
TKN
Telecommunication

Networks Group

Technical University Berlin

Telecommunication Networks Group

RESTful Platform for Federating
WSN Testbeds

Vlado Handziski, Claudio Donzelli,
Irina Antonova

{handzisk, donzelli, antonova}@tkn.tu-berlin.de

Berlin, January, 2010

TKN Technical Report TKN-10-001

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Note

This work has been partially supported by CONET, the Cooperating Objects Network of
Excellence, funded by the European Commission under FP7 with contract number FP7-
2007-2-224053. Parts of this technical report have been verbatim included in the CONET
Deliverable 3.3: “Common Abstractions for Testbed Federation”.

TU Berlin

Contents

1 Introduction 4

2 CONET Testbed Federation Platform 6
2.1 Design Principles . 6
2.2 System Architecture . 7

2.2.1 Overview . 7
2.2.2 Representational State Transfer (REST) Architectural Style 10

2.3 Core Abstractions . 15
2.3.1 Authentication and Authorization . 15
2.3.2 Resource Discovery, Reservation and Scheduling 17
2.3.3 Experiment Specification and Control 19
2.3.4 Logging and Tracing . 22

3 CONET Testbed Federation Platform APIs 24
3.1 Common Features . 24

3.1.1 HTTP Request Headers . 24
3.1.2 HTTP Response Headers . 25
3.1.3 HTTP Status Codes . 26
3.1.4 Common Resources . 27

3.2 Resource Model . 28
3.2.1 Testbed Federation API . 29
3.2.2 TA API and TF API . 33

3.3 Requests and Responses . 40
3.3.1 Testbed Federation API . 40
3.3.2 TA API and TF API . 42

3.4 Invocation Examples . 45
3.4.1 User creates a new Project . 45
3.4.2 User creates a new Experiment . 45
3.4.3 User creates two PropertySets . 46
3.4.4 User uploads two Image files . 47
3.4.5 User creates two Virtual Tasks . 48
3.4.6 User explores the federation by submitting the experiment definition . 50
3.4.7 User creates a new Job for a given Experiment 50

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 1

TU Berlin

Acronyms

AAA Authentication, Authorization and Accounting

API Application Programming Interface

CO Cooperating Object

CTFS CONET Testbed Federation Server

CTF CONET Testbed Federation

CTP Collection Tree Protocol

GENI Global Environment for Network Innovations

HTTP Hypertext Transport Protocol

IC Identity Consumer

IP Identity Provider

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

REST Representational State Transfer

RPC Remote Procedure Call

SC Service Consumer

SOA Service Oriented Architecture

SP Service Provider

SSO Single Sign-On

SUT System Under Test

TA API Testbed Adaptation API

TF API Testbed Federation API

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 2

TU Berlin

URI Universal Resource Identifier

URN Universal Resource Name

URL Universal Resource Locator

UUID Universally Unique Identifier

XML Extensible Markup Language

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 3

TU Berlin

Chapter 1

Introduction

The design, implementation and evaluation of Cooperating Object (CO) systems is a chal-
lenging task that is further complicated by their distributed and heterogeneous nature and
the tight coupling with the environment. During the early design stages, valuable insight
about the system can be gained using analytical modeling or simulation. In order to main-
tain tractability of the models, however, the designer is frequently forced to make simplifying
assumptions about the behavior of the system components and their interaction with the en-
vironment. The associated loss of realism makes these approaches less suitable for the more
advanced design stages, when the evaluation of the system performance, error resilience and
other nonfunctional properties necessitate the use of real hardware, realistic environments
and realistic experimental setups.

Testbeds provide convenient middle ground between simulation and full deployment on the
realism axes. They allow for rigorous and controlled experimentation with the System Under
Test (SUT). But similarly to full deployments, they lock the evaluation to one particular
environment making it hard to differentiate between the intrinsic properties of the SUT and
the effect of the specific features and external influences present at a given testbed site.
One way of decoupling these influences is to cross-validate the functional and non-functional
behavior of the SUT under various conditions as provided by different testbeds.

For example, Table 1.1, taken from [7], shows a summary of an experimental evaluation
of the functional properties of CTP on 12 different testbeds. Experimental studies like this
one are becoming indispensable part of performing credible scientific research in the area
of CO. Unfortunately, their realization is currently accompanied by significant overheads in
configuring the experiments and collecting the results on the individual testbeds, since easy
experiment migration is hindered by a lack of common management, experiment specification
and control infrastructure.

The goal of the CONET Testbed Federation (CTF) is to address some of these roadblocks
by developing a software platform that will enable convenient access to the experimental
resources of multiple testbeds organized in a federation of autonomous entities.

Due to the specific nature of the wireless medium, we are primarily focused on facilitating
experiment migration across the federation members, and not in combining the federation
resources into a single “virtual” testbed. Our federation platform is built on top of a set of
common abstractions for authentication and authorization; resource discovery and reserva-
tion; and experiment specification and control. The integration APIs are light-weight, scalable

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 4

TU Berlin

Testbed Platform Nodes Physical size Degree PL Cost PL/Cost Churn
[m2 or m3] Min Max

Tutornet (16) Tmote 91 50× 25× 10 10 60 3.12 5.91 1.9 31.37
Wymanpark Tmote 47 80× 10 4 30 3.23 4.62 1.43 8.47
Motelab Tmote 131 40× 20× 15 9 63 3.05 5.53 1.81 4.24
Kanseia TelosB 310 40× 20 214 305 1.45 - - 4.34
Mirage Mica2dot 35 50× 20 9 32 2.92 3.83 1.31 2.05
NetEye Tmote 125 6× 4 114 120 1.34 1.4 1.04 1.94
Mirage MicaZ 86 50× 20 20 65 1.7 1.85 1.09 1.92
Quanto Epic-Quanto 49 35× 30 8 47 2.93 3.35 1.14 1.11
Twist Tmote 100 30× 13× 17 38 81 1.69 2.01 1.19 1.01
Twist eyesIFXv2 102 30× 13× 17 22 100 2.58 2.64 1.02 0.69
Vinelab Tmote 48 60× 30 6 23 2.79 3.49 1.25 0.63
Tutornet (26) Tmote 91 50× 25× 10 14 72 2.02 2.07 1.02 0.04
Blazeb Blaze 20 30× 30 9 19 1.3 - - -

Table 1.1: CTP evaluation on multiple testbeds published in [7]. The results illustrate how
important protocol performance parameters like number of transmissions per successful de-
livery (Cost), average path length in hops (PL), or parent change rate (Churn) are influenced
by the different testing environments.

and extensible and aim to preserve high levels of autonomy for the member testbeds in the
federation. With this, we are contributing to the ongoing effort in the research community
towards federated testbeds solutions in this and related areas, as exemplified by the related
activities under the FIRE (EU) and the GENI (USA) initiatives.

This document presents the main features of the CTF platform. In Chapter 2, we specify
the system architecture and provide short overview of the main characteristics of the REST

architectural style that has been selected as guiding principle for designing the interactions
between the major system components. In the next chapter, Chapter 3, we document the CTF

abstractions through the identification of the main resources, their representations and the
possibilities for modification of the resource state through the application of the Hypertext
Transport Protocol (HTTP) method set, in accordance with the REST approach.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 5

TU Berlin

Chapter 2

CONET Testbed Federation
Platform

The integration of CO testbeds, in themselves large heterogeneous distributed systems, is
an intrinsically complex task. The CTF platform presented in this chapter should be thus
considered a first step in a cyclic design refinement process. The content of the chapter is
divided in two main parts. In the first, we summarize the general objectives for the CTF

platform, and we provide a description of the main architectural features by focusing on
the relationship between the main components and the design principles behind the core
abstractions. In accordance with the selected architectural style, in the second part of the
chapter, we specify the CTF platform through a detailed resource1 model comprised of their
representations and the possibilities for accessing and modifying the resource state using the
HTTP method set.

2.1 Design Principles

The primary goal of the CTF is to enable convenient access to the resources of multiple CO

testbeds, when organized in a loose federation of testbeds. The CTF platform provides an
abstraction over the federation members and offers additional APIs that operate in the context
of the federation aggregate in order to support the experimenters during the full experiment
life-cycle.

In the design of the platform we have followed a set of guiding principles:

Specialization Although it shares some common characteristic with other testbed federa-
tion frameworks, the proposed CTF platform is carefully tuned to the specific needs of
the CO testbeds. This specialization has enabled us to leave out some complex features
that are not applicable or not important for the target domain, at the same time giving
us opportunity to focus on the more important aspects like the impact of the wireless
communication on the resource allocation problem, or the inclusion of tester controlled
SUT mobility.

1Following the established practice of using the word resource to refer both to the real physical assets of
the testbeds, as well as to the main abstract concept in REST, we apply the word in both contexts in this
chapter, clarifying its meaning only when it can not be readily deduced from the surrounding text.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 6

TU Berlin

User-centricity In contrast to many other testbed federation frameworks that take an in-
stitution centric approach, our platform puts the individual user in the center of the
design. It decouples service levels and policies from the question whether a particular
user belongs to a federation member institution or not. All aspects of the service should
be configurable and controllable at the granularity of a single user. This design prin-
ciple, for example, has direct implications on the architecture of the AAA abstractions
and has significant impact on the openness of the platform.

Scalability A typical CO testbed is a large heterogeneous distributed system which makes
the task of integrating several such systems behind a common federation platform
particularly challenging. Addressing these challenges requires careful engineering that
leverages the best-practices learned from other successful large distributed systems, like
the Web. High scalability of the solution has to be maintained by promoting stateless
interactions and using caching whenever possible.

Extensibility To be successful, the CTF platform has to be kept as simple as possible, but
also modular and extensible, so new features and capabilities can be organically added
when they are needed. In contrast to many other testbed federation frameworks, an
explicit goal of the CTF platform is the openness towards external service providers.
The same APIs that are used internally to build the higher-level federation services will
be also made available to external entities to promote integration with their services.

