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Abstract

In this paper, we deal with the problem of consistency in distributed sys-
tems where hosts have to react to a events in a time span which is less than the
network latency. Distributed virtual environments and wireless sensor net-
works are two typical examples of such systems. In such systems, hosts rou-
tinely act while the system is in in inconsistent state in order to provide short
reaction times. This inconsistency has a noticeable effect on the perceived
quality of these actions and their effect on the application.

Numerous solutions have been developed which try to keep a system con-
sistent, responsive and scalable in terms of resource consumption. Typically,
there’s a tradeoff between these three aspects. While reaction times and re-
source consumption are well understood, there exists no commonly agreed
method to measure the level of inconsistency. As a consequence, it is nearly
impossible to compare different solutions to the consistency problem with
each other.

To overcome these difficulties, we plan to provide a framework where
different consistency algorithms can be compared with each other. In this pa-
per, we describe the typical challenges of a distributed system which requires
fast reactions, and the common approaches to meet those challenges. We also
define various measures for inconsistency and cost which can be used to eval-
uate different consistency algorithms. Finally, we give an overview of impor-
tant existing solutions which we categorize by their choice of consistency
algorithm and how they achieve scalability.
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Chapter I

Introduction
During the last thirty years, distributed systems have been investigated and used
in a variety fields such as databases, virtual environments, parallel computing, in-
formation theory, mobile communications, sensor networks and many more. Typ-
ically, development is application-driven, i.e. solutions are custom-made for one
specific application at a time. This makes it hard to compare existing solutions to
each other, or to apply them to a new problem. Furthermore, publications on those
solutions often use different terminology, which makes it even harder to compare
them even when they are from the same field of applications.

To improve this situation, we plan to create a framework where applications and
solutions can be compared to each other and to existing benchmarks. To the extent
of our knowledge, no such framework or common benchmark exists at the moment.
As the field of distributed systems is too large and diverse to provide a universal
solution, we focus on two specific fields of applications, namely distributed virtual
environments (DVE) and wireless sensor networks (WSN).

We identify three critical design aspects of such systems:

1. Consistency: Hosts have to make decisions based on data which can be mod-
ified by other hosts. To prevent wrong decisions, the system has to make sure
that the data is consistent between hosts, and modifications on one host are
propagated to other hosts.

2. Responsiveness: Hosts have to react to events such as user input in a timely
manner. In DVEs and WSN, the time available for such an reaction is typi-
cally less than the network latency. As a result, hosts acting while the system
is in an inherently inconsistent state are the rule, rather than the exception.

3. Scalability: Distributed systems are growing in size. The typical number of
concurrent hosts in a DVE is in the range of thousands, and sensor networks
with a couple of hundreds of nodes are becoming more common. At the same
time, network capacity and computing power are limited, which means that
an increase in the number of hosts can easily overload the system.

In this paper, we describe the principle layout of a typical DVE or WSN, and
the most important classes of consistency algorithms used in such systems. As we
will show, each of the approaches to the consistency problem involves a tradeoff
between the three design aspects of consistency, responsiveness and scalability. To
make this tradeoff quantifiable, we propose several measures for the level of incon-
sistency, and the various cost factors such as network load, memory footprint, CPU
load and in the case of WNSs, energy consumption. We give an overview of the
methods used by several important standards, research platforms and commercial
applications, and discuss their specific solutions to the problems consistency and
scalability.
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1 General Setup

The typical setup of a distributed system in our fields of interest is as follows: the
system consists a number of hosts, i.e. electronic computers, which communicate
over a network, e.g. the Internet or a wireless network. Each host is running the
application software. There is a set ofsharedvariables, i.e. variables which have
a value which is replicated on each host. For the application to run correctly, it
is important that all hosts agree on the value of each shared variable. When an
event occurs on a host which changes the value of a variable, the change has to be
propagated to the other hosts, or there will no longer be agreement on the value. In
addition, the host where the event occurs has to react to the event within a specific
time span. In the systems which we are interested in, the acceptable reaction time
is typically lower than the time required to propagate the event to all other hosts.
In other words, a host cannot delay its reaction to a local event until the system has
reached agreement on the value of all shared variables.

Two examples will help to understand the requirements of typical applications
in DVEs and WSNs, respectively:

The first application is a virtual soccer game. There, human users are partici-
pating using typical modern desktop computers. They use a mouse or the keyboard
to control a virtual representation of themselves — their avatar — in a 3D visual-
ization of a soccer stadium. Participants can take on different roles such as player,
referee or spectator. The computers are connected via the Internet, which means
their network characteristics such as bandwidth, latency and loss rate may vary
widely. Typical system sizes may range from a few dozen players up to hundreds
of thousands of participants.

In order to play the same game together, participants require consistent repre-
sentations of the stadium and the objects within, such as the ball and other players.
The degree of consistency a participant requires for a specific object may depend
on the players role and the object in question. For example, spectators would need
only a rough approximation of the spectators on the other side of the stadium,
but a player would require the precise location of the ball to kick it into a certain
direction. Furthermore, player actions such as kicking the ball have to have an im-
mediate effect (usually in less than 150 MB), or the impression of immersion in the
virtual world will be lost [Arm03]. This means that actions have to be processed at
the originating computer before they have been received by the other participants,
as the network delay will often be greater than 150 ms.

Our second example is a wireless sensor network controlling an “intelligent
house”. Typical nodes are small, battery-driven embedded computers computing
power and main memory of about 2–3 orders of magnitude below a desktop com-
puter. They communicate using radio modems with low bandwidths (about 20 kbps),
which are often switched off to preserve battery power. There are two kinds of
nodes: sensors and actuators. Sensors gather information about their surroundings,
such as room temperature and light level. Actuators decide on actions such as open-
ing a heating vent or switching on the light based on data they receive from the sen-
sors. Typical system sizes range from a few dozen nodes up to several thousands.

