active Message address).

118



5.5. TinyCOPS

This happens transparently to the application. On the publisher node, the sub-
scription is registered in the subscription table, and when a notification matches its
BrokerC can extract the subscriber address and use it as destination address for the
notification message.

When the application wants to scope a subscription to only a subset of the pub-
lisher nodes, it can insert in the subscription metadata scoping attributes to define
a geographic region. The publish/subscribe core is agnostic to such attributes and
will pass the subscription to the specified subscription delivery protocol. Geographic
routing protocols must be extended by a thin wrapper component that extracts the
geographic address from the subscription and uses them as a protocol parameter.
Scoping of subscriptions thus happens transparently to the publish/subscribe core,
but requires the Subscriber application and wrapper component to agree on the same
metadata attributes.

Table 5.3 summarizes what protocols can be used for subscription and notification
delivery in a TinyCOPS application, based on their addressing scheme. TinyCOPS
does not impose requirements on the quality of service message delivery, rather it is
the task of the application designer to choose protocols that match the application
requirements.

Addressing Subscription Notification
scheme delivery protocol delivery protocol

address-free supported supported
id-centric not supported supported
data-centric supported supported
geographic supported not supported

Table 5.3: Supported protocols for subscription and notification delivery in TinyCOPS, based on their
addressing scheme.

If multiple protocols are used in one application TinyCOPS can ensure that
publishers and subscribers can interact only if they use the same set of protocols.
For this purpose the core component can insert in every subscription an additional
metadata attribute that identifies the notification delivery protocol by its protocol
identifier. On every potential publisher node the core will extracts such a metadata
attribute and signal the subscription to a local Publisher component only if it has
specified the same set of protocols. If this is desired, the notification protocol must
provide the Get interface returning its protocol identifier.

5.5.5 Application Composition

Creating a TinyCOPS application involves making decisions about the data attributes
and possible SECs, the number of Publisher/Subscriber components and the respec-
tive protocols. Figure 5.8 shows the code for an example publisher application that
uses two Attribute components. The application leverages the generic StdPublisherC
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component introduced in Section 5.5.3, that listens for a subscription and automati-
cally publishes corresponding notifications by querying the AttributeDispatcherC for
any necessary attribute data. The application uses the publish/subscribe service via
a wrapper,TinyCOPSClientC, that structures the access to the core. DisseminationTrick-
leC and CtpWrapperC are wrapper components for protocols used for subscription
and notification delivery.

configurat ion TinyCOPSDemoAppC
{
}
implementation
{

components new StdPublisherC ( ) as Publisher ,
/ / t h e p u b l i s h e r a p p l i c a t i o n
new TinyCOPSClientC ( ) as Client ,
/ / s t r u c t u r e d a c c e s s t o t h e b r o k e r
new CtpWrapperC ( ) as Not i f i c a t i onPro toco l ,
/ / n o t i f i c a t i o n p r o t o c o l
new Disseminat ionTrickleC ( ) as Subsc r ip t ionPro toco l ;
/ / s u b s c r i p t i o n p r o t o c o l

components AttributeTemperatureC , Attr ibutePingC ;

/ / w i r ing ( s p e c i f y i n g ) t h e p r o t o c o l s f o r t h e p u b l i s h e r
Cl i en t . Rece iveSubscr ipt ion −> Subsc r ip t ionPro toco l ;
C l i en t . GetSubscriptionAMID −> Subsc r ip t ionPro toco l ;
C l i en t . SendNot i f i ca t ion −> Not i f i c a t i onPro to co l ;
C l i en t . Rece iveNot i f i c a t i on −> Not i f i c a t i onPro to co l ;
C l i en t . I n t e r c ep tNo t i f i c a t i on −> Not i f i c a t i onPro to co l ;
C l i en t . GetNotificationAMID −> Not i f i c a t i onPro to co l .GetAMID ;
C l i en t . Packe tNot i f i c a t i on −> Not i f i c a t i onPro to co l . Packet ;
C l i en t . PacketSubscr ip t ion −> Subsc r ip t ionPro toco l . Packet ;
C l i en t . RootControl −> Not i f i c a t i onPro to co l ;

/ / w i r ing t h e s e r v i c e i n t e r f a c e s t o t h e p u b l i s h e r
Publ isher . Publ ish −> Cl i en t ;
Publ i sher . Subsc r ip t i onL i s t ene r −> Cl i en t ;
Publ i sher . PSMessageAccess −> Cl i en t ;
Publ i sher . PSHandle −> Cl i en t ;
Publ i sher . A t t r i bu t eCo l l e c t i on −> Cl i en t ;

/ / t h e a t t r i b u t e components a r e auto−wired
}

Figure 5.8: Creating a simple publisher application with TinyCOPS.

5.6 Evaluation

In this section we leverage TinyCOPS, as a mature prototype of the DASA interoper-
ability anchor architecture, to demonstrate the degree of achievement of the major
design goals of providing a high-level service for rapid development of WSN applica-
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tions, while maintaining flexibility and offering possibility for application-specific
optimization of the service.

TinyCOPS also corroborates the evaluation of the portability anchor presented
in Section 4.6, since it demonstrates that the lower anchor in the DASA architecture
provides solid base for developing complex portable services. In Section 5.6.2, we
illustrate the seamless operation of the framework on different hardware platforms,
facilitated by the platform-independent services of the portability anchor’s imple-
mentation in the TinyOS 2.x code-base.

5.6.1 Resource Usage

In this section we briefly evaluate the local static and dynamic resource usage in
different TinyCOPS components, following a similar approach as the one presented
in Section 4.6.1. We report on the code size required by the components in a typical
TinyCOPS application as well as the processing time overhead of the core component.
The results confirm that our framework introduces acceptable code, memory and
execution time overheads.

The evaluation of the code size footprints presented in Table 5.4 confirms the
broker component as the most complex element. By offloading the complexity in
the broker component, the framework allows composing lean applications. This is
demonstrated by the size of the StdPublisherP component, a generic Publisher com-
ponent included in TinyCOPS for convenience. The component simply listens for a
subscription and publishes corresponding notifications by querying the AttributeCol-
lector for attribute data. It is agnostic to the attribute semantics and can respond to
any subscription as long as the respective Attribute components has wired to the
AttributeCollector. The Send-On-Delta CSEC (introduced in Section 5.6.2) can handle
attributes of different integer sizes, a flexibility that is paid in increased program
memory footprint.

To get an insight in the processing overhead introduced by TinyCOPS we mea-
sured the code execution time for the subscribe and publish operations on a telosb
mote. We used an application that subscribes to a single attribute and measured
the time it takes for a subscription/notification message to pass through the Tiny-
COPS core and protocol wrapper components (using Collection Tree Protocol (CTP)
as dissemination protocol). Under this scenario, the main tasks of the core were
management of the subscription table and performing the matching algorithm. With
a CPU operating frequency of 4MHz, the subscription send-path requires 144 µs
and the subscription receive-path 281 µs. For notifications, it took 127 µs on the
send-path and 88 µs on the receive-path. For comparison, the time between posting
a task and executing it takes 48 µs. While the results are dependent on the time spent
for matching an attribute-value pair with a constraint (we used the TinyCOPS Ping
attribute), there are no additional “deferred” costs involved (for example, posting
tasks or setting timers for later execution).

Creating a TinyCOPS application involves making decisions about the Attribute
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Component Description SLOC Code Data
Name size [B] size [B]

BrokerImplP Broker 671 2838 19
SendOnDeltaP Send-On-Delta CSEC 103 1126 12
StdPublisherP Publisher 180 738 70
SubscriberGWImplP Subscriber (+ gateway) 138 554 129
AttributeCollectorP AttributeCollector 87 154 4
CSECDispatcherImplP CSEC “Glue” 115 98 2
Msp430InternalTemperatureP Temperature Attribute 20 2 -

Table 5.4: Code and memory footprints of an example TinyCOPS application with one Publisher, one
Subscriber, one CSEC and one Attribute component.

as well as service extension components, the number of Publisher/Subscriber com-
ponents and their respective communication protocols. Because in TinyOS an ap-
plication is created by wiring components together, and since Attribute and service
extension components can be designed to self-wire to the TinyCOPS core, a single
line of code suffices to make them part of an application, respectively. The wiring
part of a typical TinyCOPS application as described in Section 5.6.2 consists of about
32 SLOC, excluding the actual Publisher/Subscriber logic and the protocol wrappers.
As a reference, the dissemination protocol wrapper consists of 97 SLOC.

5.6.2 Distributed Testing with TWIST

To demonstrate the full benefits of the specific architectural features of the DASA
interoperability anchor, the performance of TinyCOPS has to be evaluated in the
natural distributed context in which normal WSN applications operate. To this end,
we have designed a flexible distributed testing infrastructure, the TKN Wireless
Indoor Sensor Network Testbed (TWIST), which we describe in detail in Chapter 6.
The results presented in this section were obtained using the instance of TWIST at the
Telecommunication Networks Group (TKN) office building on TU Berlin’s campus
(Section 6.4.1).

Starting with a simple data collection application scenario, we present experi-
mental results which show that the choice of dissemination protocols can exhibit
considerable performance tradeoffs (Section 5.6.2). We then gradually increase the
complexity of the application. Section 5.6.2 describes the integration of a send-on-
delta service extension component and the effects on application performance and
in Section 5.6.2 we show how TinyCOPS is used to extend the application with an
alarm notification service realizing both “pull” and “push” interaction pattern at the
same time.

We have opted against head-to-head comparison of TinyCOPS with other mono-
lithic publish/subscribe frameworks because the overall performance of the frame-
works is dominated by the underlying protocols and not the architectural features,
there is currently no TinyOS 2.x implementation of a monolithic publish/subscribe
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framework that would facilitate direct comparison, and even if such an implementa-
tion was available, the comparison results would be vulnerable to differences in the
invested optimization effort. Instead, the evaluation scenarios are focused on demon-
strating the flexibility and versatility of the design. The obtained results corroborate
our claims that the framework:

• exports significant performance trade-offs to the application in an easy-to-use
fashion; and

• is general and flexible enough to support different interaction patterns;

Tradeoffs in Protocol Selection

To demonstrate the tradeoffs that TinyCOPS exposes to the application designer
through protocol selection we contrast two subscription delivery protocols: a plain
flooding protocol (every node that hears a subscription broadcasts it to all its neigh-
bours once) and an epidemic broadcast protocol. The latter is part of the TinyOS 2.x
core and based on the Trickle algorithm [126, 128]: it lets nodes continuously broadcast
status information about the subscriptions they have received. Whenever a node
hears an older subscription than its own, it broadcasts an update to its neighbors.
In contrast to the flooding protocol, which ends its operation after a short time, the
epidemic protocol (called “TinyOS 2.x Dissemination”) remains active.

We created a simple TinyCOPS application with one subscriber and the rest of
the nodes used as publishers. In our first measurement we disseminated the sub-
scription via plain flooding. In the second, we used the TinyOS 2.x Dissemination
protocol. The modification is done by changing a single line of the TinyCOPS ap-
plication configuration. For notification delivery, in both measurements, we use
the TinyOS 2.x Collection Tree Protocol (CTP) [71] performing best-effort, multihop
delivery of notifications to the sink of the tree (subscriber).

Both measurements lasted 90 minutes and were made with 86 Tmote Sky nodes,
85 publisher nodes and one subscriber (used as basestation, bridging to/from a
host computer). At time t0 a subscription was injected asking for notifications to
be published with a rate of one notification per minute by each publisher. After 30
minutes, at time t1, one third of the publisher nodes (randomly chosen) were shut
down and 30 minutes later, at time t2, they were powered up again. Nodes that were
shut down lost all state including subscription table entries.

Figure 5.9 shows the percentage of active publishers over time. We define active
publisher as a node that has registered a subscription and published at least one
notification. At time t1 the number of active publishers decreases by about 30% due to
our active power management. The difference between the protocols becomes visible
at time t2 when these nodes are powered up again: the epidemic Dissemination
protocol quickly manages to spread the subscription to the recovered nodes, while
the flooding protocol cannot (the subscription was injected only once at time t0).
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Figure 5.9: Number of active publisher nodes.
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Figure 5.10: Notification goodput using TinyOS 2.x Dissemination and flooding for subscription
delivery.