Coexistence By focusing on a set of common, testbed-independent APIs, the CTF platform
will necessarily lack some specific services of the individual testbeds that are valuable
to the end-users. Thus, it is crucial to enable parallel use of the native interfaces of
the member testbeds and the federation APIs. The CTF platform should not limit the
autonomy of the members of the federation by imposing only a single access-path to
the resources of the individual testbeds.

Flexibility The usage of the CTF platform should not impose unnecessary constraints on the
development process on the user side. In particular, the platform should be accessible
using various programming languages and the users should have freedom in selecting
the level of abstraction overhead. This should be achieved by offering a basic, language-
agnostic set of API, that enables building client-side solutions for raising the level of
abstraction.

In the rest of the chapter we discuss how these high level principles have been converted
into concrete requirements for the overall architecture of the CTF platform and the features
of the core abstractions.

2.2 System Architecture

2.2.1 Overview

To illustrate the main architectural features of the CTF platform and to establish some com-
mon vocabulary, we start by revisiting our motivating use case of performing a cross-validation
experimental study on a large number of CO testbeds, introduced in Chapter 1.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 7

TU Berlin

T1

R1

T1 API

Ti

Ri

Ti API

TN

RN

TN API

U

native access

Figure 2.1: Baseline scenario S0. The user can access the resources of the individual testbeds
only over their native interfaces

Figure 2.1 depicts our baseline scenario S0, reflecting the existing service level. The user
U wants to perform a study comprised of a set of experiments E1,E2, . . . ,EN that need to
be executed on a set of CO testbeds: T1,T2, . . . ,TN. Each testbed provides a set of SUT

resources R1,R2, . . . ,RN necessary for the corresponding experiment.
As it can be seen, without a federation substrate, the user can access the resources of the

individual testbeds only over their native APIs: Ti API . This means that for each experiment,
and after completing the native authenticating and authorization process, she needs to use
a proprietary way to discover and reserve the required resources, to define and control the
experiment, and finally, to collect the results.

The user needs to do this on each testbed separately. For N testbeds, she has to potentially
use N different interfaces and processes. Without a federation substrate, there is no way to
reuse the authentication and authorization credentials, no way to perform resource discovery
across the multiple testbeds, no way to reuse the experiment specification, no way to reuse
the client-side code for the on-line control of the experiment or for storing and post processing
the results. In addition, there is no way to share this content with other users, so they can
repeat the experiment and validate the results. There is also no common way to provide
access to the results to external service providers that can provide storage or post processing
(statistical analysis, plotting, etc.)

The CTF platform tries to address these limitations. Due to the large variability in the
services offered by the individual testbeds this requires a two-step approach as described in
the following.

As a first step, a common abstraction over the existing capabilities of the testbeds needs
to be defined. This abstraction exports an interface, called Testbed Adaptation API (TA
API), that can be used by the users to access the resources on the individual testbeds via a

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 8

TU Berlin

T1

R1

T1 API

TA API

Ti

Ri

Ti API

TA API

TN

RN

TN API

TA API

U

native access

standardized access

Figure 2.2: Scenario S1. The Testbed Adaptation API enables standardized access to the
resources on the individual testbeds in addition to the native interfaces.

standardized interface. In this process of interface unification, some specific features of the
individual testbeds will be undoubtedly remain unrepresented. Due to this, as well as to our
coexistence and autonomy principles, we expect that this common interface will be used in
parallel, and not instead of the native interfaces ITi .

The TA API offers a new service level to the users, S1, leading to the scenario is depicted
on Figure 2.2. Instead of using the various native testbed interfaces ITi as in the baseline
scenario, users can now access the resources over a standardized Application Programming
Interface (API). When they need some testbed-specific capabilities they can always leverage
the native interfaces. By incorporating adequate arbitration mechanisms, the implementation
of the TA API will make sure that no conflicts in the access of the resources between the native
and the federation users can occur.

Although this service level provides a significant convenience gain with respect to the S0

scenario, by using only the Testbed Adaptation API (TA API) we are still short of providing
some very useful services that abstract over the individual testbeds and operate in the context
of the global federation aggregate. For example, we can provide a central place to store the
definitions of the experiments, introduce a centralized discovery and reservation system, a
central repository of traces and results, etc. For this we need an additional entity, a central
CONET Testbed Federation Server (CTFS) that will offer a second interface class, the Testbed
Federation API (TF API).

The CONET Testbed Federation Server (CTFS) leverages the services of the individual
testbeds, exported through the standardized TA API, to build a higher level abstraction over
the federation aggregate, thus offering new service level to the user, S2.

Figure 2.3 illustrates the relation between the individual testbed servers exporting the
native and adaptation interfaces, the federation server and the users (both native and feder-

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 9

TU Berlin

T1

R1

T1 API

TA API

Ti

Ri

Ti API

TA API

TN

RN

TN API

TA API

U

native access

CTFST
F
A
P
I

TF API

federated access

standardized access

Figure 2.3: Scenario S2. The CONET Testbed Federation Server (CTFS) leverages the services
of the individual testbeds, exported through the standardized Testbed Adaptation API, to
build a higher level abstraction over the federation aggregate. The new services are made
available to the user over the Testbed Federation API (TF API).

ation) plus external services in the S2 scenario. The presented architecture has the flexibility
to satisfy the major requirements outlined in our motivating use-case, and represents the
basis for the CTF platform solution.

2.2.2 REST Architectural Style

The overall architecture of the CTF platform can be realized using many different architectural
patterns that support rich interaction between a set of distributed components. Taking into
consideration the main design principles presented in Section 2.1, we have decided to base
the CTF design on the Representational State Transfer (REST) architectural style [5].

REST is a set of design constraints for developing rich resource-oriented systems that
mirror the scalability and the flexibility of the Web. In the following we provide a short
overview of the core properties of systems following the REST architectural style (so called
RESTful systems) and their benefits in the context of the CTF platform.

Resources

In contrast to Service Oriented Architecture (SOA) and other Remote Procedure Call (RPC)-
based architectural styles where the data is kept private, encapsulated and hidden behind
the processing components, in REST, the state and the nature of the data elements play a
central role.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 10

TU Berlin

The resource is the main abstraction of information in a RESTful system. The resource rep-
resentation captures the current or intended state of the resource. The components (clients,
servers, etc.) act on the resources by transferring and modifying their representations. A
resource identifier is used to uniquely identify the resource involved in the interaction.

Resource Representations

Resources are abstract entities that can only be manipulated through their representations. A
resource representation is a sequence of bytes, accompanied by representation metadata that
describes those bytes. The components in a RESTful system use media types to differentiate
between the different possible representations of a resource. One scheme for specifying the
media types in the system are Multipurpose Internet Mail Extensions (MIME) types [6].

The agreement on a set of common media types, together with the remaining architectural
constraints, give messages in a RESTful system a “self-describing” property. Using only the
media type as indication, the components in the system can safely perform many useful
operations without having to look into the body of the message.

The resource model and the definition of the media type(s), used for representing the
resources and driving resource and application state, forms the main cognitive effort in de-
signing a RESTful system. Since all components in the system have to agree on the media
types used for representing the resources, there is clear benefit in reusing a well defined me-
dia type from the MIME register whenever possible. Unfortunately, due to the specifics of
the problem that the CTF platform is addressing, we were not able to follow this approach.
Instead, we have decided to use a custom media types encoded with in a standard data
interchange format.

In contrast to the existing testbed federation frameworks that use documents based on
Extensible Markup Language (XML) (WISEBED uses WiseML, ProtoGENI uses Rspec, etc.),
we have opted for JavaScript Object Notation (JSON) [2] as the serialization method for our
resources.

JSON is more light-weight and readable then the equivalent XML serialization and is espe-
cially suitable for exchanging general data structures. Code for parsing JSON-encoded data
exists for large number of programming languages. The use of JSON is also very convenient
when developing rich in-browser client side applications for interacting with the CTF platform.
Because all JSON text is legal JavaScript code, it is very easy for a JavaScript program to
convert the serialized data into an active object. Instead of using a heavy-weight parser, like
in the case of XML, one can just use the built-in eval() function, passing the JSON encoded
representation (after a security check) as parameter.

The default media type for JSON-encoded representations is application/json. Follow-
ing the approach used in the Sun Cloud API [10], for our custom JSON-based representations
we use the media type designation application/ctf.{resource}+json, where {resource}
stands for the name of the particular resource that is being represented.

Resource Identifiers

This ability to uniquely identify any resource in the system is a crucial characteristic of
RESTful systems and represents the basis for their openness and composability. Although

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 11

TU Berlin

REST does not impose a specific naming scheme for the resource identifiers, in practice they
typically take the form of Universal Resource Identifiers (URIs), as defined in the RFC 3986 [1].

There are two major subtypes of URIs: those that also include the “location” of the
resource, so that the URI can be immediately dereferenced to get the representation of the
resource (i.e. Universal Resource Locators (URLs)) and those that only provide a unique
name (Universal Resource Names (URNs) or other Universally Unique Identifier (UUID)-based
solutions) without the location part.

The URN identifiers are more stable (for example, a URL can be rendered invalid if the do-
main name of the server exporting the resources is changed). Many existing testbed federation
frameworks like ProtoGENI [14] and WISEBED [16], use URNs as their default identification
mechanism. The URNs stability, however, comes at a cost of increased administration over-
heads and loss of flexibility. The URN namespaces typically need to be registered with an
external register [3] like IANA [9] and one loses the standardized dereferencing capability of
URL.

We believe that the benefits that URLs carry as common addressing and naming scheme
outweigh their shortcomings. The CTF platform uses URLs as resource identifiers exclusively.
Any problems associated with non-persistent URLs on the individual testbeds will be handled
using simple URL rewriting and redirecting rules in the federation components.

Uniform interface

REST mandates a uniform interface between the components in the system. This is the most
fundamental differentiation from the other networking styles. In contrast to the rich “verb”
space in SOA and other RPC architectural styles, where each object can export different set
of methods that operate on its state, in RESTful systems all resources are manipulated with
exactly the same method set. In a similar way like the use of standard media types, the use
of a generic interface constraints the design freedom but brings significant benefits in return.