In order to make correct decisions, actuators require data similar to the values
measured at the sensors. The required degree of similarity depends on the appli-
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cation. In addition, actuators have to agree between them on the actions they take,
to avoid situations where only half the lights in a room are switched on. Just as
in the virtual soccer game, actions which are taken too late will disturb the users,
such as a light switched on only several minutes after a person enters a room. The
acceptable delay greatly depends on the kind of action.

2 Related Work

Consistency models and techniques have been subjects of extensive research, es-
pecially in fields of multiprocessor systems, distributed databases and interactive
groupware systems. Good overviews can be found in the works of Colouris et
al. [CDK01] and Galli [Gal00].

Important consistency models in distributed databases and multiprocessor sys-
tems includelinearizability (also known as atomic or strict consistency),sequen-
tial consistencyandcausal consistency. Linearizability guarantees that write op-
erations are seen by all hosts in the order they were issued as defined by real
time [HW87, Her90]. Sequential consistency is weaker as it only requires that all
hosts see all write operations in the same order [CDK01]. Causal consistency is
even weaker and requires that write operations which are causally related are seen
in the same order by every host in the system [Gal00]. However, these models do
not put any requirements on the time needed to execute the operations, nor on the
state of the system while an operation is being performed. Thus, they are rarely
used when dealing with DVEs or WSNs.

Keeping data consistent in sensor networks has not been considered as yet,
despite the large number of publications that carry the keywords “consistency” and
“consensus” in their title. Their topic is source coding: given a phenomenon (like
temperature) how should the sensors sample it? Which interval should be chosen,
are there sensors that should sample more often than others, when do sensors agree
to send something, how to calibrate the sensors, and how to find out that a sensor is
broken and reports bogus data? These questions must be answered before we can
tackle the problem at hand. Given the large number of publications, we deem the
problems solved. Once the sensors decide that a datum implies an action they send
it to the actuators. Since all actuators should act in unison, some mechanism must
ensure that all of them have a consistent datum. We are not aware that this problem
was treated on its own right in the context of sensor networks.

Several quantitative measures are commonly used to rate the performance of
distributed multimedia systems such as VoIP networks and distributed audio and
video servers. They typically describe one or more quality-of-service character-
istics such as latency, throughput, jitter and loss [OFB01]. These are suited to the
delivery of end-to-end data streams, but do not take the inconsistency between mul-
tiple receivers into account. Application response time has been proposed by Kim
et al., but it does not take the inconsistency of the system into account [KKK03].

There is a large number of publications describing specific distributed virtual
environments and wireless sensor networks. Most of these describe the design of a
particular system built for a specific application, e.g. a military simulator or an on-
line game. An analysis of several of the most influential designs is given in chapter
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V. However, these publications rarely provide data which can be used to compare
their performance to other systems.

Chapter II

Consistency

3 Basic Definitions

According to Colouris et al.,“a distributed system one in which components lo-
cated at networked computers communicate and coordinate their actions only by
passing messages.”[CDK01]. We call a computer which is part of the distributed
system1 S ahostH2.

An object, e.g. a ball, a player or a light sensor, has a set of variables orat-
tributes, such as a velocity or a brightness. The state of an object is a function which
maps each of the object’s attributes to a specific value. e.g. (velocity,40 m/s).

The world W is the set of all objects in a distributed system, e.g.{ Ball,
Player1, Player2, . . .}.

The concept oftime in distributed systems has been thoroughly reviewed by
Lamport in [Lam78]. Today, technology is in place to synchronize system time to
within 1 ms for all hosts [Mil06], which is sufficient for our fields of application.
Thus, we treat the terms of system time (specific to each host) and real time (as seen
from outside the system) as interchangeable, unless explicitly stated otherwise.

An instanceof an object is the state of an object as seen at a given host
at a specific time, e.g.I(Ball, H1, t) = { (Position, (0, 0)), (Velocity, 40m/s)},
I(Ball, H2, t) = { (Position, (0, 1)), (Velocity, 39m/s)}.

We say a hostreplicatesan object iff an instance of this object exists at the
host. The replication isactive if the host is allowed to propagate changes of this
object to other hosts. Otherwise the replication is calledpassive.

Theworld viewVH(t) of a host at a specific time is the set of instances of the
objects of a world at this host and time.

An event is something which happens at a specific host at a specific time,
e.g. “Ball moves two meters to the left”. It changes one instance. We distinguish
betweendeterministicandnon-deterministic events. Deterministic events can be
replicated at each host without exchanging messages, e.g. “Ball hits a wall”. Non-
deterministic events can’t be replicated without exchanging messages between
hosts, e.g. “Player1 kicks Ball”.

The local reaction timefor an event is the time it takes until it is processed on
the host where it originates. Theglobal reaction timefor an event is the time until
it has been propagated to and processed by all hosts.

We call a distributed systemconsistent at timet when the world views of all
hosts of a systemS at timet are identical:∀H1,H2 ∈ S : VH1(t) = VH2(t)

The problem ofconsensusis “... for processes to agree on a value after one or
more of the processes has proposed what the value should be.”[CDK01]. For ex-

1For the rest of this paper, we use system as a shorthand for distributed system.
2Alternatively, the termsnode, site, processor processorcan be used.
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ample, hosts could be required to agree whether a goal has been scored or not, or if
the heater should be switched on. We mention consensus because it is an important
concept in the field of distributed systems. However, it is not discussed further in
the context of this work. For a more precise definition of the consensus and a dis-
cussion of variations on the consensus problem, we refer to [LSP82] and [PSL80].
In the context of our work, it is important to note that there is a limit on the time
it takes the hosts to agree on a value after it has first been proposed. The specific
value of the time limit is application dependent.

4 Common Approaches for Achieving Consistency

An ideal system, where communication is unhindered by delays and errors, would
be consistent at any time. However, this is impossible in any real world distributed
system, because the speed of light puts a lower limit on the time required to prop-
agate events to other hosts. Furthermore, there is an application-dependent upper
limit on the local reaction time, which is typically less than or equal to the network
delay. This means that hosts have to react to local events before system consistency
can be restored.