Figure 5.10 shows the changes in notification goodput perceived by the subscriber.
We define notification goodput as the number of distinct notifications that arrive at
the subscriber in a fixed time window of one minute. The curves almost match the
number of active publishers and indicate a very good delivery ratio of CTP.

We used the serial backchannel of the testbed to let all nodes periodically output
status information about the number of different messages they had sent over the
wireless channel. This information allowed us to derive the traffic for subscription
delivery as depicted in Fig.5.11. The figure visualizes the tradeoff between the
protocols: the flooding protocol generates one message for each node in the network
at the time the subscription is injected. The Dissemination protocol generates more
messages, but is able to update the rebooted publishers at time t2.
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Figure 5.11: Subscription delivery protocol traffic.
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Figure 5.12: Notification delivery protocol traffic.

Finally, our setup allowed us to determine the number of notification messages
sent in the network by all nodes over a time window of one minute (Fig.5.12). On
average 3 messages were sent per notification, however our setup did not allow us to
differentiate between retransmission and forwarded messages.

Adding a Service Extension Component

To decrease notification traffic and effective energy consumption, we modified the
baseline application described in the previous section to realize a “send-on-delta”
approach: notifications should be published only if the attribute values deviate by
more than∆ from the previously published notification. ∆ is defined by the subscriber
and specified as the metadata of the subscription. To make the functionality resuable
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we implemented it as a CSEC SendOnDeltaC that intercepts outgoing notifications. It
maintains a buffer for the last published notification, calculates the difference between
the attribute values and suppresses the publishing if the difference is smaller than
specified in the corresponding subscription. It is agnostic to attribute semantics and
can be used for any attribute with integral data type.
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Figure 5.13: Effects of a varying ∆ on notification goodput.

We performed three measurements with 86 eyesIFX nodes and varying ∆ and
observed the effects on notification goodput as perceived by the single subscriber.
The subscription asked for light sensor data to be published with a rate of one minute
by each publisher and ∆was chosen 0, 10 and 20, where 0 means that all notifications
are published and 10 and 20 represent the ∆ of luminosity in absolute values of
the raw eyesIFX light sensor reading. Figure 5.13 shows the effect on notification
goodput: with a higher ∆, more notifications are suppressed by the CSEC, giving to
the subscriber application a powerful runtime control over the tradeoff between data
resolution and communication overhead.

Creating a Combined Push and Pull Application

Previous work [85] has shown that the interaction pattern between publishers and
subscribers (“pull” vs. “push”) can significantly affect application performance
and should be carefully aligned with the ratio of publishers to subscribers. We
created an application that included two Publisher components, one for periodic
temperature data collection and one for generating fire alarm messages. We wanted
the fire alarm event to quickly propagate to all rooms of the office building, but
periodic measurements to be collected only by a single subscriber. We therefore
selected a single node to disseminate a subscription which notifications from the first
Publisher component had to match (locally, based on the “pull” model). Fire alarms,
however, were “pushed”: whenever the second Publisher component detected a
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fire alarm regardless of any registered subscription, it immediately distributed the
notification to all nodes in the network. The first Publisher component was “wiring”
the subscription delivery protocol to the core and using CTP for notification delivery.
The second Publisher component “wired” the flooding protocol for notification
delivery.
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Figure 5.14: Example of a “pull and push” interaction.

Figure 5.14 shows a trace of the communication rates collected over 20 minutes
on 85 Tmote Sky nodes. It represents the total number of packets sent by all nodes
for a fixed time window of one minute. One subscription for periodic data collection
is issued at the start of the measurement using the TinyOS Dissemination protocol,
10 minutes later we simulate a fire alarm, by sending a serial packet to one of the
publisher nodes (randomly chosen). This node then started a flood of notification
messages. The increase in traffic is visible by a small spike, however, it is almost
masked by the high level of CTP “pull” traffic.

5.7 Related Work

In [119], the SPIN family of protocols is presented, that use metadata-based nego-
tiation phase to protect the network resources from unnecessary data exchanges.
The content filtering capability in our framework has the same goal. In our case, the
metadata part of the subscription message is used to convey a set of “non-binding”
requirements from subscribers to publishers while the constraints express the impera-
tive filtering. In SPIN, the metadata format is considered to be application dependent.
We believe that the attribute-based naming scheme is flexible enough to support the
majority of data-driven applications. Having a fixed naming scheme helps in opti-
mization of the matching components and improves the portability of the application
code.
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Our naming scheme is much closer to the one used in the Directed Diffusion fam-
ily of protocols [100], but wemake clear distinction betweenmetadata and constraints
and support attribute-specific operators. Conceptually, however, more important is
the difference in the level of decoupling between the middleware service implementa-
tion and the communication protocols. Our framework not only delineates cleanly at
this interface, it also allows for individual customization of the subscription and the
notification delivery protocols and provides infrastructure for address information
tunneling and matching point control.

MiLAN [87] is a flexible sensor networks middleware that continually tracks the
application needs and performs run-time optimizations of the network and sensor
stacks to balance the application QoS and the energy efficiency. It is positioned as a
general framework that can also be used with resource rich wireless technologies like
IEEE 802.11 and Bluetooth. Our framework is concentrated on the class of relatively
resource limited sensor network hardware where compile-time optimization has
comparably large impact, and where the run-time modifications are mostly limited
to parameter tuning.

The Mires middleware [188] provides a publish/subscribe service, but uses the
component architecture of TinyOS 1.x. Mires uses a topic-based naming scheme that
lacks the expressiveness of the content-based filtering. While Mires envisions the pos-
sibility of introducing new services (like aggregation) using extension components,
the choice of the communication protocols is fixed and can not easily optimized to
the needs of the application.

Our aim to increase the flexibility of the framework also has parallels with the
existing work on versatile publish/subscribe systems [55]. Similarly, the concept of
adding metadata to the constraints, and filters in the notifications is currently being
investigated by the “mainstream” publish/subscribe research community [199].

5.8 Summary

Amajor design goal of the DASA interoperability anchor is to decouple the service
sub-tasks which are expected to have large impact on the resource usage. This
decomposition strives to give an application designer a simple and flexible means
to select protocol components and data attributes according to his needs, and to
give him more fine-grained control over the publish/subscribe service through the
concept of extension components.

With TinyCOPS, we provide a reference implementation of the DASA interoper-
ability anchor that is aligned with the design philosophy of TinyOS 2.x. Using this
prototype, we have experimentally demonstrated the flexibility of the DASA design
and its ability to support different sensor node platforms, communication protocols
and interaction patterns. On the example of a “send-on-delta” service extension com-
ponent, we have illustrated how the framework can be augmented in order to give the
application designers additional control knobs for trading-off different performance
objectives.
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CHAPTER 6
Distributed Testing

Infrastructure

In this chapter we introduce the design of TWIST, our testing framework that enables
efficient testing of functional and non-functional properties of distributed WSN ser-
vices under realistic but controlled settings. TWIST supports multiple SUT platforms,
out-of-band signaling, powerful topology control and fault injection capabilities.
All these features were instrumental for the evaluation of the DASA interoperability
anchor prototype presented in Chapter 5.

In addition to TWIST, we also introduce the design of a novel testbed federation
platform that supports standardized experiment specification and easy repetition of
experiments across different WSN testbeds. The platform simplifies the realization of
cross-validation studies which are essential in differentiating between the intrinsic
properties of the SUT and the effects of the testing environment.

We conclude the chapter by presenting our local instance of TWIST, deployed in
the TKN office building at TU Berlin’s campus. We report on the deployed hardware
and software infrastructure, and we evaluate the achievement of our design goals
through analysis of operational data.

6.1 Design Validation and Testing

The configuration freedom offered by component-based architectures like DASA, can
only be exercised safely if it is accompanied by means for verifying that the intended
semantics of the service interfaces has not been violated during the configuration
process. For example, the flexibility in optimizing the communication substrate in
the interoperability anchor in DASA, has to accompanied by means for checking the
resulting semantics of the exported CBPS service.
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One way to rigorously validate the composed system is through model check-
ing [33]. The approach relies on exhaustive exploration of the execution space of an
approximating finite state machine that models the behavior of the system and its
comparison with a set of invariants typically specified using temporal logic. Unfortu-
nately, in systems with many richly interacting components, the model checking is
faced with a state explosion problem. In many realistic scenarios, one has to resort to
simplifying assumptions about the behavior of the components and their interaction
in order to keep the computation tractable [64], which diminishes the relevance of
the obtained results. The large scale, the heterogeneity, and the rich coupling with
the environment, make realistic model checking of real WSN systems prohibitively
complex.

While not guaranteeing exhaustiveness, the testing approach represents a valu-
able design validation alternative. Testing is particularly suitable for validating the
composed system in the case of “black-box” reuse, when the internal implementation
details in the components remain opaque to the system composer [63]. Due to their
distributed nature, the testing of the WSN systems requires distributed testing infras-
tructure, in the form of testbeds, which allows realistic and controlled experimentation
with the SUT.

The specifics of the WSN domain pose significant challenges for their design and
implementation. In particular, effective WSN testbeds have to:

• approach scales similar to typical WSN deployments and replicate the target
environment as much as possible;

• support large number of heterogeneous, resource constrained SUT platforms;

• provide sufficient isolation between the testing infrastructure and the SUT,
because the SUT operation on the resource constrained WSN platform can be
easily affected and disrupted by the testing process;

• support emulation of topology changes and injection of failures, allowing
reliability and robustness testing of the SUT; and

• support coordinated injection of commands and extraction of experimental
data over the testing infrastructure, allowing easy distributed debugging and
causality analysis with minimal impact on the SUT operation.

These barriers have resulted in scarcity of adequate testing infrastructure, hinder-
ing the research and development ofWSN systems. Motivated by their importance, we
have designed and developed TWIST, a flexible distributed testing infrastructure that
enables efficient testing of functional and non-functional properties of distributed
WSN services.
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6.2 TWIST Testbed Platform

Figure 6.1 depicts the high-level architecture of TWIST. In the following we describe
the individual testbed entities, starting from the lowest layer—the sensor nodes—and
moving up to the testbed backbone with the attached server and control station.
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Figure 6.1: Hardware architecture of the TWIST testing platform.

6.2.1 Sensor Nodes

Asmain hardware units of the SUT the sensor nodes need a set of hardware capabilities
facilitating their seamless integration with the rest of the testbed infrastructure.

They have to expose suitable hardware interfaces that support external power-
ing, reprogramming, as well as out-of-band exchange of configuration, debug and
application data. Traditionally, these functions have been served by dedicated inter-
faces: power supply bus, JTAG for programming and debugging, RS-232 for serial
communication, etc. This was significantly complicating the hardware and software
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integration between the SUT and the tester, making customized hardware solutions
necessary, and driving the costs high.

Recently, several WSN node platforms using USB as standardized hardware in-
terface have emerged (Section 2.1.1). Thanks to the features offered by the open
USB specification and the flexibility of the current UART-to-USB chips, this hardware
interface is able to replace almost all of the custom interfaces, simplifying integration
of the sensor nodes with external systems. This migration to a single standardized
interface drastically lowers the costs for the testbed due to the reduced prices of the
components as a result of the economies of scale.

The overall architecture of the TWIST is crucially centered around the use of the
USB interface. We are able to support a heterogeneous mixture of WSN platforms
as long as they export the above listed capabilities (power-supply, programming
and communication) via a standard-compliant USB interface. For example, both the
eyesIFX and the telos mote families (Section 2.1.2) satisfy the above conditions and
have been successfully interfaced with TWIST.

In addition to having a compatible interface, the sensor nodes need enough slack
computational and memory resources to handle the load imposed by the interactions
with the testbed. Only in this way the internal state of the SUT can be monitored and
influenced without disturbing the normal execution of the application.

On the software side, the operating system running on the sensor nodes has
to satisfy several basic requirements. First, it has to provide a suitable execution
environment for the application logic of the SUT. Secondly, it should support node
configuration, instrumentation of the application code and allow for out-of-band
communication with the super nodes over the USB infrastructure.