Since all resources in the system can be manipulated with the same method set, the
components don’t have to implement specialized code for accessing different resources in the
system. Also, the semantics of each operation is well defined and uniform across all resources
and components. This leads to an interface that is easy to understand and simplifies the
interoperability between large number of uncoordinated actors. The uniform method set also
opens the possibility of using a standardized set of return values to inform the caller about
the success of the method invocation.

In RESTful systems implemented using Web technologies, the standard HTTP method
set serves the role of a uniform interface. The HTTP 1.1 standard [4] defines eight meth-
ods: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and CONNECT, out of
which the subset: GET, PUT, DELETE and POST are most commonly used in practice.
Correspondingly, the HTTP status codes serve the role of return codes.

Table 2.1 provides a succinct overview of the semantics of the most common HTTP methods
when applied in a RESTful context and Section 3.1.3 illustrates the use of HTTP status codes
as return values.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 12

TU Berlin

HTTP Method Properties Semantics

GET Safe, Idempotent Retrieve a representation of the resource identified by the
Request-URI without client-relevant side effects

HEAD Safe, Idempotent Same as GET, but only retrieve the header information without
the message-body

PUT Idempotent Update the resource identified by the Request-URI with the rep-
resentation contained in the message-body

DELETE Idempotent Delete the resource identified by the Request-URI
POST Not safe, Not idempotent Accept the representation in the message-body as a new subordi-

nate of the resource identified by the Request-URI; Create a new
resource without knowing the final URI; Append to the state of
the resource identified by the Request-URI;

Table 2.1: Uniform interface formed by the HTTP method set

The “Property” column in the table illustrates how having a common set of methods with
fixed semantics that is applicable to all resources in the system also leads to a more scalable
and robust system.

Issuing a HTTP GET fetches the representation of the resource identified by the URI

without any “strings attached”. Just like HEAD, this method is safe. It does not result in
any change of client-relevant state at the server. Due to this properties, GET can support
very efficient and sophisticated caching schemes. At the same time, the GET method is
idempotent. The client is allowed to issue the same call one or ten times, if he wishes to do
so, and the effects to the state of the identified resource at the server is guaranteed to be the
same as if he made the call only once. The same idempotent property is shared by the PUT
and the DELETE methods. If the client attempts to create or delete a resource and does
not receive a positive status code, she knows that she can simply reissue the same request
without relevant side-effects.

The HTTP POST method is neither safe nor idempotent. Making two POST requests to
a collection resource will likely result in creation of two separate subordinate resources in the
collection. The same applies when POST is used in a non-RESTful manner as a way to tunnel
data to an arbitrary data-handling process. Because of this, the use of the POST requests has
to be limited only to those scenarios where the safe or idempotent methods are not sufficient.
In many cases a POST request can be avoided by reorganization of the resource model or by
introducing a new resource representing the “result” of the indented activity of the original
POST request.

The CTF platform uses the reduced HTTP method set described in Table 2.1 as its uniform
interface. Apart from the scalability and robustness benefits explained previously, this also
allows clients to cleanly separate the code that deals in generic way with the issuing of the
request and the interpretation of the status codes with the service specific aspects that are
part of the handling of the resource representations.

For example, fetching information about a particular node in a testbed would be imple-
mented by a GET request on a node resource URI. The same code that handles the GET
request can also be used for fetching information on a given platform, only the target will now
be a platform resource URI. Similarly, the code that handles the PUT request for creating a
new node resource at a given node URI can be shared with the code for creating a new binary

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 13

TU Berlin

image at a given image resource URI.
This should be compared with classical SOA and RPC styles where there are multiplicity

of methods taking the role of the uniform method set. For example, the WISEBED API

has methods like getNodeList, getCapabilities, flashImagesToSensorNodes, etc. Every
service effectively speaks a different language and both the client and the intermediary com-
ponents (caches, proxies, etc.) can not make any generic assumptions about their semantic
properties.

Statelessness

All REST interactions are stateless. In Web-based RESTful systems this means that each HTTP

request should happen in full isolation and the client has to provide all of the information
necessary for the server to understand the request, independent of any requests that may
have preceded it.

This constraint, effectively moves the burden for maintaining the application state from
the server to the client. The resource state is maintained on the server and it is the same
for every client. If one client changes a particular resource state, this change is made visible
to all other clients. It is the responsibility of the client to maintain any state that is specific
only to that client.

The statelessness constraint frees the server from the need to retain application state
between the individual requests, improving the scalability of the system. It enables parallel
processing of the requests without further coordination apart from the resource state. It also
allows intermediaries to view each request in isolation. For example, a cache server can make
a decision whether to cache or not a result from a request without fearing that state from
some previous requests might affect its validity.

Connectedness

Resource representations in RESTful systems contain links to other related resources allowing
the client to navigate to them instead of using out-of-band information about the right URI

where a given resource representation can be accessed.
A client should be able to effectively use a RESTful APIs without any prior knowledge

beyond the initial URI and understanding of the standard media types appropriate for the
specific application domain. From the initial URI, all application state transitions must be
initiated by the client by selecting among a set of valid next states which are provided by the
server as part of the representations of the manipulated resources.

Following this REST constraint, all CTF resources are interlinked and the servers guide
the clients through the application state. The testbed servers remain in full control of their
URI namespaces. This allows unconstrained evolution of the server-side services by limiting
the effects that changes have on client-side code.

The connectedness principle is the main reason why the CTF platform is defined through
its resource model and not through the URI space as usual in traditional non-RESTful Web
services. As long as the client understands the media types used for representing the CTF

resources, they can effectively access all services without prior knowledge of the URI hierarchy.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 14

TU Berlin

2.3 Core Abstractions

2.3.1 Authentication and Authorization

In order to securely identify the user, to grant the user access to all testbeds parts of the fed-
eration and to manage levels of access users should have to secured resources, the Federation
of CO testbeds requires authentication and authorization facilities.

Single Sign-On (SSO) allows the user to authenticate on several servers by means of a
single credential, so that the user doesn’t need to use different passwords, often difficult on
a large and complex network. On the other hand, we need a support for granting access to
private resources according to customized policies and without exposing those resources to
vulnerability.

Several protocols address the problem of authentication and authorization in computer
networks. The Kerberos [11] protocol published by Massachusetts Institute of Technology
(MIT), offers a solid and reliable support to authentication and authorization. Kerberos was
released under open-source license and soon become a de facto standard and was adopted as
a security protocol by the main operating systems.

At the time of writing, most of the applications run in the Internet and are based on the
web which proved to be the answer to the increasing need of scalability. Currently, a large
and growing number of web-oriented protocols address user identity trust and authentication,
while much of the academic community seemed to have chosen Shibboleth [15].

Shibboleth is an institution-centric approach to identity management in which an orga-
nization is elected as a trusted verifier of the authentication data. When a user attempts
to authenticate against a server supporting Shibboleth, he basically asks his organization to
certify his identity. This adheres to the paradigm of delegated authentication in which both
the user and the web service tightly bind to the existence of a particular institution.

This is not acceptable in our case: users should be able to control their identity over
the Internet and every testbed should be given autonomy and freedom to decide how to
administer access policies. For this reason we need a user-centric identity solution.

OpenID [13] is arguably the leading protocol supporting a user-centric approach and
a life-long and sustainable solution to identity management. There are currently over 120
million OpenID accounts since OpenID is gaining adoption by large organizations like Google,
Yahoo!, Facebook, AOL, Symantec, VeriSign, Mozilla, and Novell.

The OpenID authentication process involves three different entities: the user, the Identity
Provider (IP) and the Identity Consumer (IC). When a user attempts to gain access to an
IC, he is redirected to his IP. OpenID is a URL, which means that the IC can easily use it to
determine the location of the IP without recourse to some kind of directory service. The IP

must authenticate the user credentials and redirects the user back to the IC to allow the user
access.

There are several benefits deriving from adopting OpenID. From the user’s perspective,
OpenID is a portable identity all over the federation and there is no need to open a new
account on each of the testbeds of the federation. This also relieves each single testbed from
the responsibility of storing and managing user identities while accelerating and simplifying
the registration process.

While OpenID offers a light-weight HTTP-based solution to federated authentication, de-

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 15

TU Berlin

Identity Consumer Identity Provider User

Request user sign-in

Sign in with OpenID

Performs discovery

Responds with XRDS document

Requests login auth

Redirects to OpenID sign-in page

Logs in and approves

Returns user identity

Figure 2.4: OpenID sequence diagram

signed from the same creators of OpenID, OAuth [12] addresses the problem of allowing a
user to grant a first server called Service Consumer (SC) access to a specific resource stored
on a second server called Service Provider (SP), without sharing any credentials with the SC.
To achieve this, OAuth introduces tokens in place of user credentials. While user credentials
grant unlimited access to user’s private resources, tokens can restrict access to a limited set
of resources or time.

The SC contacts the SP, asking for a request token. The SP verifies that the SC is regis-
tered and responds with an unauthorized request token. The SC directs the end user to an
authorization page located on the SP, referencing the request token. On the authorization
page, the user is prompted to log into their account and then either grant or deny limited
access to their data by the SC. If the user grants access, the SC sends a request to the SP to
exchange the authorized request token for an access token. The SP verifies the request and
returns a valid access token. The SC sends a request to the SP. The request is signed and
includes the access token. If the SP recognizes the token, it supplies the requested data.

To better understand how OpenID and OAuth meet our needs enabling authentication
and authorization in the CTF platform, we describe here two use cases.

In the first use case, involving OpenID, we can imagine to provide the Federation with
an OpenID server acting as an IP, implementing the OpenID protocol for third-party service
authentication. The Identity Provider may be local to the Federation Server or the Federation
Server itself may delegate authentication to an external existing IP, like Google [8] or AOL
for example, by means of the OpenID discovery capabilities. When the user needs to access
one the Testbed Servers, he needs to authenticate against them, so that they can keep a local
representation of every user of the federation. To obtain this, instead of forcing the user to
open a new account on every Testbed Server, we enable them to be OpenID IC.