Various weaker concepts of consistency have been established based on appli-
cation requirements or technical capabilities. In this section, we will take a look
at those concepts which we deem particularly relevant to our fields of interest, i.e.
distributed virtual environments and sensor networks.

Consistency approaches primarily differ in how fast events are processed at
the host where they occur, and how conflicts between events are resolved. For the
moment, we assume that all objects are replicated at all hosts. This is calledtotal
replication. In chapterIV, we will look at partial replication techniques, where
only a subset of the world is replicated at each host.

To help in understanding the various approaches to keep a system consistent
, we use an example from our virtual soccer game. Suppose that two players are
running the simulation on hostsH1 andH2. Both are fighting for the ball. At time
t1, player 1 tries to kick the ball. At timet2 > t1, player 2 also tries to kick the
ball. At the real world, the ball would have been kicked away by player 1 already,
so player 2 would either miss it, or decide not to kick it at all. But in a distributed
system, ift2 − t1 is less than the network transmission delay fromH1 to H2,
player 2 has no way of knowing that player 1 has already kicked the ball away
before him. Thus, a conflict has occurred which has to be resolved by the system,
or both players will continue to play two different games.

4.1 Strict Consistency

A system isstrictly consistentiff the system is consistent whenever a decision has
to be made [Gal00]. Strict consistency is used when an application requires that
a distributed system must not take any decisions based on an inconsistent system
state. For example, in a distributed banking system, all hosts have to agree on a
user’s account balance before money can be withdrawn from the account. Thus, the
application makes sure that the system is in one of two states: in the first states, the
system is consistent and ready to process an event. In the second state, an event has
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occurred and is being propagated to all hosts in order to re-establish consistency.
Conflicts between events will be resolved between all hosts, usually by dropping
all but one event. Strict consistency can be implemented using a two-phase-commit
protocol (2PC) [ME85].

In our example where two players try to kick the same ball, at timet1 hostH1

would start to propagate it’s decision to kick the ball to all other hosts, including
H2. H2 would notice that the ball has been kicked by player 1, and either not
decide to kick the ball, or reverse a previous decision to kick it. In either case, all
hosts will eventually agree that player 1 has kicked the ball. Only then, the ball will
begin to move on all hosts, and the game will continue in a consistent state. As the
conflict resolution will take at least as long as the network transmission delay from
H1 to H2, this may well result in the simulation looking like stop-motion soccer if
the network is slow. If, for some reason, a message is lost, the hosts cannot reach
agreement, and the system fails.

The obvious advantage when using strict consistency is that conflicts between
events will be resolved before the events can influence the system state. This can
be done without the users ever noticing that such conflicts have even occurred. On
the downside, events will not be processed locally before they have been propa-
gated to all other hosts, which implies that for all events, the local reaction time is
equal to the global reaction time, which in turn is at least equal to thelargestnet-
work transmission delay in the system. This makes strict consistency approaches
generally unsuitable for applications where fast local reactions are required, such
as interactive virtual environments. As a further consequence, systems using strict
consistency do not scale well with the number of hosts, because the maximum rate
at which events can be processed is limited by the reciprocal of the average global
reaction time.

4.2 The Loose Consistency Approach

Loose consistency algorithms process events locally as soon as they occur, and
propagate them to other hosts later. Conflicts between events are resolved sepa-
rately at each host. There are several possible methods for resolving conflicts. The
most commonly used approach is for each host to send a subset of it’s world view
to all other hosts. This can be done at regular intervals, or when the difference in
world views between hosts exceeds an application-specific threshold. This means
that conflicts are resolved by simply overwriting another host’s world view.

The loose approach is used when an application requires fast local reactions,
but does not require the system to be actually consistent at any timet. It has also
been calledbest effort consistency[RS99, CF05, Gal00]. It is the most commonly
used approach in interactive distributed virtual environments such as online games
or military training simulations.

In our soccer example, player 1 would kick the ball at hostH1 at t1, and imme-
diately see it moving in a new direction. Then, it would send a message to all other
hosts indicating the balls new position and velocity. If this message is received at
H2 earlier thant2, then player 2 would modify the decision to kick the ball, pos-
sibly even dropping the idea. But if the message is received atH2 later thant2,
thenH2 has already kicked the ball as well, and sent an update message. There are
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several possible ways in whichH1 andH2 might react: they could both ignore or
accept the other host’s message, or they could decide that one of them is the correct
one. In the first case, the game will become inconsistent, because bothH1 andH2

will proceed with different world views. In the second case, a third hostH3 may
have received the incorrect message before the correct one, and may have taken
decisions based on the incorrect information. As decisions cannot be taken back,
the game would proceed differently from the case whereH2 received the message
from H1 beforet2. Thus, the final result of the soccer game will depend on the
random factor of network delay, which is clearly not desirable. If one message gets
lost, the other one will obviously determine the future course of the system. If both
messages get lost, the system will continue in an inconsistent state until a message
on the state of the ball is received by both hosts.

The three major strongpoints of the loose approach are the low local reaction
time, its robustness against transmission losses and node failures, and its moderate
use of CPU time and memory. In fact, systems using loose consistency can achieve
the fastest possible local reaction because they process local events immediately.
Error robustness stems from the fact that subsets of world views are transmitted in-
stead of event descriptions. This means that a receiving host can reproduce a subset
of another host’s world view from just one message describing this part, even when
no prior messages describing it have been received. Thus, messages describing an
object are sent often enough, other hosts will eventually be updated. The loose con-
sistency approach has two major disadvantages. First, the system is rarely, if ever,
consistent. Second, even with identical input data, the final result of an application
may often vary each time the application is run, depending on random influences
such as network transmission delay or loss rates. This is because decisions made
by one host cannot be reversed, but only be invalidated by overwriting the hosts
world view. As a consequence, a loose approach is not usable when application re-
sults have to be reproducible, or when a high degree of consistency is required, for
example for a distributed virtual environment with precise physical modeling. For
many applications, however, the world views of the participating hosts are similar
enough for the applications purposes. Often, the user interface is designed such
that small differences will not matter. For example, in the soccer game, the result
of kicking the ball might be that it’s automatically shot at the opponents goal, in-
dependent of the precise location of the ball and the point of impact of the player’s
foot.

