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Abstract—Traditional rule-based or static manage-
ment approaches struggle to cope with the dynamic,
multi-layered nature of 5G/6G networks, creating a
strong motivation for AI-native solutions – manage-
ment systems built from the ground up with artificial
intelligence – to enable autonomous, real-time network
control. In this work, we introduce GNN-ATIVE,
an AI-native orchestration framework that leverages
Graph Neural Networks (GNNs) and knowledge graphs
(KGs) in a unified graph-based paradigm for network
management. GNN-ATIVE uses a semantic knowledge
graph to represent the network’s state and context, em-
ploying standard ontologies to ensure consistency and
interoperability. Building on this foundation, we design
Knowledge Graph enabled Generative Pretrained Trans-
former (KG-GPT), a novel graph-to-graph Transformer
model that performs knowledge-driven reasoning on the
KG. KG ingests the structured network state (nodes,
links, and attributes) and infers optimal configurations
or management actions, serving as a high-level decision
engine for the orchestrator. We implement and evaluate
GNN-ATIVE on an Optical Transport Network (OTN)
testbed using real network components. The results
demonstrate that GNN-ATIVE can effectively manage
OTN resources and adapt to network changes while
achieving low-latency inference for decision making.

Index Terms—AI-native, 6G, Artificial Intelligence,
GNN, Intent-based Networking

I . Introduction
Traditional orchestration systems and Operations Support Systems

  (OSS) rely heavily on predefined rules and
human expertise, which struggle to adapt to fast-changing
conditions. As networks evolve toward 6G, there is a
clear need for smarter, autonomous management solutions.
Artificial Intelligence  (AI)-native network orchestration has
emerged as a vision in which AI is deeply embedded into
the management plane from the outset. Such an approach
promises zero-touch automation and real-time adaptability,
which are crucial for handling the complexity of modern
telecom environments [1].

A key challenge in realizing AI-driven orchestration is
how to represent and reason about the network’s state and
policies in a machine-understandable way. Graph Neural Network
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Fig. 1: GNN-ATIVE High-Level Framework

Networks (GNNs) have emerged as powerful AI tools for
learning and decision-making on graph-structured data.
In the context of network management, GNNs can learn
representations (embeddings) of network elements and their
inter-dependencies, aiding tasks such as traffic prediction,
anomaly detection, or resource optimization. GNNs
naturally capture the relational structure of networks,
allowing models to generalize across different topologies
and scenarios. However, using GNNs to orchestrate a live
network requires an architecture that can handle both
localized decisions and global reasoning across the entire
system. So it is important that an effective AI-native
orchestrator should combine data-driven learning with
knowledge-driven reasoning, motivating a multi-tier design
where AI models operate at different levels of abstraction
and timescales, all informed by a shared network knowledge
base. Graph-based models have gained traction as a
natural fit for network representation: the topology of
physical and virtual resources forms a graph structure,
and additional information (such as performance metrics,
configurations, or service dependencies) can be captured
as attributes or related nodes. By using a Knowledge Graph
 (KG) to model the network, it can incorporate rich
semantic information through standard ontologies and well-



defined relationships, providing a unified view that spans
devices, links, and services. This knowledge representation
allows the orchestrator to leverage formal semantics – for
example, describing resources in the Resource Description Framework
 (RDF) and querying the network state with
SPARQL[2] – enabling advanced reasoning while also
ensuring interoperability with standardized data models.