In the second case we can imagine a user launching a job involving several resources on
a specific testbed. The job physically runs on the Testbed Server but the information about
the experiment specification and the document containing the experiment results should be
stored in the Federation Server or in any other external storage service. To achieve this, the

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 16

TU Berlin

Service Consumer Service Provider User

Request token with OAuth

Responds with unauthorized request token

Request authorization for request token

Redirects user to access consent page

Logs in and grants/denies access

Redirects with authorized request token

Request exchange for access token

Responds with access token

Request data with access token

Responds with requested data

Figure 2.5: OAuth sequence diagram

user must be enabled to allow the Testbed Server to read and write his private information
on his behalf. This could be obtained with an implementation of OAuth, i.e. enabling the
Testbed Server to be a SC and the Federation Server to be a SP.

2.3.2 Resource Discovery, Reservation and Scheduling

As every system allowing authenticated users access to limited and distributed resources, the
CTF requires discovery, reservation and scheduling capabilities, to provide the users with a
view of the federation, to avoid conflicts, optimize usage and improve the user’s experience.

Discovery, reservation and scheduling must be highly available as if they becomes unavail-
able the entire access to resources is compromised.

Scalability is also a strong requirement: the federation will include several testbeds, the
number of users and nodes may increase considerably to potentially hundreds users and
thousands of nodes and a continuous monitoring of the target infrastructure may lead to a
significant load.

As we show in the next sections, Resource Discovery, Reservation and Scheduling take
and inherit full advantage of the benefits of a HTTP RESTful architecture, such as identifying
resources with URIs and caching. In the last section we present two notable cases of related
work, emphasizing the main differences with our approach.

Resource Discovery

In a federation of testbeds, where both physical and virtual resources are distributed across
a worldwide heterogeneous network, an integrated mechanism for resource discovery2 is nec-

2With the term discovery in broad-sense we indicate here both resource discovery (the process of explor-
ing/browsing for testbed resources) and the availability discovery (the process of retrieving information about

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 17

TU Berlin

essary to provide users with an overview of the state of the underlying resources.
With the general term of resources we here indicate every single entity in the federation

that can be addressed and accessed by applications. This does not include only nodes, which
are the final objective of the whole CTF, but also any other entity that may take part to the
experiment for any purpose, such as measuring, monitoring or simply forwarding information
(i.e. channel scanners, spectrum analyzers).

While every experiment requires a specific subset of resources, we don’t want to force
the user to browse for them on every testbed. On the contrary we need to provide the user
with an abstract aggregated view of the current state of the federation through a minimum
number of effort and a priori assumptions.

Moreover, resource discovery must allow tracking of both relatively static and frequently
changing resource characteristics and loosening and tightening of the granularity of the search-
ing filter, according to the user’s needs, by means of an expressive and adaptive query lan-
guage.

Discovery happens at two different levels: federation level and testbed level. At federation
level discovery is in charge to gather information coming from the different testbeds, while
at testbed level the information is retrieved from the testbed resources. Such a hierarchical
structure allows the discovery query processing to be distributed among all testbeds avoiding
significant load at the federation level.

A discovery query issued to the CTFS may be split in resource discovery and availability
discovery. The resource discovery answers to the question What is present? while availability
discovery answers to What is available?. Since the result of resource discovery is likely slowly
changing over time, it can be cached in the CTFS, behaving here like a shared cache (proxy).
During availability discovery the system retrieves a collection of which resources are currently
available in a specified time slot for a specified user. No detail about resources is returned
in this phase, but only whether each resource is available for use or not. This is context-
sensitive as it might be subject to access and priority policies. Decoupling information about
resources and their availability allows discovery to inherit full advantage of REST, allowing
optimization of caching.

This discovery request contains information about the searching parameters that could
appear as HTTP GET query parameters or be uploaded (HTTP POST) as a document de-
scribing the experiment to be performed including the needed resources.

An example list of parameters follows here:

• platform type

• radio technology

• amount of nodes per node type

• duration of experiment

• mobile node required

• sensors

resources free from other users reservations). Later in this section we will show how this decoupling can
improve scalability.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 18

TU Berlin

• actuators

Resource Reservation

In order to avoid collision and to allow concurrent access at same time, the CTF includes a
global resource reservation system.

With collision, we mean the conflict generated by concurrent access to the a shared portion
of space, frequency and time. In our case, if we assume that the different testbeds are far
apart enough to grant no electromagnetic interference during concurrent experiments, we can
conclude that collision is avoided as long as experiments run on different time slots and on
different portion of the spectrum. A first simple approach would consist in reserving an entire
testbed for a given slot of time. This would be enough to avoid any kind of conflicts during
concurrent access to the federation by different users, but will not contribute to optimal usage
of the resources.

In line with the federation philosophy, none of the resource reservation features should
impose significant limits in autonomy and functionality of the individual testbeds. We assume
that every testbed in the federation is already capable of managing reservations through the
TA API. Where the native API does not allow concurrent access, we introduce a locking
system at the federation level which temporarily isolates the testbed from the federation
during access by native users.

Resource Scheduling

The CTFS introduces another layer of optimization which strongly impacts the user expe-
rience. A complete knowledge of the status of the underlying resources allows the CTF

to support additional functions like solving dependent reservation requests featuring inter-
testbed parameters and optimizing the usage of resources by providing the user with a series
of alternatives (both in resources and in time) whenever the request for reservation could not
succeed.

In the ProtoGENI implementation and deployment of Global Environment for Network
Innovations (GENI), a virtual laboratory for at-scale networking experimentation, RSpec de-
fines concepts like advertisements, requests and tickets which constitute an ad-hoc solution
to the problem of discovery and reservation. While Advertisements describe resources pro-
vided by component managers, requests describe the resources that a client wants and tickets
are resource reservations which are promised by a component manager to a client or broker.
In our case advertisements are simply responses to aggregated requests about the state of
the federation (mostly related with slowly varying information), requests are simply discov-
ery queries and tickets are simply URLs pointing at the resource created out of a successful
request for a new reservation.

2.3.3 Experiment Specification and Control

The main goals of the CTF is to facilitate running a given experiment on different testbeds. To
do this conveniently the CTF must provide facilities for specifying the experiment setup in a
testbed independent manner, as well as a facility for issuing the control commands necessary
for preparing the experiments environment, executing the experiment and collecting results.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 19

TU Berlin

Experiment Specification

An experiment that is to be run on CTF is defined in a generic way so that it can be reused
on all testbeds participating in the federation. It must define the types of hardware and
software resources, as well as other properties of the infrastructure of the testbed in which the
experiment should be run. The static types of hardware and software resources are described
independently from the participating testbed resources in form of HTTP REST resources.
Thus new types of device resources can easily be added to the federation by creating new
resources without interfering with resources already in use. Each experiment contains one
or more property sets that define what kind of devices are needed and how many of them.
Each property set defines a unique combination of properties of a node type needed in the
experiment. Nodes must have at least these properties but may offer other properties that
are not defined in the property set. The node count in each property set defines how many
of those nodes are needed, leading to disjoint property sets in the sense that when creating
a property set with node count n, it is imperative to create exactly n virtual nodes that
reference this property set. This part of the experiment specification is matched with the
available resources from resource discovery.

The second part that needs to be specified are the tasks of the experiment, their order
of execution and on which nodes they have to be executed. When executing an experiment
there are two options:

In batch mode the user specifies all necessary tasks and setup for experiment execution
in the experiment definition. In this case no further user interaction is necessary. The
experiment is executed and the results are stored.

In interactive mode a subset of the experiment tasks are specified in the experiment defi-
nition, but the user may interact with experiment execution during runtime by adding further
tasks on the fly. This allows the user to dynamically modify the course of the experiment.

This approach allows reusing experiments as templates. Thus by modifying part of an ex-
isting experiment(adding, removing, modifying or rescheduling tasks or virtual node groups)
the user can easily create new experiments.

There are 2 kinds of task and node resources: Virtual tasks, virtual nodes(forming virtual
node groups) and tasks and nodes (forming node groups). The former are needed to define
the experiment independently of the executing testbed.

Virtual nodes are needed for naming each node participating in the experiment. Each
virtual node must corresponds to exactly one real node found by resource discovery. So
when a task is defined a reference on which nodes it needs to be done can be added. Some
tasks need to be done at the same time on several different virtual nodes, so these virtual
nodes are grouped forming virtual node groups. A virtual node holds a name and is part
of a property set. A virtual node group is formed for grouping all nodes that need to be
addressed for executing one virtual task at a certain point in time. That is why a virtual
node group may contain virtual nodes of different property sets. The characteristic grouping
the nodes is the task and not the properties of the nodes. A consequence of this is that
virtual nodes in a virtual node group are neither homogeneous nor exclusively found in one
group. Consequently virtual node groups are not necessarily disjoint.

Virtual tasks describe which steps exactly have to be executed for the experiment. Each
experiment step must define time of execution(relative to start of the experiment), which

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 20

TU Berlin

operation has to be executed, which nodes are involved and which input is needed and where
it is located. As we use the REST architectural style, all information needed is stored within
the federation in form of referenced resources or directly within the task resource. Besides
some administration fields the virtual tasks resource contains the following fields:

• eta - time of execution of task, relative to start time

• method - Verb defining type of HTTP request

• headers - Headers defining media type/representation of reply and request, cache op-
tions, authorization options, definition of host

• payload - JSON representation of the needed input information for this operation, may
contain references to other resources of fixed name-value pairs involved in the operation

• target - The reference to the virtual node group resource that references all virtual nodes
that participate in this task.