4.3 The Optimistic Consistency Approach

Similiar to the the loose approach, optimistic consistency algorithms process events
locally before they are propagated to other hosts. Conflicts are resolved by keeping
a history of events at each host. When a host receives a message about an event
which occurred in the past, it backtracks the application to the time at which the
event occurs. The application is then computed again from this time, taking into
account the newly arrived event.

The optimistic approach is used when an application requires fast local reac-
tion, but can tolerate a higher global reaction time and a significantly higher use
of CPU and memory resources compared to the loose approach. The concept orig-
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inates from distributed databases and multiprocessor systems [BG87]. Examples
for applications following an optimistic approach would be virtual environments
with an accurate physical modeling, and distributed scientific simulations.

In the soccer example, player 1 would kick the ball at hostH1 at timet1. Then,
it would send a message describing this event to all other hosts. If the message
arrives atH2 beforet2, the system would behave just like one using loose consis-
tency. But if the message arrives aftert2, there would be a difference:H2 would
backtrack its local simulation back to timet1, and run it again including the event
of player 1 kicking the ball. The attempted kick of player 2 at timet2 would also
be included, but it would most likely miss the ball. However, after both events have
been processed in this way at both hosts, and assuming all messages describing
events happening beforet2 have also been received by all hosts, the system would
have consistent data for all times beforet2. As a consequence, the game’s final
outcome would be the same at all hosts.

Systems implementing optimistic consistency have local reaction times just
as low as systems using loose consistency. Compared to loose consistency meth-
ods, they have the advantage of eventually achieving consistency about past system
states. As we have shown in another paper, they also achieve a higher degree of sim-
ilarity between host’s world views in comparison to the loose approach [SGK+07].
On the negative side, an optimistic approach cannot be used when backtracking is
not possible, and requires much more CPU and memory resources than loose meth-
ods. Furthermore, because of the necessity of maintaining a complete history of
events from all hosts at each host, existing implementations utilizing an optimistic
approach do not scale well for system sizes of more than 20 hosts.

4.4 Hybrid Approaches

Hybrid approaches use a mixture of loose and strict consistency. They are used in
applications where loose consistency is sufficient for the majority of objects, but a
higher degree of consistency is critical for some of the objects [AF92, Gal00].

In our soccer example, a loose approach would be used for the data about both
players and the ball, while strict consistency would be used for ticket vending ma-
chines at the stadium entrance. Thus, the actual game itself would suffer exactly
the same problem as when using loose consistency, but at least everybodies money
would be safe.

Hybrid systems inherit the advantages and disadvantages of the both, loose and
strict consistency.

Chapter III

Inconsistency Measures
Loose and optimistic consistency both accept that hosts will make decisions while
the system is in an inconsistent state. The impact of inconsistency on the system is
twofold:

1. Inconsistencies will cause users – or sensor nodes – to make improper de-
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cisions. Even small differences in the value of a single variable may have
effects which are highly sensitive in the amount of the actual error. Imagine
a penalty kick in the final of the virtual soccer world cup: if the goalkeepers
information about the exact position and direction of the ball is even slightly
wrong, this might make the difference between winning the cup or ending
up second.

2. Usually, users won’t immediately notice that the system is inconsistent. Even-
tually, however, inconsistencies have to be resolved, typically when a host re-
ceives a message about an event from another host and updates its own world
view accordingly. This will cause non-continuous changes in the host’s world
view which users will typically notice as unexpected, annoying effects. As
an example, let us assume that the ball is flying in a nice, ballistic curve
towards a player. When a message is received that another player actually
changed the direction of the ball 500 ms ago, this will cause the player to
see the ball suddenly changing direction and “jumping” to a new position in
mid-air, destroying the illusion of an actual soccer game.

In this section, we propose a number of measures which quantify the level of in-
consistency and its effects on system behavior.

5 User Evaluation

The best way to decide which algorithm is the best for a particular application is
to actually implement the application in different ways and letting the actual users
decide which one is best. User opinion can be gathered in several ways, e.g. by
directly asking them for an evaluation, by monitoring their behavior, or by actually
selling the application and monitoring the sales numbers.

Unfortunately, it is very expensive to perform user evaluation tests for applica-
tions with 10000 or more concurrent users. Thus, such tests are commonly done for
smaller systems, typically with no more than 20 or 30 users. However, the results
are not always applicable to larger systems as well.

6 Divergence Measure

The divergence measure measures the average difference between the world views
of all hosts.

Consider a system whereA denotes the total number of attributes, andN the
total number of hosts. We defineA×N matrixV , where each column represents the
world view of one particular host. We define a secondA×N matrixR, ra,h ∈ [0, 1].
ra,h describes the interest hosth takes in attributea. As bothV andR change over
time, we writeV (t) andR(t) to describe the system state and weighting matrix at
time t. We define

da(t) =

√√√√ N∑
h=1

ra,h(t)∑N
h=1 ra,h(t)

(
va,h(t)− va(t)

)2
(1)
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as the divergence of the system at timet with regard to attributea, where

va(t) =
N∑

h=1

ra,h∑N
h=1 ra,h(t)

va,h(t) (2)

is the weighted average value of attributea over all hosts at timet3. In typical
implementations,ra,h will be either1, or 0 if a host is not interested in a particular
attribute (cf. partial replication in section10.4). We define

d(t) =
A∑

a=1

wa(t)∑A
a=1 wa(t)

da(t) (3)

as the divergence of the system at timet. w(t), with wa(t) ∈ R, denotes the rele-
vance vector, i.e. the relevance of each attribute with regard to the overall inconsis-
tency. An attributes relevance is decided by humans at design time. It is typically
based on the perceived influence of this attribute on the decision-finding processes
of the application, or on the perception by a user. For example, the exact position
of the ball would be very relevant to the decisions of all soccer players at the field,
while the color of the shirt of a particular spectator would be almost irrelevant.