Both TinyOS versions satisfy these requirements and run on both the telos and the
eyesIFXplatforms. It provides a generic and lightweight execution platform for sensor
network applications. TinyOS is already shipped with components that support
communications over the serial interface (serial-to-USB converter) using a protocol
similar to Point-to-Point Protocol (PPP)/High-Level Data Link Control (HDLC). On
top of this protocol, another TinyOS component enables printf()-like logging as
well as bridging debug and application messages. Using tools like Marionette [215],
even more powerful, Remote Procedure Call (RPC)-like interactions can be supported.

It is important to note that from the perspective of the super nodes it is not
necessary to have TinyOS running on the sensor nodes. Any execution environment
implementing a mutually agreed communication protocol between super nodes and
sensor nodes will suffice.

6.2.2 Testbed Sockets and USB Cabling

Seen as plain hardware, a testbed socket is nothing more than the point where the
USB interface of the sensor node attaches to the USB infrastructure of the testbed. The
architectural significance of this point is, however, much greater. The sockets have
unique identifiers, and their geographical position is known and does not change
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over time. We associate the node identifiers to the socket identifiers and hence to
the geographic position of the sockets. The sockets are connected to the remaining
testbed using a combination of passive and active USB cables, depending on the
distance between the socket and the next element of the infrastructure – the USB
hubs. Using passive cables a maximum distance of 5 m can be bridged. For greater
distances, “active USB cables” can be used (single port USB hubs with fixed cable), or
several USB hubs can be daisy-chained together.

(a) telosb mote in a testbed socket (b) Super node and USB-hub arrangement

Figure 6.2: Instances of TWIST hardware.

6.2.3 USB Hubs

The hubs are the central element of the TWIST USB infrastructure and provide support
for some of the most important features of TWIST.

At the most basic level, the USB hub is a multiplexing device that enables us to
break the one-to-one correspondence between the sensor nodes and the second-level
testbed deviceswhich can be found inmany of the existingWSN testbeds. This enables
significant cost savings without compromising the testbed functionality. Even more,
the USB hubs give TWIST one of its most powerful capability: the binary power-control
over the sensor nodes in the testbed.

TheUSBHub Specification 2.0 requires that self-powered hubs support port power
switching. By sending a suitable USB control message, the software can control the
power state of a given port on the hub, effectively enabling/disabling the power
supply for any attached downstream device. In the case of TWIST, these downstream
devices are the sensor nodes plugged into the testbed sockets. This means that we
are able to individually control the power supply of any sensor node in the testbed
by simply issuing a suitable USB control message.

Depending on whether the sensor node attached to the socket has a battery or
not, this enables four different power-supply transitions:

• from “USB-powered” state into “off” state;
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• from “off” state into “USB-powered” state;

• from “USB-powered”state into “battery-powered” state; and

• from “battery-powered” state into “USB-powered” state

6.2.4 Super Nodes

If TWIST only relied on the USB infrastructure, it would have been limited to 127 USB
devices (both hubs and sensor nodes) with a maximum distance of 30 m between
the control station and the sensor nodes (achieved by daisy-chaining of up to 5 USB
hubs). While suitable for small to medium size testbeds [201], these limitations
are not compatible with our goals of scalability of the architecture and support for
deployments over large geographical areas.

In itself, the USB length problem can be tackled with various range extension
solutions: using custom signal-enhancing devices, converting to another long-range
serial protocol like EIA-422 or EIA-485, or completely changing the communication
technology by moving to USB over Ethernet, etc. Nevertheless, all these solutions
still concentrate the complete responsibility for the testbed functions in a single host,
severely limiting the scalability of the architecture.

To genuinely tackle the scalability problem, a distributed solution is needed that
will spread the testbed functionality among multiple entities. These super nodes
have to be able to interface with the previously described USB infrastructure. In
addition, they have to support a secondary communication technology that does
not have the size and cable length limits of the USB standard, and forms the testbed
backbone to which the server and control stations can be attached. Finally, adequate
computational, memory and energy resources are needed.

When speaking about indoor deployments, the above requirements can be easily
matched using general-purpose PC desktops that have a USB host controller and
Ethernet or Wireless Local Area Network (WLAN) network interface. While techno-
logically viable, the solution is still not scalable because of the high costs. Optimally,
a device is needed that can satisfy the requirements, while keeping the expenses
for a medium to large-scale testbed to a reasonable level. In this sense, the class of
32-bit embedded devices used for attaching networked storage seems to be a very
promising alternative since they offer a very attractive cost/performance ratio. They
support the USB standard, since this is the primary interface for attaching external
flash and hard disks. They have reasonable computational resources (133-266 MHz
CPUs, 8-32 MB RAM) and are specifically optimized for dealing with high packet
loads.

At the same time, these devices have similar capabilities as the so-called “high-
end wireless sensor nodes” or “microservers” [70], enabling dual use of the super
nodes as parts of the testbed and as parts of the SUT, to enable experimentation with
tiered topologies like Tenet [160].
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6.2.5 Testbed Server and Control Station

The server and the control stations must interact with the super nodes using the
testbed backbone, so they have to support the same communication technology. Due
to the critical role of the server (it contains the testbed database, provides persistent
storage for debug and application data from the SUT, runs the daemons that support
the system services in the network, etc.) its hardware resources should be adequately
dimensioned to guarantee high levels of availability.

The central element of the server architecture is a testbed database that stores a
number of tables including configuration data like the registered nodes (identified
by the NodeIDs), the sockets and their geographical positions (identified by the
SocketIDs) as well as the dynamic bindings between the SocketIDs and NodeIDs.
The database is also used for recording debug and application data from the SUT.

Any normal workstation-class machine that is attached to the testbed backbone
can serve as a control station. The software interfacing between the testbed server, the
super nodes and the control station can be performed using simple RPC mechanisms
or more complex Message-oriented Middleware (MOM) solutions.

6.2.6 Summary

The presented TWIST architecture enables flexible support for a range of testing
scenarios and configurations:

• Independent SUT operation, where the testbed infrastructure is used only to
disseminate the SUT firmware and collect logs. After the initial installation of
the firmware, the power-supply control capability is used to remove the USB
power, allowing the SUT to operate on batteries in fully independent mode.
At the end of the experiment, the testbed infrastructure can be used to collect
eventual data stored at the SUT nodes during the experiment run;

• Controlled SUT operation, where the testbed infrastructure is used not only
for firmware distribution, but also for power supply. The power supply con-
trol capability can be used to “enforce” changes in the topology and emulate
(transient) node failures;

• Heterogeneous configuration, where some super nodes become part of the SUT,
transparently using some of the attached sensor nodes as their communication
interface. This allows modeling of diverse SUT configurations both in terms of
power supply, as well as, in terms of available computational capability;

• Hierarchical configurations, where the Ethernet backbone becomes part of the
SUT, allowing experimentation with mixed wireless/wired setups necessary
for evaluation of handover mechanisms or gatewaying schemes between WSNs
and Transmission Control Protocol (TCP)/Internet Protocol (IP) networks.
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6.3 CONET Testbed Federation Platform

Similarly to real deployments, the individual WSN testbeds—like the TWIST instance
at TKN—lock the evaluation of the system to one particular environment, complicate
the differentiation between the intrinsic properties of the SUT and the effect of the
particular features and external influences present at a given testbed site.

Testbed Platform Nodes Physical size Degree PL Cost PL/Cost Churn
[m2 or m3] Min Max

Tutornet (16) Tmote 91 50× 25× 10 10 60 3.12 5.91 1.9 31.37
Wymanpark Tmote 47 80× 10 4 30 3.23 4.62 1.43 8.47
Motelab Tmote 131 40× 20× 15 9 63 3.05 5.53 1.81 4.24
Kanseia TelosB 310 40× 20 214 305 1.45 - - 4.34
Mirage Mica2dot 35 50× 20 9 32 2.92 3.83 1.31 2.05
NetEye Tmote 125 6× 4 114 120 1.34 1.4 1.04 1.94
Mirage MicaZ 86 50× 20 20 65 1.7 1.85 1.09 1.92
Quanto Epic-Quanto 49 35× 30 8 47 2.93 3.35 1.14 1.11
Twist Tmote 100 30× 13× 17 38 81 1.69 2.01 1.19 1.01
Twist eyesIFXv2 102 30× 13× 17 22 100 2.58 2.64 1.02 0.69
Vinelab Tmote 48 60× 30 6 23 2.79 3.49 1.25 0.63
Tutornet (26) Tmote 91 50× 25× 10 14 72 2.02 2.07 1.02 0.04
Blazeb Blaze 20 30× 30 9 19 1.3 - - -

Table 6.1: CTP evaluation on multiple testbeds published in [71].
.

For example, Table 6.1 [71], shows a summary of an experimental evaluation of
the functional properties of CTP on the TKN instance of TWIST and eleven additional
testbeds. The results illustrate how important protocol performance parameters
like number of transmissions per successful delivery (Cost), average path length
in hops (PL), or parent change rate (Churn) are influenced by the different testing
environments. They suggest that the good performance of TinyCOPS when using
CTP as notification dissemination protocol (Section 5.6.2) is partially due to the rela-
tively mild RF interference conditions in TWIST, as compared to other testbeds like
Motelab [211].

The variability in the results underlines the need to cross-validate the perfor-
mance testing of WSN systems under different testbeds as a way of decoupling the
influence of the testing environment from the intrinsic properties of the SUT. Unfor-
tunately, the realization of such measurement campaigns is currently accompanied
by significant overheads in configuring the experiments and collecting the results
on the individual testbeds, since easy experiment migration is hindered by a lack of
common management, experiment specification and control infrastructure.

The goal of a testbed federation platform is to address some of these roadblocks by
developing a software platform that will enable convenient access to the experimental
resources of multiple testbeds organized in a federation of autonomous entities. To
this end, we have designed CONET Testbed Federation (CTF), a testbed federation
platform customized to the specific needs of the WSN technology. In the following we
describe the design principles behind the platform, the core functional decomposition
and service APIs, as well as their realization following the Representational State
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Transfer (REST) architectural pattern.

6.3.1 Design Principles

Our platform for federating WSN testbeds is built on top of a set of common abstrac-
tions for authentication and authorization; resource discovery and reservation; and
experiment specification and control. The integration APIs are light-weight, scalable
and extensible and aim to preserve high levels of autonomy for the member testbeds
in the federation. Due to the specific nature of the wireless medium, we are primarily
focused on facilitating experiment migration across the federation members, and not
in combining the federation resources into a single “virtual” testbed.

In the design of the platform we have followed a set of guiding principles:

Specialization Although it shares some common characteristic with other testbed
federation frameworks, the proposed CTF platform is carefully tuned to the
specific needs of the WSN testbeds. This specialization has enabled us to leave
out some complex features that are not applicable or not important for the target
domain, at the same time giving us opportunity to focus on the more important
aspects like the impact of thewireless communication on the resource allocation
problem, or the inclusion of tester controlled SUT mobility.

User-centricity In contrast to many other testbed federation frameworks that take
an institution centric approach, our platform puts the individual user in the
center of the design. It decouples service levels and policies from the question
whether a particular user belongs to a federation member institution or not. All
aspects of the service should be configurable and controllable at the granularity
of a single user. This design principle, for example, has direct implications
on the architecture of the AAA abstractions and has significant impact on the
openness of the platform.

Scalability A typicalWSN testbed is a large heterogeneous distributed system which
makes the task of integrating several such systems behind a common federation
platform particularly challenging. Addressing these challenges requires careful
engineering that leverages the best-practices learned from other successful
large distributed systems, like the Web. High scalability of the solution has to
be maintained by promoting stateless interactions and using caching whenever
possible.

Extensibility To be successful, the CTF platform has to be kept as simple as possi-
ble, but also modular and extensible, so new features and capabilities can be
organically added when they are needed. In contrast to many other testbed
federation frameworks, an explicit goal of the CTF platform is the openness
towards external service providers. The same APIs that are used internally to
build the higher-level federation services will be also made available to external
entities to promote integration with their services.
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Coexistence By focusing on a set of common, testbed-independent APIs, the CTF
platform will necessarily lack some specific services of the individual testbeds
that are valuable to the end-users. Thus, it is crucial to enable parallel use of
the native interfaces of the member testbeds and the federation APIs. The CTF
platform should not limit the autonomy of the members of the federation by
imposing only a single access-path to the resources of the individual testbeds.