The actual task is then constructed by assembling those fields into an HTTP request that
is issued to the real node group. As the virtual task is constructed for the purpose of defining
an experiment step independent from any testbed, the virtual task will not be translated
into an HTTP request but is used as a generic variant describing what operation needs to
be executed on what kind of nodes. This approach allows us to be independent of a fixed
set of operations/experiment tasks or node types. Thus the experiment specification can be
extended at any point without having to change existing federation resource types and can
be used to create a testbed dependent experiment description by mapping the virtual node
groups to testbed dependent node groups.

An example set of experiment tasks:

• load image on node

• load image on node group

• reboot node

• reboot node group

• delete image from node

• delete image from node group

• move a node

• move a node group

• inject message on node

• inject message on node group

• extract message on node

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 21

TU Berlin

• extract message on node group

• start battery-power node

• stop battery-power node

• start usb-power node

• stop usb-power node

• start monitoring node

• stop monitoring node

• start tracing

• stop tracing

• pick trace

Experiment Control

After having specified the experiment setup, we need to define how the experiment specifica-
tion can be translated into a testbed dependent experiment version. And what is needed on
the testbed-side for being able to translate the experiment tasks coming from the CTF into
native testbed tasks that are executed at the time defined in the experiment.

Virtual tasks cannot be executed. When a matching testbed is found and a job has
been scheduled the user is sent references(URI) to the reserved nodes. Those nodes must
have a one to one mapping to the virtual nodes. Node groups corresponding to the virtual
node groups must be created as well. The testbed-dependent task is then created by getting
the virtual task representation and replacing the virtual node group references with the real
node groups references. Those testbed dependent tasks are then processed by the CTFS. The
CTFS translates each of the tasks into HTTP requests that are sent to the testbed server.
Each testbed server must implement the TA API. Thus the tasks coming from the CTFS

are understood by the testbed and queued in a tasks execution engine. According to the
scheduling of the tasks received by the CTFS will the task execution engine trigger executing
the testbed native tasks. The initial request of the CTFS receives a response with HTTP status
code 202(see Section 3.1.3) and a reference to a status resource. Completion of the request
is then announced to the status resource that can be polled for further information.

2.3.4 Logging and Tracing

The CTF must provide a facility for logging and storing information about events that occur
while running an experiment. There are two kinds of events. Events that reflect changes in
the testbed setup during an experiment and events that are directly triggered by the SUT.
The former are referred to as logs, the latter as traces.

Experiment control on the CTFS is done by issuing HTTP requests to dedicated target
resources, e.g. node groups. The change in the state of a resource of the CTF reflects changes
in the testbed setup. Those changes need not only be reported to the tasks resource that

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 22

TU Berlin

caused them, but are also logged by creating a representation of a log resource. Similar to the
concept of the OASIS Base event, where a predefined state change of a source component is
reported by another component the CTF introduces the Log resource. The Log resource binds
the finishing of a task on a dedicated resource to its status resource and adds a timestamp.

The Trace resource is triggered by the SUT, by the image that is burned on the nodes
under test. As the CTF federates testbeds of different infrastructure it must be able to deal
with nodes providing their traces via heterogeneous conduits and protocols. In order to be
able to create a homogeneous trace files the nodes of each testbed provide information via
what type of interface the output is provided. Besides the trace content the trace resource
contains reference to the job, testbed, project and user.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 23

TU Berlin

Chapter 3

CONET Testbed Federation
Platform APIs

This section specifies the RESTful API of the CTF platform. The structure of the specification
is inspired by the Sun Cloud API [10], a public Application Programming Interface (API) for
Cloud services that most closely follows the spirit of the REST architectural style.

3.1 Common Features

This section specifies constraints that apply to all requests and responses in the CTF API. It
includes the common headers, with special focus on the fields enabling efficient caching, and
the shared status codes according to the HTTP /1.1 specification (RFC 2616) [4].

3.1.1 HTTP Request Headers

Requests issued to the CTF APIs should include the following HTTP headers.

Header Description

Accept Specifies which media type(s) are acceptable for the response.
Authorization HTTP Basic Authentication credentials, in case of access to protected resources by the

user or by any other authorized entity.
Cache-Control Specifies the caching directive(s) that must be followed in the request-response chain.
Content-Length Indicates the size of the request body.
Content-Type Indicated the media type of the request body.
Host Specifies the Internet host and port number of the requested resource.
If-None-Match Specifies a condition on the Etag for the request to be processed: the request should

be forwarded to the server only if the cached response has been different ETag (GET,
HEAD).

If-Match Specifies a condition on the Etag for the request to be processed: the request should
be forwarded to the server only if the cached response has not been modified (PUT,
DELETE).

If-Modified-Since Specifies a condition on the time for caching: the request should be forwarded to the
server only if the cached response has been modified (GET, HEAD).

If-Unmodified-Since Specifies a condition on the time for caching: the request should be forwarded to the
server only if the cached response has not been modified (PUT, DELETE).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 24

TU Berlin

3.1.2 HTTP Response Headers

Responses returned by the CTF APIs should include the following HTTP headers.

Header Description

Allow Lists the set of methods supported by the resource identified by the Request-URI.
Cache-Control Specifies the caching directive(s) that must be followed in the request-response chain.
Content-Length Indicates the size of the response body.
Content-Type Indicated the media type of the response body.
ETag Provides the current value of the entity tag for the requested variant.
Expires Gives the date/time after which the response is considered stale unless it is first validated

with the origin server.
Last-Modified Indicates the date and time at which the origin server believes the variant was last

modified.
Location This field is used to redirect the recipient to a location other than the Request-URI for

completion of the request or identification of a new resource.
WWW-Authenticate This field must be included in 401 (Unauthorized) response messages to invite the client

to submit credentials for accessing a protected resource.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 25

TU Berlin

3.1.3 HTTP Status Codes

The CTF APIs will return HTTP status codes as described in the following table.

HTTP Status Description

200 OK The request was successfully completed.
201 Created A request that created a new resource was completed, and no response body

containing a representation of the new resource is being returned. A Location
header containing the canonical URI for the newly created resource should also
be returned.

202 Accepted The request has been accepted for processing, but the processing has not been
completed. The response will include an indication of the request’s current
status, and either a pointer to a status monitor or some estimate of when the
user can expect the request to be fulfilled.

204 No Content The server fulfilled the request, but does not need to return a response message
body.

304 Not Modified If the client has performed a conditional GET request and access is allowed, but
the document has not been modified, the server will respond with this status
code.

400 Bad Request The request could not be processed because it contains missing or invalid in-
formation (such as validation error on an input field, a missing required value,
and so on).

401 Unauthorized The authentication credentials included with this request are missing or invalid.
403 Forbidden The server recognized your credentials, but you do not possess authorization to

perform this request.
404 Not Found The request specified a URI of a resource that does not exist.
405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, HEAD, POST, PUT)

is not supported for this request URI.
406 Not Acceptable The server is refusing to service the request because the Request-URI is longer

than the server is willing to interpret.
409 Conflict A creation or update request could not be completed, because it would cause

a conflict in the current state of the resources supported by the server (for
example, an attempt to create a new resource with a unique identifier already
assigned to some existing resource).

410 Gone The requested resource is no longer available at the server and no forwarding
address is known. This condition is expected to be considered permanent.
Clients with link editing capabilities SHOULD delete references to the Request-
URI after user approval.

412 Precondition Failed The precondition given in one or more of the request-header fields evaluated to
false when it was tested on the server.

415 Unsupported Media Type The resource identified by this request is not capable of generating a represen-
tation corresponding to one of the media types in the Accept header of the
request.

500 Internal Server Error The server encountered an unexpected condition which prevented it from ful-
filling the request.

501 Not Implemented The server does not (currently) support the functionality required to fulfill the
request.

503 Service Unavailable The server is currently unable to handle the request due to temporary overload-
ing or maintenance of the server.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 26

TU Berlin

3.1.4 Common Resources

Status [application/ctf.Status+json]

A Status represents a report on the progress of an asynchronous request for a change in the
state of a specific resource. Such requests receive an HTTP status code of 202 Accepted,
with the response body being a Status representation.

Status resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name describing the request whose status this represents.
media type String 1 application/ctf.Status+json

num done Integer 1 Represents the progress towards completion of the request. A value equal
to num tot indicates that the request has completed.

num tot Integer 1 Reprents the value that num done reaches when the request had completed.
target URI 1 Represents the resource upon which the request is acting.
message String 0..1 Brief message describing the completed operation (if successful) or an error

message (if not successful).

Index [application/ctf.Index+json]

An Index represents a collection of resources. It allows browsing and creation of new resource
by submitting an HTTP POST request to this resource.

The Index resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Index+json

items Resource[] 1 An array of URIs to resources belonging to this collection.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 27

TU Berlin

3.2 Resource Model

According to the REST style, this section specifies the resources comprising the CTF platform.
The following table provides an overview of the resources and their association with the TF

API and the TA API:

Part of TF API Part of TA API and TF API

Federation Testbed
Project User
Experiment Job
PropertySet NodeGroup
VirtualNodeGroup Image
VirtualNode Task
VirtualTask Trace

Log
Socket
Node
Platform
Interface
Radio
Sensor
Actuator
Mobility
ImageFormat

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 28

TU Berlin

3.2.1 Testbed Federation API

Federation [application/ctf.Federation+json]

A Federation represents a user’s view of all accessible Testbeds, Users and Projects in the
Federation of Testbeds. It is also the starting point for discovery of all other resources within
the Testbed Federation API. Furthermore it includes common resource types(Platforms,
Sensors, Actuators, Interfaces) that should be universally used when describing the properties
of the testbed resources.