For a system with a session4length ofT , we define the divergence of the system
history as

D(T ) =
1
T

∫ T

0
d(t)dt (4)

D(T ) is the value we use as the inconsistency measure. It is expected thatD(T ) is
invariant inT .

The divergence measure is applicable if it is possible to determine the world
views of all hosts at any given time. Its validity depends on the particular choice of
w. The computational complexity scales withO(N ·A · T ).

7 Discontinuity Measure

The discontinuity measure quantifies the disturbance caused by sudden changes in
a host’s world view which are due to variables being changed by messages from
other hosts.

The discontinuity measure is measured separately for each host. Suppose a
messagem changes the value of attributea at hosth and timet. Let V andV ′

denote the system state matrix with and without receiving the message. The change
m causes inh’s world view is expressed by

ga,h(m) = (v′a,h(t)− va,h(t))2 (5)

LetMh be the the set of all messages received byh during one session. The average
discontinuity ath is written as

Gh =
1

|Mh| ·
∑A

a=1 w′
a

√√√√ ∑
m∈Mh

A∑
a=1

w′
aga,h(m) (6)

3We assume that∀t∀a∃h : ra,h > 0, i.e. for each timet and attributea, there’s at least one host
which is interested ina at this time.

4A particular invocation of the application software is commonly called a session [Gal00]
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wherew′
a is a weighting factor denoting the relative importance of non-continuous

changes in attributea, similar to the relevance vectorw in section6. w′ is defined
at design time.

The discontinuity measure does not depend on any particular consistency tech-
nique. It is well suited to applications such as virtual environments, where users are
very sensitive to non-continuous changes in attributes. Just as with the divergence
measure, the results greatly depend on the choice ofw′.

8 Yield Measures

Yield measures attempt to measure the influence of inconsistency on the decision-
making process of the users of a distributed systems. As we have argued before,
these influences are highly application-dependent. They are usually difficult to for-
mulate in terms of a mathematical formula. Instead, yield measures are chosen
heuristically for each application in an attempt to express the “goal” of an applica-
tion in a single value.

For example, in the virtual soccer game, one could use the number of bad
passes per second as the yield measure. This would be based on the hypothesis that
a less effective solution would cause players to make more mistakes, e.g. because
they’ve got incorrect information about the potential receiver of a pass. There is
usually more than one possible choice of measure, which can yield different rank-
ings for the same set of solutions.

Yield measures can be applied to any system in which at least a subset of the
hosts is accessible for data gathering. Their validity depends on the choice of a
particular measure, and there is no general rule for how to come up with a good one.
Yield measures are typically chosen so that they are simple to implement. Their
computational complexity depends on the specific measure, but typically scales
with O(N · T ).

Chapter IV

System Scalability
So far, we have mainly concerned ourselves with how to maintain data consis-
tency in a distributed system, and how the effects of consistency on application
performance can be measured. However, if we want to build the large-scale sys-
tems described in section1, we have to consider the issue of scalability of the
various consistency techniques presented in chapterII . In this chapter, we look at
the cost of maintaining consistency, and at various methods to reduce this cost. By
cost, we mean the amount of resources used at each host.

In general, the amount of resources required in a distributed system depends on
the number of hosts (N ) and the number of objects (M ) in the system. In order to
build an arbitrary large system, the costs per host have to be independent of the sys-
tem size, i.e.O(1). Obviously, this is possible only ifM does not grow faster than
O(N). Otherwise, the average number of objects each host has to replicate would
grow with the system size, eventually overloading one or more hosts. Fortunately,



9 Measuring Costs 14

this condition typically holds for the applications we are primarily concerned with,
i.e. distributed virtual environments and wireless sensor networks.

9 Measuring Costs

The primary cost factors at each host of a distributed system are the amount of CPU
cycles, memory and network capacity consumed. In a wireless sensor network,
there’s the additional concern of energy consumption, which can be expressed as a
function of the other three factors.

CPU load can be measured in two ways. The first method is to profile the actual
binary executed at each host, and count clock cycles or measure execution times
at each function. This method is easy to realize, but suffers from the disadvantage
that results are not directly comparable between different hardware architectures.
In heterogenous system, with many different types of hosts, this is not practical.
The second method is to analyze each important function in the code and assign
a cost factor to it. Then, it is enough to count how often each function is called.
This has the advantage of giving results which are independent of the hardware
architecture used. However, it means more work for the application developers
as they have to analyze each function for their computational complexity. This is
prone to errors, and has to be done again each time there’s a major change to the
code.

Memory consumption can be measured similarly to CPU load. However, it is
more suitable to automated profiling, as it is less hardware specific.

Network load can be measured in several ways: packets sent, packets received,
bytes sent, bytes received. In the applications we are looking at, messages tend
to be small (about 100 bytes). In typical network layers, the cost for transmitting
a packet does not depend on the size of a packet as long as it does not exceed a
certain limit. For wireless sensor networks, the limit is typically about 128 bytes.
For internet connections, it is typically a few kilobytes. Thus, it is feasible to ignore
bandwidth considerations, and only measure the number of packets sent or received
at each host.

Energy consumption in wireless sensor networks can be measured directly if
the hardware supports this, or indirectly by measuring how long the battery lasts.
In a simulation testbed, it can be modeled as a function of CPU load, memory
consumption and network load.

10 Optimizing Network Load

The major cost factor in typical distributed systems is the network load. Modern
desktop computers have ample computing power and main memory, while network
connections are still limited and expensive in comparison. The same holds true for
nodes in a wireless sensor network, where the radio modem dominates with regard
to power consumption. Thus, in typical applications there is a tradeoff where a
higher CPU load or memory consumption is accepted in return for a reduction in
network load.
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In the following sections, we will look at several methods to reduce the network
load per host in a distributed system.