Flexibility The usage of the CTF platform should not impose unnecessary constraints
on the development process on the user side. In particular, the platform should
be accessible using various programming languages and the users should
have freedom in selecting the level of abstraction overhead. This should be
achieved by offering a basic, language-agnostic set of API, that enables building
client-side solutions for raising the level of abstraction.

In the rest of the chapter we discuss how these high level principles have been
converted into concrete requirements for the overall architecture of the CTF platform
and the features of the core abstractions.

6.3.2 Functional Decomposition

The primary goal of the CTF is to enable convenient access to the resources of multiple
WSN testbeds, when organized in a loose federation of testbeds. To illustrate the main
architectural features and to establish some common vocabulary, we revisit the use
case of performing a cross-validation experimental study on a large number of WSN
testbeds.

Figure 6.3 depicts our baseline scenario S0, reflecting the existing service level. The
user U wants to perform a study comprised of a set of experiments E1, E2, . . . , EN that
need to be executed on a set of WSN testbeds: T1, T2, . . . , TN. Each testbed provides a
set of SUT resources R1, R2, . . . , RN necessary for the corresponding experiment.

As it can be seen, without a federation substrate, the user can access the resources
of the individual testbeds only over their native APIs: Ti API . This means that for
each experiment, and after completing the native authenticating and authorization
process, she needs to use a proprietary way to discover and reserve the required
resources, to define and control the experiment, and finally, to collect the results.

The user needs to do this on each testbed separately. For N testbeds, she has to
potentially use N different interfaces and processes. Without a federation substrate,
there is no way to reuse the authentication and authorization credentials, no way
to perform resource discovery across the multiple testbeds, no way to reuse the
experiment specification, no way to reuse the client-side code for the on-line control
of the experiment or for storing and post processing the results. In addition, there is
no way to share this content with other users, so they can repeat the experiment and
validate the results. There is also no common way to provide access to the results
to external service providers that can provide storage or post processing (statistical
analysis, plotting, etc.)
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Figure 6.3: Baseline scenario S0. The user can access the resources of the individual testbeds only over
their native interfaces.

The CTF platform tries to address these limitations. Due to the large variability in
the services offered by the individual testbeds this requires a two-step approach as
described in the following.

As a first step, a common abstraction over the existing capabilities of the testbeds
needs to be defined. This abstraction exports an interface, called Testbed Adaptation
API (TA API), that can be used by the users to access the resources on the individual
testbeds via a standardized interface. In this process of interface unification, some
specific features of the individual testbeds will undoubtedly remain unrepresented.
Due to this, as well as to our coexistence and autonomy principles, we expect that
this common interface will be used in parallel, and not instead of the native interfaces
ITi .

The TA API offers a new service level to the users, S1, leading to the scenario
depicted on Figure 6.4. Instead of using the various native testbed interfaces ITi as in
the baseline scenario, users can now access the resources over a standardized API.
When they need some testbed-specific capabilities they can always use the native
interfaces. By incorporating adequate arbitration mechanisms, the implementation
of the TA API will make sure that no conflicts in the access of the resources between
the native and the federation users can occur.

Although this service level provides a significant convenience gain with respect
to the S0 scenario, by using only the Testbed Adaptation API (TA API) we are still short
of providing some very useful services that abstract over the individual testbeds and
operate in the context of the global federation aggregate. For example, we can provide
a central place to store the definitions of the experiments, introduce a centralized
discovery and reservation system, a central repository of traces and results, etc. For
this we need an additional entity, a central CONET Testbed Federation Server (CTFS)
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Figure 6.4: Scenario S1. The Testbed Adaptation API enables standardized access to the resources on
the individual testbeds in addition to the native interfaces.

that will offer a second interface class, the Testbed Federation API (TF API).
The CTFS leverages the services of the individual testbeds, exported through the

standardized TA API, to build a higher level abstraction over the federation aggregate,
thus offering new service level to the user, S2.

Figure 6.5 illustrates the relation between the individual testbed servers exporting
the native and adaptation interfaces, the federation server and the users (both native
and federation) plus external services in the S2 scenario. The presented architecture
has the flexibility to satisfy the major requirements outlined in our motivating use-
case, and represents the basis for the CTF platform solution.

6.3.3 RESTful Implementation

The overall architecture of the CTF platform can be realized using many different
architectural patterns that support rich interaction between a set of distributed com-
ponents. Taking into consideration the main design principles presented in Sec-
tion 6.3.1, we have decided to base the CTF implementation on the Representational
State Transfer (REST) architectural style [53].

REST is a set of design constraints for developing rich resource-oriented systems
that mirror the scalability and the flexibility of the Web. In the following we provide
a short overview of the core properties of systems following the REST architectural
style—so called RESTful systems–and their benefits in the context of the CTF platform.

Resources

In contrast to Service Oriented Architecture (SOA) and other RPC-based architectural
styles where the data is kept private, encapsulated and hidden behind the processing

140



6.3. CONET Testbed Federation Platform

T1

R1

T1 API

TA API

Ti

Ri

Ti API

TA API

TN

RN

TN API

TA API

U

native access

CTFS

TF
A

PI

TF API

federated access

standardized access

Figure 6.5: Scenario S2. The CONET Testbed Federation Server leverages the services of the individual
testbeds, exported through the standardized Testbed Adaptation API, to build a higher level
abstraction over the federation aggregate. The new services are made available to the user
over the Testbed Federation API.

components, in REST, the state and the nature of the data elements play a central role.
The resource is the main abstraction of information in a RESTful system. The

resource representation captures the current or intended state of the resource. The
components (clients, servers, etc.) act on the resources by transferring and modifying
their representations. A resource identifier is used to uniquely identify the resource
involved in the interaction.

Following the principles of the REST architectural style, we have implemented
the two interfaces of the CTF platform as a collection of interconnected resources.
Figure 6.6 illustrates the resource model for the Testbed Federation API (TF API). The
graph uses the “crow’s foot” notation to depict the cardinality of the relations between
the individual resources.

Resource Representations

Resources are abstract entities that can only be manipulated through their repre-
sentations. A resource representation is a sequence of bytes, accompanied by repre-
sentation metadata that describes those bytes. The components in a RESTful system
use media types to differentiate between the different possible representations of a
resource. One scheme for specifying the media types in the system are Multipurpose
Internet Mail Extensions (MIME) types [60].

The agreement on a set of common media types, together with the remaining
architectural constraints, give messages in a RESTful system a “self-describing” prop-
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Figure 6.6: Resource graph implementing the TF API.

erty. Using only the media type as indication, the components in the system can
safely perform many useful operations without having to look into the body of the
message.

The resource model and the definition of the media type(s), used for representing
the resources and driving resource and application state, forms the main cognitive
effort in designing a RESTful system. Since all components in the system have to
agree on the media types used for representing the resources, there is clear benefit
in reusing a well defined media type from the MIME register whenever possible.
Unfortunately, due to the specifics of the problem that the CTF platform is addressing,
we were not able to follow this approach. Instead, we have decided to use a custom
media types encoded with in a standard data interchange format.

In contrast to the existing testbed federation frameworks that use documents
based on XML (WISEBED uses WiseML, ProtoGENI uses Rspec, etc.), we have opted
for JavaScript Object Notation (JSON) [35] as the serialization method for our re-
sources.

JSON is more light-weight and readable then the equivalent XML serialization and
is especially suitable for exchanging general data structures. Code for parsing JSON-
encoded data exists for large number of programming languages. The use of JSON is
also very convenient when developing rich in-browser client side applications for
interacting with the CTF platform. Because all JSON text is legal JavaScript code, it is
very easy for a JavaScript program to convert the serialized data into an active object.
Instead of using a heavy-weight parser, like in the case of XML, one can just use the
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built-in eval() function, passing the JSON encoded representation (after a security
check) as parameter. Figure 6.7 illustrates the serialization of the Node resource.

{
"uri":"http://cotefe.net/testbeds/123/nodes/456",
"name":"2343-4A23-4KJ8-5FR5",
"media":"application/ctf.Node+json",
"socket":"http://cotefe.net/testbeds/123/sockets/671",
"platform":"http://cotefe.net/platforms/894",
"sensors":"http://cotefe.net/testbed/123/nodes/456/sensors/",
"actuators":"http://cotefe.net/testbed/123/nodes/456/actuators/",
"power":"true",
"image":"http://cotefe.net/users/789/images/274"

}

Figure 6.7: JSON serialization of the Node resource.

The default media type for JSON-encoded representations is application/json.
Following the approach used in the Sun Cloud API [110], for our custom JSON-based
representationsweuse themedia type designation application/ctf.{resource}+json,
where {resource} stands for the name of the particular resource that is being repre-
sented.

Resource Identifiers

This ability to uniquely identify any resource in the system is a crucial characteristic
of RESTful systems and represents the basis for their openness and composability.
Although REST does not impose a specific naming scheme for the resource identifiers,
in practice they typically take the form of Universal Resource Identifiers (URIs), as
defined in the RFC 3986 [13].

There are two major subtypes of URIs: those that also include the “location” of the
resource, so that the URI can be immediately dereferenced to get the representation
of the resource (i.e. Universal Resource Locators (URLs)) and those that only provide
a unique name (Universal Resource Names (URNs) or other Universally Unique
Identifier (UUID)-based solutions) without the location part.

The URN identifiers are more stable (for example, a URL can be rendered invalid
if the domain name of the server exporting the resources is changed). Many existing
testbed federation frameworks like ProtoGENI [169] andWISEBED [218], use URNs as
their default identification mechanism. The URNs stability, however, comes at a cost
of increased administration overheads and loss of flexibility. The URN namespaces
typically need to be registered with an external register [38] like IANA [94] and one
loses the standardized dereferencing capability of URL.

We believe that the benefits that URLs carry as common addressing and nam-
ing scheme outweigh their shortcomings. The CTF platform uses URLs as resource
identifiers exclusively. Any problems associated with non-persistent URLs on the
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individual testbeds will be handled using simple URL rewriting and redirecting rules
in the federation components.

Uniform interface

REST mandates a uniform interface between the components in the system. This is the
most fundamental differentiation from the other networking styles. In contrast to
the rich “verb” space in SOA and other RPC architectural styles, where each object
can export different set of methods that operate on its state, in RESTful systems all
resources are manipulated with exactly the same method set. In a similar way like
the use of standard media types, the use of a generic interface constraints the design
freedom but brings significant benefits in return.

Since all resources in the system can be manipulated with the same method set,
the components don’t have to implement specialized code for accessing different
resources in the system. Also, the semantics of each operation is well defined and
uniform across all resources and components. This leads to an interface that is
easy to understand and simplifies the interoperability between large number of
uncoordinated actors. The uniform method set also opens the possibility of using a
standardized set of return values to inform the caller about the success of the method
invocation.

In RESTful systems implemented using Web technologies, the standard Hypertext
Transport Protocol (HTTP) method set serves the role of a uniform interface. The
HTTP 1.1 standard [54] defines eight methods: OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE and CONNECT, out of which the subset: GET, PUT, DELETE and
POST are most commonly used in practice. Correspondingly, the HTTP status codes
serve the role of return codes.

Table 6.2 provides a succinct overview of the semantics of the most common HTTP
methods when applied in a RESTful context.

HTTP Method Properties Semantics

GET Safe, Idempotent Retrieve a representation of the resource identified by
the Request-URI without client-relevant side effects

HEAD Safe, Idempotent Same as GET, but only retrieve the header information
without the message-body

PUT Idempotent Update the resource identified by the Request-URI
with the representation contained in the message-
body

DELETE Idempotent Delete the resource identified by the Request-URI
POST Not safe, Not idempotent Accept the representation in the message-body as a

new subordinate of the resource identified by the
Request-URI; Create a new resource without know-
ing the final URI; Append to the state of the resource
identified by the Request-URI;

Table 6.2: Uniform interface formed by the HTTP method set.
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The “Property” column in the table illustrates how having a common set of
methods with fixed semantics that is applicable to all resources in the system also
leads to a more scalable and robust system.