The Federation resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this
resource.

name String 1 A given name for this resource.
media type String 1 application/ctf.Federation+json

users User[] 0..1 The list of Users currently registered to the CONET
Testbed Federation.

projects Project[] 0..1 The list of Projects currently stored in the CONET Testbed
Federation.

testbeds Testbed[] 0..1 The list of Testbeds currently registered to the CONET
Testbed Federation.

platforms Platform[] 0..1 The list of platforms adopted for nodes within the CONET
Testbed Federation (testbeds supporting platforms must
refer to this resource).

radio technologies RadioTechnology[] 0..1 The list of radio technologies adopted for nodes within
the CONET Testbed Federation (nodes with radio devices
must refer to this resource).

sensors Sensor[] 0..1 The list of sensors adopted for nodes within the CONET
Testbed Federation (nodes with sensors must refer to this
resource).

actuators Actuator[] 0..1 The list of actuators adopted for nodes within the CONET
Testbed Federation (nodes with actuators must refer to
this resource).

interfaces Interfaces[] 0..1 The list of interfaces defined for communication with nodes
within the CONET Testbed Federation (nodes implement-
ing interfaces must refer to this resource).

image formats ImageFormat[] 0..1 The list of software image file formats within the CONET
Testbed Federation (nodes allowing burning image files
must refer to this resource).

Project [application/ctf.Project+json]

A Project represents a grouping of Experiments used in its context. It also holds references
to Users participating in the project by running, designing and evaluating experiments.

Project resource model contains the following fields:

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 29

TU Berlin

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Project+json

description String 1 A short description of the Project.
users Users[] 1 A list of Users registered to this Project.
testbeds Testbed[] 0..1 A list of Testbeds the Project acts on.
experiments Experiment[] 0..1 A list of Experiments used.
jobs Job[] 0..1 A list of Jobs that implement project-related experiments on the fed-

erated testbeds.

Experiment [application/ctf.Experiment+json]

The Experiment resource represents an experiment in terms of owner (User), documentation
(Title, Description), the list of Jobs which implement the Experiment on different Testbeds,
and finally the output data collected from all related Jobs. Experiments have three different
sharing modes: public, protected and private. Public experiments are accessible by all users in
the Federation, protected experiments are accessible by all users within the same Project and
private experiments are only accessible to the Experiment’s owner (the User). All experiment
resources contain a reference to the project they are allocated to.

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of
this resource.

name String 1 A given name for this resource.
media type String 1 application/ctf.Experiment+json

description String 1 A short description of the Experiment.
owner User 1 User owning the experiment.
project Project 1 Project the experiment is allocated to.
testbeds Testbed[] 0..1 A list of testbeds the experiment has been implemented

for.
image files Image[] 0..1 A list of image files needed for running the experiment.
property sets PropertySet[] 0..1 Array of all property sets that define the kind of devices

needed for experiment execution.
virtual tasks VirtualTasks[] 0..1 Array of all virtual tasks, that are needed for experiment

execution.
virtual node groups VirtualNodeGroup[] 0..1 Array of all virtual node groups needed for executing

virtual tasks.
virtual nodes VirtualNode[] 0..1 Array of all virtual nodes needed for executing virtual

tasks.
jobs Job[] 0..1 A list of job that have been scheduled for the experiment.
traces Trace[] 0..1 A list of Traces created when running the experiment-

related jobs.
sharing String 1 String indicating the sharing mode of the experiment.

Either one of: public, protected and private.

PropertySet [application/ctf.PropertySet+json]

The PropertySet resource represents a grouping of all properties required by a node for an
experiment. It contains information about the needed platform type, interface types, sensor

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 30

TU Berlin

and actuator types, radio technology and the number of nodes needed with these properties.
This information is used during the resource discovery process to locate testbeds capable of
executing the experiment.

The PropertySet resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 ctf.PropertySet+json

description String 1 A short description for this resource.
owner User 1 The user owning this property set.
experiment Experiment 1 Experiment that uses this property set.
platform Platform 0..1 The platform type needed.
radios Radio[] 0..1 The type of radio technology required by the experiment.
interfaces Interface[] 0..1 The Interface types that are required by the experiment.
sensors Sensor[] 0..1 Sensors that are required by the experiment.
actuators Actuator[] 0..1 Actuators that are required by the experiment.
mobility Mobility 0..1 The supported type of mobility
node count Integer 1 The number of nodes needed of this type.

VirtualNodeGroup [application/ctf.VirtualNodeGroup+json]

The VirtualNodeSet resource represents a frozen set of nodes that can be created for different
purposes. It is a subset of the nodes participating in an experiment. A virtual node set is
composed of all virtual nodes that take part in one task, e.g. switch off power supply to all
nodes in this virtual node set. Virtual node groups are not necessarily disjoint.

The VirtualNodeSet resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.VirtualNodeGroup+json

virtual nodes VirtualNode[] 1 A list of virtual nodes.

VirtualNode [application/ctf.VirtualNode+json]

The VirtualNode resource allows naming of each node participating in the experiment. Nam-
ing is necessary for defining which virtual tasks have to act on which dedicated virtual nodes.
Furthermore the virtual node references the property set that defines its features.

The VirtualNode resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.VirtualNode+json

property set PropertySet 1 The property set defining the properties of this virtual node.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 31

TU Berlin

VirtualTask [application/ctf.VirtualTask+json]

A virtual task describes one step of the experiment execution. A Task can be loading an
image to a single node or a whole node group, erasing an image from a single node or a
whole node group, starting or stopping tracing, powering a node or node group on or off.
Information about which of the named generic tasks should be executed is defined by the
triple method, target uri and payload. The virtual task differs from the task, as it only
operates on virtual node sets.

Virtual Task resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 ctf.VirtualTask+json

description String 1 Short description of the virtual task.
eta Integer 1 Integer value representing time of execution of task, relative to start time of

the job.
method String 1 Verb defining type of HTTP request.
headers String 1 Headers defining media type/representation of reply and request, cache op-

tions, authorization options, definition of host.
payload String 1 JSON representation of the needed input information for this operation, may

contain references to other resources of fixed name-value pairs involved in
the operation.

target String 1 The URI of the virtual node group resource on which this request should act
on.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 32

TU Berlin

3.2.2 TA API and TF API

Testbed [application/ctf.Testbed+json]

The Testbed resource is the representation of a real testbed member of the CONET Testbed
Federation.

Testbed resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Testbed+json

organization String 1 The name of the organization running this testbed.
sockets Socket[] 0..1 The list of sockets that may host nodes in this testbed.
nodes Node[] 0..1 The list of nodes connected to the testbed.
platforms Platform[] 0..1 Platforms currently supported by this testbed.
sensors Sensor[] 0..1 The list of Sensors supported for Nodes within the testbed.
actuators Actuator[] 0..1 The list of Actuators supported for Nodes within the testbed.
interfaces Interfaces[] 0..1 The list of Interfaces supported for communication with Nodes within

the testbed.
jobs Job[] 0..1 Jobs scheduled on the testbed.

User [application/ctf.User+json]

A User represents the user registered to the CONET Testbed Federation. The User resource
model references all projects and experiments owned by the user. Furthermore it contains
references to all experiments run by the user in form of references to jobs and traces.

User resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.User+json

openid String 1 OpenID URL belonging this User.
email String 1 E-mail address for the User.
organization String 1 Organization which the User is part of.
projects Project[] 0..1 Projects the User is involved.
experiments Experiment[] 0..1 The Experiments owned by the User.
jobs Job[] 0..1 Jobs owned by the User.

Job [application/ctf.Job+json]

In case of batch mode, the user must specify every single Task to be automatically performed,
including boot, configuration, control, tracing and shut-down. In case of interactive mode,
the tasks attribute includes only the common Tasks needed for the boot and the shut-down.
All other Task are left to the user.

Job resource model contains the following fields:

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 33

TU Berlin

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Job+json]

description String 1 Short description for this resource.
owner User 1 The user running this job.
project Project 1 The Project this job is related to.
experiment Experiment 1 The Experiment that was implemented by this job.
testbed Testbed 1 The testbed on which this job is to be run.
platform Platform 1 The platform which this job will use.
datetime from Timestamp 1 The time when the Job starts.
datetime to Timestamp 1 The time when the Job shuts down.
duration Integer 1 The duration of this job expressed in minutes.
nodes Node[] 1 The list of nodes involved in this job.
node groups NodeGroup[] 0..1 Frozen sets of nodes involved in this job.
tasks Task[] 0..1 The list of operations that has to be performed during this job.
traces Trace[] 0..1 The list of trace files created during the execution of the job.

NodeGroup [application/ctf.NodeGroup+json]

A NodeGroup is a frozen set of Nodes that can be created for different purposes.
NodeGroup resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.NodeGroup+json

nodes Node[] 1 A list of Nodes.

Image [application/ctf.Image+json]

The Image resource provides an image ready to be burned on a node. Furthermore it defines
its own format and symbols that allow generic variables in the image file to be replaced with
values that are provided only at runtime.

Image resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this re-
source.

name String 1 A given name for this resource.
media type String 1 Image [application/ctf.Image+json]

description String 1 A short description for this Image.
owner User 1 The user that owns this Image.
image format ImageFormat 1 Image format as defined by the ImageFormat resource.
content Binary 1 The raw content of the Image file.
mapping keys String[] 0..1 A list of symbols in the Image file allowing generic variables to be

assigned at runtime.
mapping values String[] 0..1 A list of values to assign at runtime to respective symbols.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 34

TU Berlin

Task [application/ctf.Task+json]

A Task describes one step of the experiment/job execution. A Task can be loading an image
to a single node or a whole node group, erasing an image from a single node or a whole node
group, starting or stopping tracing, powering a node or node group on or off. Information
about which of the named tasks should be executed is defined by the triple method, target uri
and payload. The Field relative time defines the time to execute the task relative to the
beginning of a Experiment/Job start time.

Task resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Task+json

description String 1 Short description of the task.
eta Integer 1 Integer value representing time of execution of task, relative to start time of

the job.
method String 1 Verb defining type of HTTP request.
headers String 1 Headers defining media type/representation of reply and request, cache op-

tions, authorization options, definition of host.
payload String 1 JSON representation of the needed input information for this operation, may

contain references to other resources of fixed name-value pairs involved in
the operation.

target String 1 The URI of the node group resource on which this request should act.
status Status 0..1 The URI of the status resource containing information about the execution

state of the task request.