10.1 Limiting system size

A very simple way to reduce the network load at each host is to put an upper limit
on the system size. Although this is a very simplistic and crude method, which
doesn’t involve any changes to the codebase, it is mentioned here because it is
commonly done in practice. For example, in most Massively Multiplayer Online
Games (MMOG), the world size is restricted to a few thousand or ten thousand
players. When more players want to participate, a new world is created which is
not connected to the other worlds. This approach is simple yet effective, but still
does not not solve the problem of putting more concurrent users into the same
system.

10.2 Message Aggregation

Sending several application messages together in one network packet reduces net-
work load by sending one packet for several messages, instead of one packet per
message. There are two ways to realize this: merging and batching. Message merg-
ing tries to combine two different messages on a semantic level, i.e. it creates a
new message which contains the information from the two original messages. For
example, if one message says that the ball is flying with velocityv1 at positionp1

at timet, and another message says that the ball changes color to red at the same
time t, it would be sufficient to send a single message describing the balls position,
color and velocity at timet. Message batching exploits the fact that transmission
costs are constant for packets up to a certain size by sending several messages to-
gether in a single packet. This may require a host to buffer messages until sufficient
messages are available for sending, thus increasing the global reaction time of the
system. Usually, a tradeoff has to be made between more efficient transmission by
waiting longer, and faster global reaction by sending sooner.

Both, merging and batching, require the messages to have the same set of re-
cipients, or messages will be sent unnecessarily. Message batching requires knowl-
edge about the underlying network layer at application level.

10.3 Exploiting Determinism

A very efficient way to reduce the number of messages sent in a distributed system
is to avoid sending messages which describe deterministic events. A very simple
method is dead reckoning, where future positions of objects in virtual environ-
ments are predicted from known positions and velocities in the past. Dead reck-
oning has been shown to significantly reduce the number of packets sent without
having a visible impact on application behavior [MZP+94]. More sophisticated
techniques attempt to model an objects behavior, further reducing the number of
non-deterministic events at the expense of more computationally complex predic-
tion routines.
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The downside of only transmitting deterministic events is a loss of robust-
ness against transmission failures. If only one message is transmitted per non-
deterministic event, and this message gets lost, receiving host cannot reproduce
the event, leading to an inconsistent system. As a consequence, most applications
use redundant transmissions.

10.4 Partial Replication

None of the solutions presented so far achieve our stated goal ofO(1) complexity
of resources required at each host. In fact, it is not possible to do so with any of
the consistency and resource optimization techniques we have discussed until now,
unless we make a major modification to our premises. So far, we have silently
assumed that every host in the system replicatesall objects in the world (total
replication). This means that whenever there’s an event modifying an object, it
has to be propagated to every host in the system. Furthermore, each host will be
informed of every event, so the number of messages each host has to process will
grow with O(M) if we assume a constant rate of events per object. If we want to
achieveO(1) complexity, we have to give up the concept of total replication, and
move to a design where each host replicates only a subset of the world (partial
replication.

The fundamental idea behind partial replication is that two hosts will only ex-
change messages about an object if the object isrelevantto both of them. This will
reduce the complexity for each host fromO(M) to O(|L(H)|), whereL ⊂ W is
the subset of the world which hostH is interested in. There are major aspects of
partial replication:

1. a definition of relevance

2. a method to determine, for a given object, the set of hosts this object is rele-
vant to, at runtime

3. a routing layer responsible for delivering to each host the messages about
objects considered to be relevant to this host

Relevance can be defined as a functionR : W ×S 7→ {0, 1}, with R(O,H) =
1 ⇐⇒ O is relevant toH, with O ∈ W andH ∈ S. The exact definition ofR is
chosen at design time.

In practice, the second and third item are usually closely connected, so we will
look at them as a unit. In many applications, the application level routing layer in
point 3 depends on the underlying network layer.

In the next sections, we are going to look at different concepts of the replication
mechanisms in a distributed system, in a roughly chronological order of their first
appearance.

10.4.1 Total replication with broadcast

Early distributed systems simply broadcasted messages to all nodes in a network,
no matter whether they were actually participating in the application or not
[MZP+94]. While this is a very simple method, it poses a high network load (O(M ·
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N)) on each node in a network, limiting its use to small (< 1000 participants)
dedicated systems, such as a custom-build LAN.

10.4.2 Relevance definition

Most distributed virtual environments define relevance based on the location of a
player in the virtual world. The first systems divided the world into fixed, hexagonal
cells [CMBZ00, KLXH04]. A host would be interested in objects which are located
in the same cell as the hosts player, and possibly a number of adjacent cells. This
is a very simple approach which doesn’t take into account the setup of a particular
world, and doesn’t adapt to changes in the world very well. For example, a cell in
an empty desert would be just as large as the one in the middle of a soccer stadium,
but it would usually contain far fewer objects and players.

To overcome the limitations of fixed cells, some applications divide the world
into fixedregionswhich are chosen according to the worlds layout [Gre96]. There
is no interaction nor communication across region boundaries. In our previous ex-
ample, the desert might be one such region, and the soccer stadium another one.
When people leave the desert to enter the stadium, they receive no more updates on
changes to the desert. Regions help to handle “hotspots” in a virtual world, where
lots of activity takes place. However, they still fail to adapt to changing circum-
stances. For example, it might be perfectly fine to combine the desert and the sta-
dium into one region on Mondays, when no games are on, while it may be a good
idea to subdivide the stadium even further on Sundays, when the championship
playoffs are being held.

Localesremove the restriction that no interaction is allowed between regions
[BWA96, PG00]. Hosts can announce their interest in their own and adjacent lo-
cale. They are still fixed at design time, and can’t adapt to changing circumstances
when the application is running.