Issuing a HTTP GET fetches the representation of the resource identified by the
URI without any “strings attached”. Just like HEAD, this method is safe. It does not
result in any change of client-relevant state at the server. Due to this properties, GET
can support very efficient and sophisticated caching schemes. At the same time, the
GET method is idempotent. The client is allowed to issue the same call one or ten
times, if he wishes to do so, and the effects to the state of the identified resource at
the server is guaranteed to be the same as if he made the call only once. The same
idempotent property is shared by the PUT and the DELETE methods. If the client
attempts to create or delete a resource and does not receive a positive status code,
she knows that she can simply reissue the same request without relevant side-effects.

The HTTP POST method is neither safe nor idempotent. Making two POST re-
quests to a collection resourcewill likely result in creation of two separate subordinate
resources in the collection. The same applies when POST is used in a non-RESTful
manner as a way to tunnel data to an arbitrary data-handling process. Because of
this, the use of the POST requests has to be limited only to those scenarios where the
safe or idempotent methods are not sufficient. In many cases a POST request can be
avoided by reorganization of the resource model or by introducing a new resource
representing the “result” of the indented activity of the original POST request.

The CTF platform uses the reduced HTTP method set described in Table 6.2 as
its uniform interface. Apart from the scalability and robustness benefits explained
previously, this also allows clients to cleanly separate the code that deals in generic
way with the issuing of the request and the interpretation of the status codes with the
service specific aspects that are part of the handling of the resource representations.

For example, fetching information about a particular node in a testbed would be
implemented by a GET request on a node resource URI. The same code that handles
the GET request can also be used for fetching information on a given platform, only
the target will now be a platform resource URI. Similarly, the code that handles the
PUT request for creating a new node resource at a given node URI can be shared with
the code for creating a new binary image at a given image resource URI.

This should be compared with classical SOA and RPC styles where there are
multiplicity of methods taking the role of the uniform method set. For example,
the WISEBED API has methods like getNodeList, getCapabilities, flashImagesTo-
SensorNodes, etc. Every service effectively speaks a different language and both the
client and the intermediary components (caches, proxies, etc.) can not make any
generic assumptions about their semantic properties.

Statelessness

All REST interactions are stateless. In Web-based RESTful systems this means that each
HTTP request should happen in full isolation and the client has to provide all of the
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information necessary for the server to understand the request, independent of any
requests that may have preceded it.

This constraint, effectively moves the burden for maintaining the application state
from the server to the client. The resource state is maintained on the server and it is
the same for every client. If one client changes a particular resource state, this change
is made visible to all other clients. It is the responsibility of the client to maintain
any state that is specific only to that client.

The statelessness constraint frees the server from the need to retain application
state between the individual requests, improving the scalability of the system. It
enables parallel processing of the requests without further coordination apart from
the resource state. It also allows intermediaries to view each request in isolation.
For example, a cache server can make a decision whether to cache or not a result
from a request without fearing that state from some previous requests might affect
its validity.

Connectedness

Resource representations in RESTful systems contain links to other related resources,
allowing the client to navigate to them instead of using out-of-band information about
the right URI where a given resource representation can be accessed.

A client should be able to effectively use a RESTful APIs without any prior knowl-
edge beyond the initial URI and understanding of the standard media types appro-
priate for the specific application domain. From the initial URI, all application state
transitions must be initiated by the client by selecting among a set of valid next states
which are provided by the server as part of the representations of the manipulated
resources.

Following this REST constraint, all CTF resources are interlinked (Figure 6.6) and
the servers guide the clients through the application state. The testbed servers remain
in full control of their URI namespaces. This allows unconstrained evolution of the
server-side services by limiting the effects that changes have on client-side code.

The connectedness principle is the main reason why the CTF platform is defined
through its resource model and not through the URI space as usual in traditional
non-RESTful Web services. As long as the client understands the media types used
for representing the CTF resources, they can effectively access all services without
prior knowledge of the URI hierarchy.

API Invocation Example

In Figure 6.8 we illustrate a (simplified) invocation of the TF API, intended to register
a new experiment on the testbed. The client initiates the process by issuing a POST
request to the CONET Testbed Federation Server (CTFS) host cotefe.net, using the
identifier of the experiments collection resource, associated with the project number
456, /projects/456/experiments as target. The content of the request is a JSON-serialized
representation of an skeleton Experiment resource that contains essential data about
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like the name of the experiment, the user, associated project, publicity level, etc.
Upon successful processing of the request, the server replies with the standard
HTTP code “201 Created”, and provides the identifier of the newly created resource
http://cotefe.net/projects/456/experiments/789.

POST /p ro j e c t s /456/experiments
Host : c o t e f e . net
Accept : app l i c a t i on/ c t f . Experiment+ j son
Content−Type : app l i c a t i on/ c t f . Experiment+ j son

{
"name" : " Test ␣Experiment " ,
" desc r ip t i on " : "A␣simple␣ t e s t ␣ experiment " ,
" user " : {

" ur i " : " ht tp :// co t e f e . net/users /123 " ,
"name" : " John␣Smith " ,
"media_type " : " app l i c a t i on/ c t f . User+ j son "

} ,
" p ro j e c t " : {
" ur i " : " ht tp :// co t e f e . net/p ro j e c t s /456 " ,

"name" : " Test ␣ P ro j e c t " ,
" media_type " : " app l i c a t i on/ c t f . P r o j e c t+ j son "

} ,
" sharing " : " publ ic "

}

HTTP/1.1 201 Created
Locat ion : ht tp : / / c o t e f e . n e t / p r o j e c t s / 4 5 6 / e x p e r i m e n t s /789

Figure 6.8: Simplified example of registering a new experiment on the CTF using the TF API.

In most cases, this exchange between the clients and the CTFS will be hidden
behind convenient programming libraries (for programmatic experiment specifica-
tion and control) or behind a rich Web client interface (for interactive experiment
specification and control).

6.3.4 Summary

We have presented the general design and the RESTful implementation of the CONET
Testbed Federation (CTF) platform. We are currently in the process of implementing
the first prototypes for the core interfaces. We are developing TA API implementations
for TWIST and for several other Cooperating Objects Network of Excellence (CONET)
testbeds. For the implementation of the TF API, we have selected the Google App
Engine (GAE) framework [180]. The platform as a service model provides us with
the required reliability and flexibility and allows us to transparently scale the im-
plementation as new testbeds and users are added to the federation substrate. The
proper evaluation of the services of the CTF platform using these prototypes remains
important aspect of our future work.
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6.4 Evaluation

In this section we evaluate the TWIST testing architecture using its instance in the
office building of our research group on the TU Berlin campus. The evaluation of
TinyCOPS, the prototype implementation of the DASA interoperability anchor (Sec-
tion 5.6.2), already demonstrated how the experimental capabilities of the testbed can
be effectively applied towards testing the functional and non-functional properties
of large-scale WSN systems. In the following, we describe in detail the used infras-
tructure and provide analysis of the operational data collected during the operation
of the testbed in the last three years.

6.4.1 TWIST instance at TKN

Our local instance spans three floors of the TelecommunicationNetworksGroup (TKN)
office building at TU Berlin’s campus. The testbed is currently equipped with 204
SUT nodes (102 telosb and 102 eyesIFX nodes), making it one of the largest academic
WSN testbeds.
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Figure 6.9: TWIST node deployment pattern on the 4th floor of the TKN office building. The squares
indicate the locations of the telosb nodes and the circles the locations of the eyesIFX nodes.
The same pattern is mirrored on the remaining two floors.

The placement of the nodes is kept as regular as possible, with four to eight sockets
in each room, depending on its size. This provides sufficient density for capturing
the coarse spatial distribution of measured parameters like light and temperature
inside each room, and allows cross-calibration of sensors of the same type. The
node deployment pattern for the two SUT platforms is shown in Figure 6.9. Sparser
placement patterns can be obtained using the power supply control feature of the
testbed architecture (Section 6.2.3).

148



6.4. Evaluation

Hardware Infrastructure

Figure 6.10 schematically depicts the network topology of the testbed backbone
infrastructure. Behind the outer firewall, the super nodes and the testbed server
are located in a protected network segment allowing increased security and easier
service invocation. The web server is isolated in a perimeter segment providing
constrained remote access to the testbed services.

Figure 6.10: Network topology of the TWIST instance in the TKN office building.

Out local instance of TWIST leverages the Network Storage Link for USB 2.0 Disk
Drives (NSLU2) device from Linksys (depicted on Figure 6.2(b)) as super node plat-
form. The NSLU2 has two USB 2.0 ports, uses an IXP420 processor from Intel’s XScale
family (clocked at 133 MHz), has 32 MB of SDRAM and 8 MB of flash as persistent
storage. One particular feature of the IXP4xx family are the two integrated “Network
Processor Engines” that implement, among else, two full Ethernet MAC and physical
layer units along with the related packet-processing functionality. The NSLU2 devices
are connected via wired Ethernet to a set of Power over Ethernet (PoE) switches which
allow programmatic power supply control of the super nodes in the same fashion as
the USB hubs allow programmatic control of the power supply of the WSN nodes.

Our current deployment employs 46 NSLU2 and 50 USB hubs which interface with
the testbed sockets using 1335m-long USB cabling (515m passive cables and 820m in
active cables). The cables are routed using cable channels mounted along the walls
and on the ceiling. To connect a node to a socket, it is simply connected to the USB
cable and affixed to the cable channel as shown in Figure 6.2(a). As a result, the nodes
are mounted about 4 cm below the ceiling.

For our server infrastructure, we are currently using two Intel Pentium 4machines
with 3.2 GHz CPU, 2 GB of RAM as well as 4x200 GB of hard disk space, organized
as RAID 10 for maximal availability.
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Software Infrastructure

To facilitate their use as super nodes, we have replaced the Linksys-supplied firmware
on the NSLU2 platform with a customized OpenSlug [155] distribution of Linux.
OpenSlug is a variant of the OpenEmbedded [123] source distribution of Linux that
is specially adapted for use on embedded devices.

The firmware customization is motivated by the need to change the default “self-
healing” behavior of the Linux kernel when dealingwith errors in the communication
between the USB host controller and attached USB hubs. We rely on the user-space
libusb library for injecting control messages that trigger the explained port power-
control functions. This library, however, bypasses the USB hub drivers in the Linux
kernel. When there are hubs downstream from the powered-off port (i.e. we are
controlling the power of a sensor node that is connected with an active cable), this
will cause loss of the keep-alive messages between the host controller and the USB
hub, which in turn causes the kernel to reset and subsequently re-power the whole
USB subsystem, including the sensor node that we wanted to turn-off.

The operating software support for the web and testbed servers is based on Linux:
a vanilla CentOS 5 distribution on the web server, and a Debian Etch distribution on
the testbed server. The central testbed database is implemented using PostgreSQL.
The root and swap file systems of the super nodes are centrally hosted on the testbed
server and served over Network File System (NFS). For the management of the
super node network, the testbed server also runs all the necessary system services
like Dynamic Host Configuration Protocol (DHCP), Domain Network System (DNS),
Network Time Protocol (NTP), etc.

On each super node, a number of Python scripts are deployed, supporting the
basic testbed functionality like sensor node programming, executing power supply
control, injecting and collecting data, and more. The invocation of these actions is
controlled by a daemons resident on each super node that receive commands from
the testbed server using RPC.

(a) Web interface for job registration and control. (b) GUI for controlling the power supply to the SUT nodes.

Figure 6.11: TWIST control interface.
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All of the available testbed services are exported to the users through a rich web
service API, hosted on a dedicated web server, situated in a protected perimeter
network segment (Figure 6.10). To guarantee maximal scalability and availability,
the web server and the supporting background services are implemented using
Twisted [200], a high-performance event-driven networking engine written in Python.

Theweb service API provides support for job scheduling and job control including
firmware programing, power-supply control and automatic tracing. The API can be
accessed either interactively, through the testbed web site (Figure 6.11(a)), or through
programming libraries like cURL, enabling the development of rich interaction clients
like the one depicted in Figure 6.11(b), used for monitoring of the routing topology
and interactive node fault injection (using the SUT power supply capability of TWIST).
In addition, the testbed users can directly interact with the serial interfaces of the
SUT nodes through dedicated Secure Shell (SSH) tunnels.