Trace [application/ctf.Trace+json]

The Trace resource is a resource that contains the results of running an experiment on a
dedicated testbed. The Trace resource holds references to the job that produced the result,
the testbed where it was run as well as the experiment that was implemented and the project
it is related to. The Content field contains the actual output that was collected when the
Job was run.

Trace resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Trace+json

description String 1 Short description of the trace.
user User 1 User owning the trace.
project Project 1 Project in which context the trace was created.
experiment Experiment 1 The Experiment that was implemented, run an that produced the trace.
testbed Testbed 1 Testbed on which the trace was generated.
job Job 1 Job that created the trace file.
content String[] 0..1 Each String is composed of the timestamp when the message was issued,

the node it was issued by, the actual message payload and the number
of bytes of the message payload.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 35

TU Berlin

Log [application/ctf.Log+json]

The Log resource links information about a change of the state of a component of the testbed,
by referencing a task, its target and the status and the time of finished execution.

Log resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Log+json]

job Job 1 The job that caused this Log.
task Task 1 Task that was logged.
status Status 1 Status resource that reported the finishing of the task.
target URI 1 URI of the resource changed.
timestamp Integer 1 Time when the event logged occurred.

Socket [application/ctf.Socket+json]

The Socket represents a testbed socket which serves as a container for information about a
testbed receptacle that is independent from the node.

Socket resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Socket+json

x coord Number 1 Location for this node.
y coord Number 1 Location for this node.
z coord Number 1 Location for this node.
node Node 1 A link to he node currently plugged to this socket.

Node [application/ctf.Node+json]

The Node describes properties (platform, interfaces, sensors, actuators, radio technology,
mobility) and state (power, coordinates) of a testbed node.

Node resource model contains the following fields:

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 36

TU Berlin

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Node+json

platform Platform 1 The Platform represent the hardware characteristics of this node.
interfaces Interface[] 1 Interfaces this node supports.
sensors Sensor[] 0..1 A list of sensors featured by this Node.
actuators Actuator[] 0..1 A list of actuators featured by this Node.
radio Radio[] 0..1 The radio technology adopted by this node.
mobility Mobility 0..1 If present indicates the kind of mobility featured by this socket.
power Boolean 1 If true means power-on, if false power off.
image Image 1 The Image file that is to be loaded in this node.
x coord Number 1 Location for this node (inherited by the socket this node is plugged to)
y coord Number 1 Location for this node (inherited by the socket this node is plugged to)
z coord Number 1 Location for this node (inherited by the socket this node is plugged to)

Platform [application/ctf.Platform+json]

The Platform resource represents a set of hardware components of a Node.
Platform resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of
this resource.

name String 1 A given name for this resource.
media type String 1 application/ctf.Platform+json

cpu String 1 An identifier representing the model of CPU featured by
this platform.

memory Number 1 The size of the memory featured by this platform.
image formats ImageFormat[] 1 A list of supported image formats for this platform.
bandwidth lower bound Integer 1 The lower bound in MHz for this platform (used to cal-

culate the collision domain).
bandwidth upper bound Integer 1 The upper bound in MHz for this platform (used to cal-

culate the collision domain).

Interface [application/ctf.Interface+json]

The Interface defines a communication interface supported by nodes for communication be-
tween the testbed infrastructure and the SUT. Since different kinds of interface may be
supported by nodes it is important to have this resource universally defined within the CTF

so that every member testbed may refer to this resource in the description of a given node.
Interface resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Interface+json

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 37

TU Berlin

Radio [application/ctf.Radio+json]

The Radio resource standardizes radio technologies adopted in the CTF. Since different
kinds of radio technologies may be supported by nodes it is important to have this resource
universally defined within the CTF so that every member testbed may refer to this resource
in the description of a given node.

Radio resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Radio+json

Sensor [application/ctf.Sensor+json]

The Sensor resource represents a device dedicated to measuring a particular physical param-
eter like temperature, pressure, humidity, light or sound. Since different kinds of sensor may
be supported by nodes it is important to have this resource universally defined within the
CTF so that every member testbed may refer to this resource in the description of a given
node.

Sensor resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Sensor+json]

description String 1 A human-readable description of this Sensor.
values Number[] 1 The measured values of this Sensor.
units String[] 1 The units of measurement by which values are expressed.

Actuator [application/ctf.Actuator+json]

The Actuator resource represents a device which can operate a particular action in the phys-
ical world, i.e. sound speakers, LED or robots. Since different kinds of actuator may be
supported by nodes it is important to have this resource universally defined within the CTF

so that every member testbed may refer to this resource in the description of a given node.
Actuator resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Actuator+json

description String 1 A human-readable description of this Actuator.
values Number[] 1 The values this Actuator should assume.
units String[] 1 The units of measurement by which values are expressed.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 38

TU Berlin

Mobility [application/ctf.Mobility+json]

The Mobility resource defines a mobility feature for a node. Since different kinds of mobility
may be supported by nodes it is important to have this resource universally defined within
the CTF so that every member testbed may refer to this resource in the description of a given
node. For example nodes may move either in a 2-dimensional or 3-dimensional space.

Mobility resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.Mobility+json

description String 1 A description for this resource.

ImageFormat [application/ctf.ImageFormat+json]

The ImageFormat resource defines a format for the Image file that can be burned on a given
node. Since different platforms may support different image formats it is important to have
this resource universally defined within the CTF.

ImageFormat resource model contains the following fields:

Field Name Type Occurs Description

uri URI 1 A GET against this URI refreshes the representation of this resource.
name String 1 A given name for this resource.
media type String 1 application/ctf.ImageFormat+json]

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 39

TU Berlin

3.3 Requests and Responses

In the following tables we present a description for the application of the four HTTP methods
to the resources introduced in the previous section. In the Status Codes column, the following
codes 400, 401, 403, 404, 406 and 500 are intended to be always implicit since they may refer
to any kind of HTTP Request with the same meaning, while we specify only those HTTP

Status Codes that have a different meaning according to the different HTTP Methods.

3.3.1 Testbed Federation API

Project [application/ctf.Project+json]

Method Description Status Codes

GET Returns the JSON representation of the Project resource. 200, 204, 304, 410
PUT Modifying JSON representation for the Project including Users, Ex-

periments, Testbeds or Jobs.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Experiment [application/ctf.Experiment+json]

Method Description Status Codes

GET Returns the JSON representation of the Experiment resource. 200, 204, 304, 410
PUT Modifying JSON representation for the Experiment including Proper-

tySets, VirtualNodes, VirtualTasks or Images.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

PropertySet [application/ctf.PropertySet+json]

Method Description Status Codes

GET Returns the JSON representation of the PropertySet resource. 200, 204, 304, 410
PUT Modifying JSON representation for the PropertySet including User,

Experiment, Platforms, Radios, Interfaces, Sensors, Actuators, Mobil-
ity and node number.

200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 40

TU Berlin

VirtualNodeGroup [application/ctf.VirtualNodeGroup+json]

Method Description Status Codes

GET Returns the JSON representation of the VirtualNodeGroup resource. 200, 204, 304, 410
PUT Modifying JSON representation for the VirtualNodeGroup including

references to VirtualNodes contained.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

VirtualNode [application/ctf.VirtualNode+json]

Method Description Status Codes

GET Returns the JSON representation of the VirtualNode resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

VirtualTask [application/ctf.VirtualTask+json]

Method Description Status Codes

GET Returns the JSON representation of the VirtualTask resource. 200, 204, 304, 410
PUT Modifying JSON representation for the VirtualTask including values

of method, headers, payload or target fields.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 41

TU Berlin

3.3.2 TA API and TF API

NodeGroup [application/ctf.NodeGroup+json]

Method Description Status Codes

GET Returns the JSON representation of the NodeGroup resource. 200, 204, 304, 410
PUT Modifying JSON representation for the NodeGroup including refer-

ences to Nodes contained.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Image [application/ctf.Image+json]

Method Description Status Codes

GET Returns the JSON representation of the Image resource. 200, 204, 304, 410
PUT Modifying JSON representation for the Image updating mapping keys,

mapping values, binary or image format resource reference.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Task [application/ctf.Task+json]

Method Description Status Codes

GET Returns the JSON representation of the Task resource. 200, 204, 304, 410
PUT Modifying JSON representation for the Task, should only affect the

Status resource reference.
200, 202, 409, 412

POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Trace [application/ctf.Trace+json]

Method Description Status Codes

GET Returns the JSON representation of the Trace resource. 200, 204, 304, 410
POST Method not allowed. 405
POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 42

TU Berlin

Log [application/ctf.Log+json]

Method Description Status Codes

GET Returns the JSON representation of the Log resource. 200, 204, 304, 410
POST Method not allowed. 405
POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Socket [application/ctf.Socket+json]

Method Description Status Codes

GET Returns the JSON representation of the Socket resource. 200, 204, 304, 410
PUT Upload a new JSON representation for a given Socket. 200, 202, 409, 412
POST Method not allowed. 405
DELETE Delete the resource specified by the URI 200, 409, 412

Node [application/ctf.Node+json]

Method Description Status Codes

GET Returns the JSON representation of the Node resource. 200, 204, 304, 410
PUT Upload a new JSON representation for a given Node. 200, 202, 409, 412
POST Method not allowed. 405
DELETE Method not allowed. 405

Platform [application/ctf.Platform+json]

Method Description Status Codes

GET Returns the JSON representation of the Platform resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Interface [application/ctf.Interface+json]

Method Description Status Codes

GET Returns the JSON representation of the Interface resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 43

TU Berlin

Radio [application/ctf.Radio+json]

Method Description Status Codes

GET Returns the JSON representation of the Radio resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Sensor [application/ctf.Sensor+json]

Method Description Status Codes

GET Returns the JSON representation of the Sensor resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Actuator [application/ctf.Actuator+json]

Method Description Status Codes

GET Returns the JSON representation of the Actuator resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Mobility [application/ctf.Mobility+json]