Further refinements on locales use information about visual obstruction in a
virtual environment, but still didn’t allow to change the division at runtime [Fun95].
For example, people in the stadium wouldn’t receive updates on objects outside the
stadium, because these would be invisible to them.

An adaptive definition of relevance uses the scene graph used in virtual envi-
ronments [FS98]. Hosts can express interest in arbitrary subsets of the scene graph.
Scene graphs change over time, making objects relevant or irrelevant to a host. For
example, a player might be interested in the parking lot of a stadium. If a car moves
into the parking lot, the player would automatically be notified on event concerning
objects inside the car as well, as the representation of the car would be a subtree of
the scene graph of the parking lot.

In systems usingaura collisionfor defining relevance, each object defines an
aura, i.e. a circular area centered on its own position. An object is relevant to a
host if the aura of the player using the host intersects the aura of the object [GB95,
FS98, BRS02]. As auras move with their objects, this approach adapts to changes
in the system very well. It also permits users to scale the load on their machine by
changing the extent of their aura.
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10.4.3 Relevance computation and message routing

Multicasting is commonly employed as the routing mechanism of choice in dis-
tributed systems, as it allows to efficiently combine interest management and mes-
sage routing [CMBZ00, WAB+97, Gre96, PG00]. Objects send update messages
to one or more multicast groups, which can be a cell or locale, for example. Host
express their interest by joining the appropriate multicast groups. The actual mes-
sage routing is done by the multicast network layer.

The biggest disadvantage of multicasting is that it’s is still not universally sup-
ported by network routers. Thus, it only works on isolated “islands” in the Internet.
Some systems try to circumvent this by using proxies to connect multicast-capable
parts of the Internet [FS98].

Aura collision can be realized using adedicated aura server. All objects con-
stantly send their position to the server [GB95]. When a host wants to send a mes-
sage describing an object, it asks the server for a list of hosts this object is relevant
for. Such a system does not scale very well, as the aura server is a performance
bottleneck, and also a single point of failure in the system.

More recent approaches attempt to distribute the workload of an aura server
between all hosts by utilizing a distributed publish/subscribe mechanism to deliver
messages [BRS02]. Hosts will express their interest by sending subscriptions to the
network, which will be matched against publications which are update messages
on objects. This approach scales very well with the number of hosts, but known
implementations suffer from unacceptable routing delays due to bad design choices
for the routing layer.

A very promising design described by Knutsson et al. usesdistributed hash
tables implemented by peer-to-peer overlays such as Pastry for finding the host
responsible for a cell citeKLXH04, RD01. Message routing is then performed us-
ing unicast. These systems show very good scalability properties, and can profit
from the built-in properties of peer-to-peer overlays such as error robustness and
automated latency optimization.

Chapter V

Existing solutions

11 Classification issues

We classify existing solutions for distributed virtual environments and wireless sen-
sor networks with regard to two main criteria: which approach is used for achieving
consistency, and how is partial replication realized? A classification along quantifi-
able data, i.e. how many hosts or users are supported, how consistent is the system
etc., is impossible, as no common benchmark exists against which existing solu-
tions can be tested.

Partial replication techniques are classified according to the three major aspects
described in section10.4: definition of relevance, computation of relevance at run-
time, and message dissemination. As in our description above, we will combine



12 No Partial Replication 19

relevance computation and message dissemination, as they are closely connected
in most implementations. Where possible, we will provide the maximum number
of concurrent users supported by a particular solution.

There are several other design aspects, such as the exploitation of determinism,
and whether a hierarchical client-server design or a decentralized peer-to-peer ar-
chitecture is used. We will mention such as aspects where information is available.

12 No Partial Replication

SimNet, the earliest large-scale distributed virtual environment, did not use par-
tial replication. It was developed for the U.S. Department of Defense as a vir-
tual training environment for military exercises from 1983 on. It used a dedicated
LAN and offered support for more than 1000 concurrent users. Together with the
NPSNETproject, which was launched in 1986 and is technically very similar to
SimNet, it resulted in the DIS (Distributed Interactive Simulation) IEEE standard
1278 in 1993 [MZP+94, IEE93]. Both, SimNet and NPSNET use a serverless peer-
to-peer architecture. They exploit determinism by a technique calleddead reckon-
ing, where future positions of objects are predicted from positions in the past and
known movement vectors [Gal00].

HLA (High Level Architecture) is a middleware for distributed applications
with is based on CORBA. It uses a peer-to-peer architecture and does not uti-
lize partial replication. In typical applications, HLA supports up to 100 concurrent
users [CW96].

MiMaze is a distributed virtual environment developed for research purposes.
It does not use partial replication, and does not exploit determinism. It supports up
to 25 concurrent users [DG99].

The commercial computer gameX-Wing vs. TIE Fighteris a space flight sim-
ulator where up to eight players can play together. It does not use partial replica-
tion [Lin99].

Trickle [LPCS04] uses a loose consistency approach to reliably deliver mes-
sages to nodes in a sensor network. It does not, however utilize partial replication.

13 Definition of Relevance

NPSNET-V, launched in 1995, expands the original NPSNET with a partial repli-
cation component which defines relevance based on fixed, hexagonal cells. Hosts
are interested in their local cell and the surroundings cells. NPSNET-V supports
more than10, 000 concurrent users [MBZ+95, MZP+95, CMBZ00].

In 2004,SimMudutilized a simple cell grid for defining relevance in their re-
search prototype. They’ve verified that their design is feasible for up to 4,000 con-
current users. Experimental results indicate that far more users could be supported
were it not for (unrelated) restrictions of their testbed platform [KLXH04].

TheMASSIVE-2project was a research project about scalability issues in dis-
tributed virtual environments. It defines relevance based on fixed regions, which
could be of arbitrary shape. Each host is interested only in the region of its current
location. There is no interaction across region boundaries [Gre96].
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In 1996,SPLINEextended on SimNet by using locales instead of fixed cells to
define relevance. Hosts are interested in their own and neighboring locales [BWA96,
WAB+97]. A similar approach was used inMASSIVE-3/HIVEK(1999), where an
automated cost-benefit analysis may extend a hosts range of interest beyond its
immediate neighborhood [PG00].