6.4.2 Power-supply Control

The power-supply control capability using the USB 2.0 standard is one of the main
features of the TWIST architecture. Depending onwhether the sensor node attached to
the socket has a battery or not, the power supply control capability of TWIST enables
four different power-supply transitions (Section 6.2.3).

In the following, we evaluate the impact of these commands on the supply voltage
of the attached WSN nodes. Figure 6.12 shows the time response of the MCU supply
voltage on an eyesIFXv2 and on a telosb node during two such transitions, captured
using a high-speed digitizer. The nodes are connected to a Linksys USB2HUB4 hub
(shown in Figure 6.2(b)).

The results confirm that the transitions are tightly time bounded, with the MCU
voltage dropping below the brown-out protection point of 1.8V within 20ms of the
hub receiving the power-off command. The same tight bounds are observed for
powering-on as well as for the transitions between USB and battery-powered states.
The small differences in the response between the two platforms are due to different
designs of the respective power-supply subsystems. Furthermore, our evaluation
of the USB cabling has shown that up to 10m the length of the USB cable between
the controlling hub and the sensor node has negligible influence on these delays.
This quick time response makes the power-control capability one of the most useful
features of the TWIST architecture.

It is important to note that in our testing we have detected several hubs on the
market that claim to fully support the USB 2.0 standard, but fail to support the port
power-control feature. This function is rarely used by “normal” users, and it requires
additional power-control circuitry in the hub, so we suspect that many vendors have
decided to silently drop this feature. From our extensive testing of different hubs, we
can conclude that the problem is present in almost all hubs having a controller chip
fromGenesys Logic. The ones that fully support the standard tend to have a controller
chip produced by NEC. In particular, we can confirm the proper functioning of the
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Figure 6.12: Time response of the sensor node MCU supply voltage after the respective USB hub has
received a port power-control command from the testbed.

DUB-H4 rev.A1 hub from D-Link (now out of production, the later revisions B1, B2
and B3 silently ignore the port power-control commands) and the USB2HUB4 from
Linksys which is used at our local TWIST instance.

6.4.3 Testbed Performance

Our testbed infrastructure is fully instrumented using Simple Network Management
Protocol (SNMP). The monitoring data is visualized using Cacti [22], a front-end for
the RRDtool [179] for collecting and processing time-series data in Round Robing
Database (RRD) format. The constant monitoring of the infrastructure health and the
automatic notification of failures has been crucial aspect for maintaining high levels
of availability of the testbed resources. A second source of valuable operation data is
the testbed database that contains records for the performed experiment jobs since
the activation of the testbed. In the following we analyze some of the collected data
and use it to illustrate selected aspects of the testbed operation.
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Time Synchronization and Availability

The causality analysis among a sequence of distributed events generated by the SUT
nodes is a fundamental task in distributed testing. The standard solution involves
comparing the event time-stamps and requires synchronization between the SUT
nodes where the time-stamps are generated.

The TWIST infrastructure offers a simpler but less precise alternative. When the
SUT dumps debug data, this data can be time-stamped by the super nodes. Fig-
ure 6.13 shows an excerpt of a the automatic tracing logs generated by TWIST with
time-stamped SUT messages using the testing infrastructure. As long as the syn-
chronization of the distributed testbed infrastructure remains better than the event
generation period, the relative ordering of the events can be correctly reconstructed
from the time-stamps.

. . .
# 1291989432.026970 Connection es t ab l i shed to node 196
# 1291989432.027328 Connection es t ab l i shed to node 200
# 1291989432.027493 Connection es t ab l i shed to node 199
# 1291989432.027661 Connection es t ab l i shed to node 202
# 1291989432.027832 Connection es t ab l i shed to node 203
. . .
1291989432.041105 196 00007 e00ce163f8100ba00ce000a0100070110000201dd590008000700cb
1291989432.041181 199 00007 e00e1163f8100e100e100e00100070009000102e1680007000500e8
1291989432.041146 200 00007 e00f9163f8100f900f9000a0100080008000101d556000400040101
1291989432.043344 202 00007 e0053163f8100530053000a0100080008000501de6900070004005b
1291989432.041216 203 00007 e0057163f810057005700cb0000070011000103dc66000a0007005e
. . .

Figure 6.13: Excerpt of a TWIST trace file, showing testbed-based time-stamping of the SUT debug
messages. The time-stamps are stored in UNIX time representation, showing the number
of seconds from 01/01/1970.

We use the Network Time Protocol (NTP) [144] to keep the testbed infrastructure
synchronized. To tune the performance of the protocol we have disabled the peer-to-
peer mode and rely on periodic synchronization broadcasts from the testbed server
that synchronizes the super nodes. Figure 6.14 shows the maximal time synchroniza-
tion error (maximal offset across all super nodes) in the testbed, collected from the
NTP daemons on the super nodes. The graph covers the last two years of operation
of the testbed, and each data point represents the maximal time synchronization for
a 24-hour period.

The graph shows rare peaks in the synchronization error (bounded below 100ms),
which are associated with disruptions in the testbed infrastructure like replacements
of failed super nodes hardware or rebooting of the time synchronization server. The
LOESS curve and its 95%̇ confidence interval shows that the average time synchroniza-
tion error remains lower than 10ms. The curve also shows visible improvement in
the error after 09/2009, when the super nodes were migrated to PoE, indicating that
the stability of the power supply has noticeable influence on the quality of the time
synchronization. During 2010, the average error remained in the range of 1–2ms.
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The SUT platforms send packets at most every fewmilliseconds, making the precision
of the testbed-based time-stamping sufficient even for high-load scenarios.
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Figure 6.14: Maximal time synchronization error (NTP offset) in the protected network segment con-
taining the super nodes and the sensor testbed.

The super nodes are central element of the TWIST testbed infrastructure and their
availability is good indication for the overall health of the testbed infrastructure.
Figure 6.15 provides an overview of the super node availability data over the last
two years of operation of the testbed. The gray bars show the average number of
accessible super nodes in a 24-hour period, while the thick black line represents the
total number of deployed super nodes.

The data confirms the high availability of the testbed infrastructure in the sur-
veyed period. Apart from few maintenance events when all of the super nodes were
shortly unavailable, typically we experience about 1–2 super node errors per week,
which have to be remedied using the remote power supply control built on top of
the PoE infrastructure. The noticeable degradation of the availability in the last three
moths of operation is the result of the extensive reconstruction activities in the TKN
building which have negatively affected the affect the availability and the stability of
the testbed infrastructure.

Usage Patterns

The TKN instance of TWIST operates under a very liberal usage policy that provides
full open access to the testbed infrastructure to all academic researchers, while
maintaining priority access for the members of the TKN group. In contrast to most
other public WSN testbeds, our usage policy does not impose limitations on the
duration of the testbed jobs. This fact, combined with the long operational lifetime
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Figure 6.15: Number of accessible super nodes, with respect to the total deployment.

of the testbed, makes the archived records of the testbed jobs, a valuable source of
information about the experimental needs of the researchers.

Figure 6.16 shows a histogram of the number of testbed jobs completed per month
of operation of the testbed during the last three years. The data is clustered based on
the SUT platform used in the experiment. The results show satisfactory utilization
of the testbed resources and clear preference for experiments using the tmote sky/
telosb platform. The large peak in performed experiments in 05/2008 is a result of
an extensive experimental evaluation of the Arbutus data collection protocol [170].

Figure 6.17, shows the empirical Cumulative Distribution Function (CDF) of the
experiment duration. From one side, the results show that 50% of the experiments
took less than 3 hours. From the other side, 20% of the jobs on our testbed lastedmore
than one day, with the longest recorded job experiment, using the eyesIFX nodes,
taking 36 days and 5 hours. The results confirm the benefit of having significantly
longer experiment slots than the typical 30minute to 120minute limits imposed by
the other public WSN testbeds. Of course, the need for longer experiments needs
to be checked against the need for fair access. When the utilization of the testbed
increases further, more sophisticated scheduling solutions like Mirage [32] might be
needed to achieve this balance.

6.5 Related Work

Motelab [211] is a very popular WSN testbed solution. It provides an Ethernet
back-channel to each sensor node in the network by attaching a dedicated Stargate
board [36]. The interaction between the users and the testbed is batch-oriented and is
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Figure 6.17: Empirical CDF of the duration of the testbed jobs.

controlled via a dynamic web interface supported by a back-end database. Like Mote-
lab, the Kansei testbed [202] also uses Stargate boards, but it allows richer interaction
with the SUT. It uses the EmStar development system for Linux-based WSNs [69]
and, similarly to TWIST, allows evaluation of both flat and hierarchical WSNs with
different communication technologies. The WASAL testbed [216] provides a wired
back-channel using Serial-to-Ethernet devices. These devices act only as commu-
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nication bridges and range extenders, not actively participating in the distributed
execution of the testbed functions.

Despite having dedicated, wired back-channels, none of the testbeds listed above
offers any power control functions. This capability is one of the main features of
TWIST, contributing to its high versatility. Also, they use a one-to-one mapping
between the sensor nodes and the “concentrators”. This and the custom nature of
the “concentrators” make the above solutions much more expensive than TWIST.

The Omega architecture [201] resembles the lower tier of TWIST. Both testbeds
rely on the standardized USB interface available on some of the newer mote platforms,
and both use USB-hubs to bridge the 5 m length barrier. Nevertheless, the Omega is
not utilizing the features of the USB 2.0 standard and is not exporting a power-control
function to its users. Its design is also less scalable. The USB-hub daisy-chaining
approach taken in Omega can only scale up to 127 USB devices. With the super node
tier, TWIST is not suffering from such restrictions.

Platforms with two wireless transceiver can also be used for out-of-band signal-
ing [49]. While more powerful than single channel solutions like [181], this approach
shares many of its problems. For example, switching a single node on and off is
nontrivial and an emulation of this feature is needed. Doing this simultaneously
and reliably for a large number of nodes demands sophisticated protocols to ensure
that all targeted nodes have indeed received the command. These protocols must
share the scarce node resources with the SUT application and protocol stack code.
Additionally, the lack of cabling requires that the node batteries are changed from
time to time, creating significant maintenance work for the testbed owner.

6.6 Summary

In this chapter we have introduced the design of TWIST which addresses many of
the requirements we have identified for WSN testbeds: support for different applica-
tion network architectures, control over the network topology, fast reprogramming,
distributed debugging and a high degree of scalability.

The feasibility of the TWISTdesign has been demonstrated by building a large-scale
instance in our office building. The TKN instance of TWIST is one of the largest publicly
accessible WSN testbeds and is being successfully used by the research community in
support of their disseminating activities. TWIST leverages affordable hardware and
on open-source software. Our own software components are made available to the
community via the testbed website. This makes our architecture a valuable testbed
template which has already been instantiated by several external groups [52, 195].

To address the existing roadblocks in performing cross-validation studies on
multiple WSN testbeds, we have designed a RESTful platform that enables convenient
access to the experimental resources of multiple testbeds, organized in a federation
of autonomous entities. The platform is built on top of common abstractions for
authentication and authorization; resource discovery and reservation; and experi-
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ment specification and control. The federation APIs are light-weight, scalable and
extensible, and aim to preserve high levels of autonomy for the member testbeds.
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CHAPTER 7
Conclusions

7.1 Double-anchored Software Architecture

The current software development process inWSNs is characterized bymany inefficien-
cies. The application-specific nature and the constrained resources push developers
into closed and vertically-integrated solutions that impede design and code reuse
and hinder faster growth. Developing applications is hard and requires expertise
across the technological stack, starting from the hardware platform, communication
protocols, sensing stack, up to the application domain.

In this dissertation we have argued about the benefits from introducing a broad
domain-specific software architecture for WSNs that can codify the functional de-
composition of the system and lay foundations for a more structured development
approach. To this end, we have proposed the Double-Anchored Software Architec-
ture (DASA) for WSN, a novel architectural framework that balances between the need
for stable abstractions and code reuse and the need to optimize the system to the
specific requirements of the target application and hardware.