Method Description Status Codes

GET Returns the JSON representation of the Mobility resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

ImageFormat [application/ctf.ImageFormat+json]

Method Description Status Codes

GET Returns the JSON representation of the ImageFormat resource. 200, 204, 304, 410
PUT Method not allowed. 405
POST Method not allowed. 405
DELETE Method not allowed. 405

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 44

TU Berlin

3.4 Invocation Examples

3.4.1 User creates a new Project

POST /projects/

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Project+json

Content-Length: nnnn

Content-Type: application/ctf.Project+json

{

"name" : "Test Projest",

"description" : "A simple test project",

"users" :

[

{

"uri" : "http://federation.com/users/123",

"name" : "John Smith",

"media_type" : "application/ctf.User+json"

}

]

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456

3.4.2 User creates a new Experiment

POST /projects/456/experiments

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Experiment+json

Content-Length: nnnn

Content-Type: application/ctf.Experiment+json

{

"name" : "Test Experiment",

"description" : "A simple test experiment",

"user" :

{

"uri" : "http://federation.com/users/123",

"name" : "John Smith",

"media_type" : "application/ctf.User+json"

},

"project" :

{

"uri" : "http://federation.com/projects/456",

"name" : "Test Projest",

"media_type" : "application/ctf.Project+json"

},

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 45

TU Berlin

"sharing" : "public"

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789

3.4.3 User creates two PropertySets

POST /projects/456/experiments/789/property_sets

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.PropertySet+json

Content-Length: nnnn

Content-Type: application/ctf.PropertySet+json

{

"name" : "Test Property Set 1",

"description" : "Data collection property set",

"node_count" : "10",

"platform_type" :

{

"uri" : "http://federation.com/platforms/165",

"name" : "TelosB",

"media_type" : "application/ctf.Platform+json"

},

"interfaces" :

[

{

"uri" : "http://federation.com/interfaces/769",

"name" : "USB",

"media_type" : "application/ctf.Interface+json"

}

],

"sensors" :

[

{

"uri" : "http://federation.com/sensors/587",

"name" : "Temperature",

"media_type" : "application/ctf.Sensors+json"

},

{

"uri" : "http://federation.com/sensors/639",

"name" : "Light",

"media_type" : "application/ctf.Sensors+json"

}

],

"experiment" :

{

"uri" : "http://federation.com/projects/456/experiments/789",

"name" : "Test Experiment",

"media_type" : "application/ctf.Experiment+json"

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 46

TU Berlin

}

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/property_sets/659

POST /projects/456/experiments/789/property_sets

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.PropertySet+json

Content-Length: nnnn

Content-Type: application/ctf.PropertySet+json

{

"name" : "Test Property Set 2",

"description" : "Data sink",

"node_count" : "1",

"platform_type" :

{

"uri" : "http://federation.com/platforms/165",

"name" : "TelosB",

"media_type" : "application/ctf.Platform+json"

},

"interfaces" :

[

{

"uri" : "http://federation.com/interfaces/769",

"name" : "USB",

"media_type" : "application/ctf.Interface+json"

}

],

"mobility" :

{

"uri" : "http://federation.com/mobilities/295",

"name" : "2D",

"media_type" : "application/ctf.Mobility+json"

}

"experiment" :

{

"uri" : "http://federation.com/projects/456/experiments/789",

"name" : "Test Experiment",

"media_type" : "application/ctf.Experiment+json"

}

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/property_sets/825

3.4.4 User uploads two Image files

POST /projects/456/experiments/789/images

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 47

TU Berlin

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Image+json

Content-Length: nnnn

Content-Type: application/ctf.Image+json

{

"name" : "Test Image 1",

"description" : "Image for data collection",

"image_format" :

{

"uri" : "http://federation.com/image_formats/658",

"name" : "IHEX",

"media_type" : "application/ctf.ImageFormat+json"

},

"content" : "YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY",

"mapping_keys" : ["NODE_ID"],

"mapping_values" : ["http://federation.com/testbeds/{testbed}/nodes/{node}/id"]

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/images/648

POST /projects/456/experiments/789/images

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Image+json

Content-Length: nnnn

Content-Type: application/ctf.Image+json

{

"name" : "Test Image 2",

"description" : "Image for data sink",

"image_format" :

{

"uri" : "http://federation.com/image_formats/658",

"name" : "IHEX",

"media_type" : "application/ctf.ImageFormat+json"

},

"content" : "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"mapping_keys" : ["NODE_ID"],

"mapping_values" : ["http://federation.com/testbeds/{testbed}/nodes/{node}/id"]

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/images/346

3.4.5 User creates two Virtual Tasks

POST /projects/456/experiments/789/virtual_tasks

Host: federation.com

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 48

TU Berlin

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.VirtualTask+json

Content-Length: nnnn

Content-Type: application/ctf.VirtualTask+json

{

"name" : "Test Virtual Task",

"description" : "Burning Image 1 on Virtual NodeGroup 1",

"eta" : "0",

"method" : "PUT",

"headers" : "

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.VirtualNodeGroup+json

Content-Length: nnnn

Content-Type: application/ctf.VirtualNodeGroup+json

"

"payload" : "

"image" :

{

"uri" : "http://federation.com/projects/456/experiments/789/images/648",

"name" : "Test Image 1",

"media_type" : "application/ctf.Image+json"

},

"eta" : "0"

"

"target" : "/projects/456/experiments/789/virtual_node_groups/659"

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/virtual_tasks/729

POST /projects/456/experiments/789/virtual_tasks

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.VirtualTask+json

Content-Length: nnnn

Content-Type: application/ctf.VirtualTask+json

{

"name" : "Test Virtual Task",

"description" : "Burning Image 2 on Virtual NodeGroup 2",

"eta" : "0",

"method" : "PUT",

"headers" : "

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.VirtualNodeGroup+json

Content-Length: nnnn

Content-Type: application/ctf.VirtualNodeGroup+json

",

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 49

TU Berlin

"payload" : "

"image" :

{

"uri" : "http://federation.com/projects/456/experiments/789/images/346",

"name" : "Test Image 2",

"media_type" : "application/ctf.Image+json"

}

",

"target" : "/projects/456/experiments/789/virtual_node_groups/825"

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/virtual_tasks/628

3.4.6 User explores the federation by submitting the experiment definition

GET /testbeds?experiment=http://federation.com/projects/456/experiments/789

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Testbed+json

HTTP/1.1 200 OK

Content-Length: nnnn

Content-Type: application/ctf.Testbed+json

[

{

"uri" : "http://federation.com/testbeds/234",

"name" : "Testbed A",

"media_type" : "application/ctf.Testbed+json"

},

{

"uri" : "http://federation.com/testbeds/872",

"name" : "Testbed B",

"media_type" : "application/ctf.Testbed+json"

},

{

"uri" : "http://federation.com/testbeds/926",

"name" : "Testbed C",

"media_type" : "application/ctf.Testbed+json"

},

]

3.4.7 User creates a new Job for a given Experiment

POST /projects/456/experiments/789/jobs

Host: federation.com

Authorization: Basic XXXXXXXXXX

Accept: application/ctf.Job+json

Content-Length: nnnn

Content-Type: application/ctf.Job+json

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 50

TU Berlin

{

"name" : "Test Job",

"description" : "A simple test job",

"owner" :

{

"uri" : "http://federation.com/users/235",

"name" : "John Smith",

"media_type" : "application/ctf.User+json"

},

"project" :

{

"uri" : "http://federation.com/projects/623",

"name" : "My sample project",

"media_type" : "application/ctf.Project+json"

},

"experiment" :

{

"uri" : "http://federation.com/projects/623/experiments/812",

"name" : "My sample experiments",

"media_type" : "application/ctf.Experiment+json"

},

"testbed" :

{

"uri" : "http://federation.com/testbeds/234",

"name" : "Testbed A",

"media_type" : "application/ctf.Testbed+json"

},

"platform" :

{

"uri" : "http://federation.com/platforms/653",

"name" : "TelosB",

"media_type" : "application/ctf.Platform+json"

},

"datetime_from" : "2009-11-18 14:00:00",

"datetime_to" : "2009-11-16 18:00:00",

}

HTTP/1.1 201 Created

Location: http://federation.com/projects/456/experiments/789/jobs/124

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 51

TU Berlin

Bibliography

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (uri): Generic
syntax, 2005.

[2] D. Crockford. The application/json media type for javascript object notation (json),
2006.

[3] L. Daigle, D.W. Van Gulik, R. Iannella, and P. Faltstrom. Uniform resource names (urn)
namespace definition mechanisms, 2002.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – http/1.1, 1999.

[5] R.T. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[6] N. Freed and Borenstein N. Multipurpose internet mail extensions (mime) part two:
Media types, 1996.

[7] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
Collection tree protocol. Technical Report SING-09-01, Stanford University, 2009.

[8] Federated Login for Google Account Users. http://code.google.com/apis/accounts/
docs/OpenID.html. [Online; accessed: 02.10.2009].

[9] IANA. http://www.iana.org/assignments/urn-namespaces/. [Online; accessed:
02.10.2009].

[10] Sun Cloud API. http://kenai.com/projects/suncloudapis/. [Online; accessed:
02.10.2009].

[11] Kerberos Authentication Protocol. http://web.mit.edu/Kerberos/. [Online; accessed:
02.10.2009].

[12] OAuth. http://oauth.net/. [Online; accessed: 02.10.2009].

[13] OpenID. http://openid.net/. [Online; accessed: 02.10.2009].

[14] ProtoGENI. http://www.protogeni.net/. [Online; accessed: 02.10.2009].

[15] Shibboleth (R). http://shibboleth.internet2.edu/. [Online; accessed: 02.10.2009].

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 52

TU Berlin

[16] Wisebed. http://www.wisebed.eu/. [Online; accessed: 02.10.2009].

Copyright at Technical University
Berlin. All Rights reserved.

TKN-10-001 Page 53