Visual obstruction was used to define relevance in theRING project in 1995.
RING supports up to 1000 concurrent users [Fun95].

DIVE, another descendant of SimNet, is a research platform for distributed
virtual environments developed between 1992 and 1998. DIVE defines relevance
based on the scene graph of the virtual world. Arbitrary subsets of the scene graph
are be combined into “lightweight groups”. Hosts can decide freely whether a
lightweight groups is relevant to them or not. Group composition and host interest
can change at runtime. DIVE uses a peer-to-peer architecture [FS98, HLS97].

MASSIVE(1994) andMercury(2002) both are research platforms which define
relevance using aura collision. Both use a peer-to-peer architecture, and support up
to 80–100 hosts [GB95, BRS02].

In a Geographic Hash Table (GHT) [RKY+02], data is stored in a sensor net-
work by mapping the data description to a geographic address, for instance all
temperature readings between 10 °C and 25 °C are stored in some geographic re-
gion. Any node in this region can answer this question, but usually only one node
(primary) answers. If it fails, a backup takes over. The Perimeter Replication Pro-
tocol (PRP) determines which nodes should act as a backup and when they take
over. The primary sends its complete data periodically to the backups.

14 Computation of Relevance and Message Dissem-
ination

In research projects, multicasting is the most popular mechanism for relevance
computation and message dissemination. It is used in NPSNET-V, SPLINE,
MASSIVE-2 and -3, DIVE. However, due to the lack of multicast support in many
parts of the Internet, it is still not commonly used in commercial applications.

MASSIVE uses a dedicated aura server for computing relevance. Message dis-
semination is performed by each host using unicast.

Mercury uses a distributed publish/subscribe network for computing relevance
and disseminating messages. Network load scales withO(log N) in the number
o hosts, but due to its simple routing layer, the message latency, and hence global
reaction time, scales withO(N). For 100 hosts, latency averages at 1 s, far too high
for highly interactive applications.

In SimMud, each cell is assigned a controlling host which manages a list of all
objects in the cell. This host is located using a distributed hash table implemented
with Pastry, a peer-to-peer overlay. If a host is interested in a cell, it registers with
the cells controller. The controller multicasts all messages to the interested hosts.
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15 Loose Consistency

Loose consistency has been used by nearly all the systems presented so far, and
also in wireless sensors networks. The main reasons are that loose consistency is
easy to implement, very robust against errors and keeps inconsistency sufficiently
low for the relatively simple applications research has focused on so far.

16 Optimistic Consistency

Optimistic consistency techniques have been used by some applications which re-
quire a degree of consistency unattainable with loose techniques, such as realistic
physical modeling. Optimistic consistency allows verifiablecorrectnessas defined
by [MVHE04] after the application has finished.

X-Wing vs. TIE Fighter has used optimistic consistency techniques to imple-
ment a realistic physical behavior of objects such as spacecraft and meteors. Only
non-deterministic events are sent to other hosts using reliable communication.

Some commercial online games use optimistic consistency mechanisms for a
subset of the game state information to prevent cheating [CFKJ02, CFJ03].

Optimistic consistency is widely used in distributed databases and multi-proces-
sor architectures [MT01, RG01].

17 Hybrid Consistency

HLA uses a hybrid consistency technique. By default, data is kept consistent using
a loose approach, but the application developer can select particularly important
attributes which will be kept consistent using a strict consistency technique.

18 Summary

Table1 gives an overview of the solutions presented so far classified according to
the consistency technique and partial replication techniques used.

Loose Optimistic Strict Hybrid

Total SimNet, NPSNET, Mi-
Maze, Trickle, PSFQ

X-Wing vs. TIE
Fighter, Trickle,
PSFQ

HLA

Zones NPSNET-V, SimMud,
MASSIVE-2, -3, RING,
SPLINE, DIVE, GHT

Aura MASSIVE, Mercury

Table 1: Overview of existing solutions. Rows show different definitions of rele-
vance. Columns show different consistency techniques.

The overwhelming majority of existing solutions uses loose consistency tech-
niques with partial replication based on zones. Noteworthy, none of the existing
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implementations utilizing other consistency techniques use any sort of partial repli-
cations. As a consequence, they are not able to support large numbers of concurrent
hosts.

Chapter VI

Conclusions
We have shown that in distributed virtual environments and wireless sensor net-
works, hosts have to react to events within a time which is less than the network
latency. As a consequence, designing a consistency algorithm for such a system
involves a tradeoff between reaction time, consistency and scalability. Most exist-
ing solutions favor reaction time over consistency, and accept that hosts have to act
while the system is in an inconsistent state.

In this paper, we have presented the most important approaches to keeping
DVEs and WSNs consistent, and analyses their respective strengths and weak-
nesses. As a first step towards a methodology where different solutions can be
compared with each other, we have proposed several measures for the inconsis-
tency in a distributed system, as well as various measures for the cost associated
with keeping the system consistent.

Finally, we have analyzed a number of representative implementations of DVEs
and WSNs and how they deal with the problem of consistency. We have found
that the majority of existing solutions employs a loose consistency approach with
zone-based partial replication, which is both simple and robust against network
and node failures. However, the loose approach is unsuitable for applications with
require a higher degree of consistency, such as simulations which employ physical
modeling. Existing implementations of consistency algorithms which reduce the
level of inconsistency below that provided by the loose approach do not permit the
utilization of partial replication, rendering them unable to support large numbers
of concurrent hosts.

Quantitative data about the quality and scalability of existing solutions is very
hard to come by. Publications by the system designers rarely give numbers for the
maximum concurrent hosts support by, or how they compare to other systems. To
this end, we have created Adam, a modular simulation testbed for distributed sys-
tems which is described in [SGK+07]. We plan to use Adam to create a benchmark
test against which existing and new solutions can be compared.
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