DASA is based on careful identification of those parts in the software stack where
interface fixation can maximize the reuse gains, and on identification of the parts
with decisive impact on the fidelity and the efficiency, which should be kept flexible
to enable target-specific optimization. Our architectural framework identifies two
anchorage zoneswhere rigidity can contribute towards increasing the decoupling and
the reuse in theWSN software development process: a portability anchor, that abstracts
the local services provided by the underlying hardware; and an interoperability anchor
that abstracts the services in remote contexts and allows more rapid development of
distributed WSN applications.
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7.2 Portability Anchor

The lower anchor in DASA addresses the problem of complexity hiding and porta-
bility in the hardware abstraction code. Its interfaces shield the rest of the system
from the intricacies of low-level hardware access, enabling easy development of
portable service and application code. At the same time, the anchor makes platform-
specific optimizations possible when the fidelity and efficiency costs of the portability
abstractions become unacceptable.

When we started with our work on the portability anchor, all popular WSN exe-
cution environments lacked a clear organization of the hardware abstraction code
and exported ad-hoc abstraction interfaces that were strongly biased by the features
of particular hardware platforms. Through our experience with porting different
hardware platforms on these early WSN operating systems, we realized the bene-
fits of separating between the development of complexity hiding abstractions and
their equalization across different hardware platforms. This led us to the three-layer
hardware abstraction architecture that gives the DASA portability anchor its flexibility.

We applied these insights into the design of TinyOS 2.x, a popular execution
environment for WSN, as one of its main design features. Currently, more than ten
TinyOS Enhancement Proposal provide detailed specification for service abstractions
like timing, communication, sensing, storage, power management, etc., aligned with
the decomposition principles of the portability anchor. These specifications are
supported by reference implementations that collectively comprise a broad prototype
of the proposed anchor architecture. In this work we leveraged the TinyOS 2.x
reference implementations to evaluate the proposed portability anchor design. Using
a combination of micro-benchmarks and test applications we demonstrated the
successful achievement of the design goals and illustrated the flexibility in balancing
between the need for reuse and the fidelity costs of the complexity hiding.

The proposed design of the portability anchor has been currently validated only
in the specific context of TinyOS. An important direction of future work is to evaluate
the possibilities for expanding the architectural principles of the portability anchor
acrossmultiple WSN execution environments. TheWASP project [157] follows a similar
goal of establishing an OS-independent abstraction interface. Among other things,
this would facilitate the development of hardware and OS-independent protocol
stacks, direction promoted by the OpenWSN [158] project.

We see several challenges that have to be met. The differences in the code organi-
zation model in the different execution environments represent the first roadblock.
DASA assumes a component-based organization, but due to the source-level focus of
the specification and the granularity of the design, we believe that the architectural
constraints can be easily applied to other domains. More challenging difficulties
can arise due to “impedance mismatch” in the API design philosophies. The DASA
portability anchor promotes wide and expressive interfaces, supported by extensive
compile-time checking which can be hard to reconcile with narrow, POSIX-like de-
signs like the one used in MantisOS. Finally, the differences in the synchronicity of
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the service invocations would need to be addressed. Unconstrained access to the
hardware resources, as promoted by the Hardware Adaptation Layer (HAL) of the
DASA portability anchor typically implies asynchronous access. This can be a problem
for those WSN execution environments that only support blocking semantics.

7.3 Interoperability Anchor

The interoperability anchor in DASA addresses the problem of providing interop-
erable access towards the system services both in local and in remote context, as
basis for a more rapid development of distributed WSN applications. The anchor
exports a customized Content-Based Publish/Subscribe (CBPS) service that is fully
decoupled from the underlying services, including the communication stack. This
decomposition strives to provide to the application developer simple and flexible
means for adapting the service to the specific needs of the target application.

The design of the interoperability anchor is optimized to the specific needs of
resource constrained WSN platforms. Consequently, it does not provide rich mecha-
nisms for run-time adaptation like introspection and reflection. Most of the config-
urability freedom is limited to compile-time. For run-time signaling, DASA relies on
explicit exchange of metadata among the components in a local execution context, as
well as across different WSN nodes and contexts.

To evaluate the design of the DASA interoperability anchor we have developed
TinyCOPS, a prototype implementation in the context of the TinyOS execution en-
vironment. Using TinyCOPS, we have experimentally demonstrated the flexibility
and extensibility of the design and its ability to support different communication
protocols and interaction patterns. Our experience with the prototype framework
suggests that by careful component decomposition and interface design, it is indeed
possible to achieve a good balance between efficient resource usage and reusable
software design, which are the core design goals of DASA.

The presented design of the interoperability anchor in DASA can be extended in
several directions. One area of interest is the better integration of efficient service dis-
covery mechanism on top of the CBPS service [83, 183]. Another promising avenue of
future work is to explore gateway solutions that will enable transparent bridging be-
tween the CBPS service of the DASA interoperability anchor and external data-centric
frameworks based on publish/subscribe extensions of the Extensible Messaging
and Presence Protocol (XMPP) [143], Google’s PubSubHubbub protocol [73] or pop-
ular MOM solutions like Advanced Message Queuing Protocol (AMQP) [205] and
ZeroMQ [223].

7.4 Distributed Testing Infrastructure

DASA promotes a decoupled software development process in which the principles of
“black-box” reuse can lead to significant reduction in the development overheads. This
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compositional freedom, however, has to be supported by stronger integration testing
that will validate the semantics of the services and their non-functional properties.
This process requires distributed testing infrastructure that will allow realistic but
controlled testing at deployment-scales.

To address these needs, we have designed TWIST, a flexible testing infrastructure
for WSNs that enables efficient testing of functional and non-functional properties
of distributed WSN services. TWIST provides basic services like node configuration,
network-wide programming, out-of-band extraction of debug data and gathering
of application data. It also offers powerful topology control and fault injection
capabilities that we leveraged in our evaluation of the DASA interoperability anchor to
illustrate the influence of the underlying communication protocols on the semantics
of the exported service.

The TKN instance of TWIST is one of the largest publicly available WSN testbeds
and its services have been successfully used by the members of the WSN research
community in support of their dissemination activities. Because TWIST relies on
affordable hardware and open-source software, it serves as testbed template that has
been replicated by several external groups.

To address the existing roadblocks in performing cross-validation studies on
multiple WSN testbeds, we have also designed a RESTful platform that enables con-
venient access to the experimental resources of multiple testbeds, organized in a
federation of autonomous entities. With this, we are contributing to the ongoing
effort in the community towards federated testbeds solutions, as exemplified by the
related activities under the FIRE [56] and GENI [68] initiatives.

Our current work on the testing federation concentrates on refining the platform
design and implementing the first prototypes for the core interfaces. As future
work we would like to leverage the standardized interfaces of our platform to build
template experiments that can serve as a reusable benchmark suite for automatic
evaluation of WSN services in context of multiple testbeds. Such suite can reduce the
barriers for cross-validation studies and can offer a common base for comparing the
functional and non-functional properties of competing designs and implementations.
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APPENDIX A
Hardware Platforms Survey

This appendix presents the data from our survey of WSN platforms which we used as
input for establishing themain features and trends inWSN hardware design, analyzed
in section 2.2. The list of the platforms and their main components was compiled
by combining information from a number of primary and secondary sources: [12,
14, 17, 29, 39, 40, 58, 78, 89, 99, 108, 114, 133, 134, 135, 142, 176, 204, 210, 219]. The
features of the individual processing elements and transceivers were extracted from
the product data sheets.

A.1 Surveyed Platforms

Platform Processor Transceiver Release

Rockwell AWAIRES1 Intel SA-1100 Conexant RDSSS9M 1998

UC Berkeley WeC Atmel AT90LS8535 RFM TR1000 1998

UC Berkeley Rene Atmel AT90LS8535 RFM TR1000 1999

Intel SpotON Freescale MC68EZ328 RFM TR1000 1999

MIT µAMPS Intel SA-1100 National LMX3162 1999

UC Berkeley Dot Atmel ATmega163 RFM TR1000 2000

UC Berkeley Rene2 Atmel ATmega163 RFM TR1000 2000

ETH Zurich BTnode1 Atmel ATmega128L Ericsson ROK101008 2001

UCLA Medusa MK-2 Atmel ATmega128L RFM TR1000 2001

Atmel AT91FR4081

Crossbow Mica Atmel ATmega103 RFM TR1000 2001

U. Colorado Nymph Atmel ATmega128L Chipcon CC1000 2001

Table A.1: Overview of the surveyed platforms and their main components [Continued. . . ]
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Platform Processor Transceiver Release

UC Berkeley PicoNode1 Intel SA-1100 Ericsson ROK101007 2001

Xilinx XC4020XLA

ETH Zurich Smart-ist ETH Atmel ATmega103L Ericsson ROK101007 2001

Teco Smart-its Microchip PIC16F876 RFM TR1001 2001

Sensoria WINS NG 2.0 Hitachi SH-4 Sensoria WINS NG RF 2.0 2001

Sensoria WINS3.0 Intel PXA255 Sensoria WINS NG RF 2.0 2001

Rice U. GNOMES Texas Instruments MSP430F149 National LMX9820 2002

UCLA iBadge Atmel ATmega128L Ericsson ROK101007 2002

Texas Instruments TMS320VC5416 RFM TR1000

Crossbow Mica2 Atmel ATmega128L Chipcon CC1000 2002

Crossbow Mica2Dot Atmel ATmega128L Chipcon CC1000 2002

Crossbow MicaZ Atmel ATmega128L Chipcon CC2420 2002

UC Berkeley PicoNode 2 Intel SA-1100 Proxim RangeLAN2 2002

MIT PushPin Texas Instruments C8051F016 Newark 83F8851 2002

ScatterWeb ESB/2 Texas Instruments MSP430F149 RFM TR1001 2003

U. Southampton Glacsweb Probe Microchip PIC18F8722 Radiometrix TX1H 2003

Intel IMote1 Zeevo TC2001P Zeevo TC2001P 2003

U. Karlsruhe Particle Microchip PIC18F252 RFM TR1001 2003

MIT RFRAIN Chipcon CC1010 Chipcon CC1010 2003

UC Berkeley Spec UC Berkeley Spec UC Berkeley Spec 2003

U. Tokyo U3 Microchip PIC18F452 RFM TR3001 2003

Bradley U. Wisenet Chipcon CC1010 Chipcon CC1010 2003

Philips Research AquisGrain Atmel ATmega128 Chipcon CC2420 2004

UF Minas Gerais BEAN Texas Instruments MSP430F169 Chipcon CC1000 2004

Imperial CL BSN node Texas Instruments MSP430F149 Chipcon CC2420 2004

Cork IT CITNode Microchip PIC16F877 Nordic nRF903 2004

UC Cork DSYS25 Atmel ATmega128L Nordic nRF2401 2004

Infineon EyesIFXv1 Texas Instruments MSP430F149 Infineon TDA5250 2004

Nedap EyesNEDAP Texas Instruments MSP430F149 RFM TR1001 2004

Harvard U. Pluto Texas Instruments MSP430F149 Chipcon CC2420 2004

U. Edinburgh ProSpeckz Cypress CY8C27643 Chipcon CC2420 2004

UC Berkeley TelosA Texas Instruments MSP430F149 Chipcon CC2420 2004

UC Berkeley TelosB Texas Instruments MSP430F149 Chipcon CC2420 2004

Moteiv Tmote Sky Texas Instruments MSP430F1611 Chipcon CC2420 2004

CSEM WiseNET CSEM WiseNET CSEM WiseNET 2004

Princeton U. ZebraNet Texas Instruments MSP430F149 MaxStream 9xStream 2004

Dynastream Ant Texas Instruments MSP430F1232 Nordic nRF2401 2005

Fraunhofer AVM Demonstrator Texas Instruments MSP430F149 Nordic nRF2401 2005

CEI-UPM Spain Cookie Analog Devices ADUC841 Telegesis ETRX2 2005

Ember Ember Atmel ATmega128L Ember EM250 2005

Table A.1: Overview of the surveyed platforms and their main components [Continued. . . ]
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Platform Processor Transceiver Release

EnOcean EnOcean Microchip PIC18F452 Infineon TDA5250 2005

Infineon EyesIFXv2 Texas Instruments MSP430F1611 Infineon TDA5250 2005

CSIRO Fleck Atmel ATmega128L Nordic nRF2401 2005

Intel IMote2 Intel PXA271 Chipcon CC2420 2005

Luela U. Mulle Renesas M16C/62P Mitsumi WML-C10AHR 2005

MIT Parasitic node Silicon Labs C8051F311 Blueradios BR-C11A 2005

U. Karlsruhe Particle 2/29 Microchip PIC18F6720 RFM TR1001 2005

UCLA RISE Chipcon CC1010 Chipcon CC1010 2005

Renesas M16C/28

Sensinode SensiNode Texas Instruments MSP430F1611 Chipcon CC2420 2005

Intel Shimmer Texas Instruments MSP430F1611 Chipcon CC2420 2005

U. Tokyo SolarBiscuit Microchip PIC18F452 Chipcon CC1020 2005

Sun Microsystems SunSPOTv1 Atmel AT91RM9200 Chipcon CC2420 2005

Tyndall Tyndall Mote Atmel ATmega128L Nordic nRF2401 2005

U. Karlsruhe uPart Microchip RFPIC12F675H Microchip RFPIC12F675H 2005

Yale U. XYZ OKI ML67Q5003 Chipcon CC2420 2005

ETH Zurich BTnode3 Atmel ATmega128L Zeevo ZV4002 2006

Chipcon CC1000

Lancaster U. DIY Microchip PIC18F252 Radiometrix BiM2 2006

Texas Instruments ez430-RF2480 Texas Instruments MSP430F2274 Texas Instruments CC2480A1 2006

CMU FireFly Atmel ATmega1281 Chipcon CC2420 2006

CSIRO Fleck Atmel ATmega128L Nordic nRF903 2006

MIT MITes Nordic nRF24E1 Nordic nRF24E1 2006

Shimmer Research Shimmer2 Texas Instruments MSP430F1611 Mitsumi WML-C46N 2006

Chipcon CC2420

Libelium SquidBee Atmel ATmega168 Digi Xbee 2006

SOWNet T-Nodes Atmel ATmega128L Chipcon CC1000 2006

Shockfish TinyNode584 Texas Instruments MSP430F1611 Semetech XE1205 2006

Moteiv Tmote Invent Texas Instruments MSP430F1611 Chipcon CC2420 2006

U. Lucerne WeBee Texas Instruments CC2430F128 Chipcon CC2430F128 2006

MechNetics ZigBit Atmel ATmega1281V Atmel AT86RF230 2006

U. Karlsruhe zPart Microchip PIC18F6720 Chipcon CC2420 2006

Crossbow Iris Atmel ATmega1281 Atmel AT86RF230 2007

IIT Kanpur KMote Texas Instruments MSP430F1611 Chipcon CC2420 2007

ScatterWeb MSB-430 Texas Instruments MSP430F1612 Chipcon CC1020 2007

Intel NeoMote Atmel ATmega128L Chipcon CC2420 2007

MIT Plug Atmel AT91SAM7S64 Chipcon CC2500 2007

Sensium SPIDER Toumaz TZ1030 Toumaz TZ1030 2007

Atmel AVR Raven Atmel ATmega1284P Atmel AT86RF230 2008

Atmel ATmega3290P

Table A.1: Overview of the surveyed platforms and their main components [Continued. . . ]
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Platform Processor Transceiver Release

Texas Instruments CC2531EMK Texas Instruments CC2531F256 Texas Instruments CC2531 2008

UC Irvine Eco Nordic nRF24E1 Nordic nRF24E1 2008

UC Berkeley Epic Texas Instruments MSP430F1611 Chipcon CC2420 2008

SOWNet G-Node G301 Texas Instruments MSP430F2418 Texas Instruments CC1101 2008

Libelium Waspmote Atmel ATmega1281 Digi Xbee 802.15.4 pro 2008

Dresden Elektronik deUSB2400 Atmel AT91SAM7S256 Atmel AT86RF231 2009

CEL FreeStar PRO Freescale MC13224V Freescale MC13224V 2009

Coalesences Isense Jennic JN5139 Jennic JN5139 2009

Redbee EconoTAG Freescale MC13224V Freescale MC13224V 2010

Shimmer Research Shimmer2R Texas Instruments MSP430F1611 Rowing Networks RN-42 2010

Chipcon CC2420

People Power SuRF Texas Instruments CC430F5137 Texas Instruments CC430F5137 2010

Table A.1: Overview of the surveyed platforms and their main components.

A.2 Processing Elements

Processor Bit-size Max. Clock Flash RAM Min. Supply
[bit] [MHz] [KB] [KB] [V]

Analog Devices ADUC841 8 20 4 2 2.7

Atmel AT90LS8535 8 4 8 0.5 2.7

Atmel AT91RM9200 32 25 128 16 1.7

Atmel AT91SAM7S256 32 55 256 64 1.8

Atmel AT91SAM7S64 32 55 64 16 1.8

Atmel ATmega103 8 6 128 4 4.0

Atmel ATmega103L 8 4 128 4 2.7

Atmel ATmega128 8 16 128 4 4.5

Atmel ATmega1281 8 16 128 8 2.7

Atmel ATmega1281 8 8 128 8 1.8

Atmel ATmega1284P 8 20 128 16 1.8

Atmel ATmega128L 8 8 128 4 2.7

Atmel AT91FR4081 32 40 1024 136 2.7

Texas Instruments TMS320C5416 40 50 32 256 1.6

Atmel ATmega163 8 8 16 1 4.0

Atmel ATmega168 8 20 16 1 2.7

Texas Instruments C8051F016 8 25 32 2 2.7

Silicon Labs C8051F311 8 25 16 1 2.7

Chipcon CC1010 8 24 32 2 2.7

Renesas M16C/28 16 20 96 8 3.0

Table A.2: Overview of the processing chips used on the surveyed platforms and
their main characteristics [Continued. . . ]
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A.2. Processing Elements

Processor Bit-size Max. Clock Flash RAM Min. Supply
[bit] [MHz] [KB] [KB] [V]

Texas Instruments CC2430F128 8 32 128 8 2.0

Texas Instruments CC2531F256 8 32 256 8 2.0

Texas Instruments CC430F5137 16 20 32 4 1.8

Cypress CY8C27643 8 24 256 16 3.0

Jennic JN5139 32 16 192 96 2.2

Renesas M16C/62P 16 24 384 31 4.0

Freescale MC13224V 32 26 128 96 2.0

Freescale MC68EZ328 32 20 2048 2048 3.3

OKI ML67Q5003 32 60 512 32 2.3

Texas Instruments MSP430F1232 16 8 8 0.25 1.8

Texas Instruments MSP430F149 16 8 60 2 1.8

Texas Instruments MSP430F1611 16 8 48 10 2.0

Texas Instruments MSP430F1612 16 8 55 5 1.8

Texas Instruments MSP430F169 16 8 60 2 1.8

Texas Instruments MSP430F2274 16 16 32 1 1.8

Texas Instruments MSP430F2418 16 16 116 8 1.9

Nordic nRF24E1 8 20 0.5 4 1.9

Microchip PIC16F876 8 20 8 0.36 2.0

Microchip PIC16F877 8 20 8 0.36 2.0

Microchip PIC18F252 8 40 32 1.5 2.0

Microchip PIC18F452 8 40 32 1.5 2.0

Microchip PIC18F6720 8 25 128 3.75 2.0

Microchip PIC18F8722 8 42 128 3.75 2.0

Intel PXA255 32 400 128 3.8 1.0

Intel PXA271 32 520 32768 32768 1.3

Microchip RFPIC16F675H 8 20 1.75 0.5 2.0

Intel SA-1100 32 220 4096 1024 2.0

Xilinx XC4020XLA 0 0 0 0 3.0

Hitachi SH-4 32 266 32768 65536 1.8

UC Berkeley Spec 8 8 0 3 3.0

Zeevo TC2001P 32 48 512 64 1.8

Toumaz TZ1030 8 8 0 64 1.0

CSEM WiseNet 8 10 0 22 0.9

Atmel ATmega3290P 8 20 32 2 2.7

Table A.2: Overview of the processing chips used on the surveyed platforms and
their main characteristics.
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Hardware Platforms Survey

A.3 Transceivers

Transceiver Standard Modulation Band Datarate TX Current
[MHz] [kbps] [mA]

Newark 83F8851 IrDA PCM IR 115.2 14

MaxStream 9xStream FM 915 19.2 140

Atmel AT86RF230 IEEE 802.15.4 DSSS; O-QPSK 2450 250 19

Atmel AT86RF231 IEEE 802.15.4 DSSS; O-QPSK 2450 250 22

Radiometrix BiM2 FM 433 160 20

Blueradios BR-C11A Bluetooth FHSS; GFSK 2450 721 20

Chipcon CC1000 FSK; OOK 433; 868; 915 76.8 27

Chipcon CC1010 FSK; OOK 433; 868; 915 76.8 27

Chipcon CC1020 FSK; OOK 433; 868; 915 153 20

Texas Instruments CC1101 FSK; OOK 915 500 10

Chipcon CC2420 IEEE 802.15.4 DSSS; O-QPSK 2450 250 17

Rowing Networks RN-42 Bluetooth FHSS; GFSK 2450 721 50

Mitsumi WML-C46N Bluetooth GFSK;
Pi/4-DQPSK;
8-DPSK

2450 721 50

Chipcon CC2430F128 IEEE 802.15.4 DSSS; O-QPSK 2450 250 27

Texas Instruments CC2480A1 IEEE 802.15.4 DSSS; O-QPSK 2450 250 27

Texas Instruments CC2531 IEEE 802.15.4 DSSS; O-QPSK 2450 250 34

Texas Instruments CC430F5137 FSK; GFSK;
MSK; OOK

315; 433; 868;
915

500 35

Ember EM250 IEEE 802.15.4 DSSS; O-QPSK 2450 250 33

Telegesis ETRX2 IEEE 802.15.4 DSSS; O-QPSK 2450 250 42

Jennic JN5139 IEEE 802.15.4 DSSS; O-QPSK 2450 250 34

National Semiconductor LMX3162 FSK 2450 1000 40

National Semiconductor LMX9820 Bluetooth FHSS; GFSK 2450 721 56

Freescale MC13224V IEEE 802.15.4 DSSS; O-QPSK 2450 250 31

Nordic nRF2401 GFSK 2450 1000 13

Nordic nRF24E1 GFSK 2450 1000 13

Nordic nRF903 GFSK 433; 868; 915 76.8 30

Proxim RangeLAN2 IEEE 802.11 DSSS; DBPSK;
DQPSK

2450 1600 300

Conexant RDSSS9M DECT FHSS; GFSK 915 128 13

Microchip RFPIC12F675H ASK; FSK 868; 915 40 20

Ericsson ROK101007 Bluetooth FHSS; GFSK 2450 721 26

Ericsson ROK101008 Bluetooth FHSS; GFSK 2450 721 26

UC Berkeley Spec FSK 915 19.2 1

Zeevo TC2001P Bluetooth FHSS; GFSK 2450 721 20

Infineon TDA5250 ASK; FSK 868 50 12

Table A.3: Overview of the transceiver chips used on the surveyed platforms and
their main characteristics [Continued. . . ]
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A.3. Transceivers

Transceiver Standard Modulation Band Datarate TX Current
[MHz] [kbps] [mA]

RFM TR1000 ASK; OOK 915 115.2 12

RFM TR1001 ASK; OOK 868 115.2 12

RFM TR3001 ASK; OOK 315 115.2 10

Radiometrix TX1H FM 173 10 80

Toumaz TZ1030 FSK 868; 915 50 3

Sensoria WINS NG RF 2.0 FSK 2450 56 30

CSEM WiseNET FSK; OOK 433; 868 100 24

Mitsumi WML-C10AHR Bluetooth FHSS; GFSK 2450 721 60

Digi Xbee IEEE 802.15.4 DSSS; O-QPSK 2450 250 45

Digi Xbee 802.15.4 pro IEEE 802.15.4 DSSS; O-QPSK 2450 250 45

Semetech XE1205 FSK 433; 868; 915 305 62

Zeevo ZV4002 Bluetooth FHSS; GFSK 2450 721 22

Table A.3: Overview of the transceiver chips used on the surveyed platforms and
their main characteristics.
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