In this work, we present Graph Neural Network based AI-Native Orchestrator  
  (GNN-ATIVE), a novel framework
for orchestrating next-generation wireless networks using
a graph-based, AI-centric approach. GNN-ATIVE treats
the network and its operational data as a graph and builds
a layered AI engine on top of this representation. Figure 1
shows the framework proposed in this article. L1, L2 and
L3 hold dedicated roles based on the classification of their
assigned tasks. L1 consists of models of low complexity,
trained to capture simple policies and addressing a targeted
control of the underlying infrastructure. Figure 1 lays out
the relevant domains of telecommunication networks (cloud,
transport network, core network and Radio Access Network 
(RAN)) and related technologies horizontally resulting
in a Spectrum of Technology and Infrastructure     (S-TaI).
Parts of the S-TaI may then be optimized by first level
of handlers, depicted by the layer L1, interacting directly
with the components of S-TaI in the physical world. For
example, an implementation of the L1 model presented
later, maps an incoming maximum aggregate ingress data
rate into a scheduled capacity, specifically interacting with
a transponder in Optical Transport Network   (OTN). The
L2 models present the next abstraction level. A set of
L1 models come under the purview of a L2 model, such
that the L2 model manages a specific set of problems and
furthermore can interact with other L2 models to manage
a domain. Finally the L3 model, at the highest abstraction
level is built using a reasoning model, for example using the
transformer architecture as detailed later. The monitoring
and actions provide necessary interfaces to receive data
from and convey decisions to the S-TaI respectively. This
approach, clearly separates the AI-native system composed
of L1, L2, L3 models and the non-AI-native S-TaI elements.
The framework also captures the importance of model
training, management and orchestration by incorporating
these facilities around the hierarchical arrangement of
the proposed layers. In summary, this paper makes the
following key contributions:

• We introduce the GNN-ATIVE framework, which to
the best of our knowledge is the first orchestration
system that is AI-native and graph-based.

• We develop Knowledge Graph enabled Generative Pretrained Transformer  
  (KG-GPT), a novel graph-
to-graph Transformer model tailored for knowledge
graph reasoning in network management.

• We present a real-world evaluation using an OTN
testbed, demonstrating that GNN-ATIVE meets low-
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Fig. 2: GNN-ATIVE: L3:KG-GPT and GNN

latency inference requirements and effectively orches-
trates network configurations in this setting.

I I . AI-Native Design of Next-Gen Mobile
Networks

With the emergence of Software-Defined Network  (SDN)
separating the control plane and data plane for the
management of networks, and the subsequent evolution
of Network Function Virtualization   (NFV), disaggrega-
tion of networks has driven the network functionalities
towards softwarization. Following this trend, the 3rd Generation Partnership Project
   (3GPP)’s Service Based Architecture
 (SBA) architecture and the recent arrival of
Open RAN Alliance   (O-RAN) have contributed to further
disaggregation, in effect exposing Close Control Loop  s
(CCLs) in a distributed software-based architecture that
were previously in a monolithic structure. Managing the
large manifest of software blocks becomes challenging for
the Network Management System   (NMS) to achieve agreed
Service Level Agreement   (SLA) and even more so when
meeting energy and performance requirements. The limita-
tion arises with traditional Policy Based Management and Control  
 (PBMC) having to additionally take the burden
of anticipating deviations and accounting for them with
one or a combination of policies during the design of the
management system. Since NFV advocates the distribution
of responsibilities into dedicated Virtual Network Function  s
(VNFs), each VNF thus implements its policy based on the
task assigned and exposes its administrative Application Programming Interface
  (API).

Due to the heterogeneous and diverse nature of the
networks, a NMS has to adapt to diverse data streams. Two
broad directions emerge [3] when applying AI in Network Management
 (NM): 1) exclusive models developed on
dedicated data streams and use cases - although they
are highly effective in addressing the use case, they are
inflexible; 2) inclusive models such as transformer, for



which data has to be converted into an intermediate
representation (for example, natural language in case of
a Large Language Model   (LLM)), - although they are
highly flexible to host multiple reasoning channels, they
could hallucinate when addressing specific problems [4].
Apart from natural language, KG has been explored as a
possible bridge between inclusive and exclusive models
[5]. KG as an intermediate data representation layer
captures the network knowledge and state, such that the
AI-native models can train more effectively thanks to its
structure and non-ambiguous representation. Furthermore,
following standardized ontology, KG can be effectively
exchanged between stakeholders [6]. GNN has been widely
explored in NM in the form of preparing exclusive models,
some examples include: 1) RAN optimization [7, 8],
2) management of virtual infrastructures [9, 10], 3) network
slicing [11], and 4) SDN network routing assistance [12,
13]. Deep learning and GNN have been leveraged to
process topological and situation-specific graphs for the
problem of VNF placement [9, 10]. GraphNET was built
using GNN for assisting the SDN controller to predict
better routes [12]. Graphs were also used to collect and
summarize the information related to topology, traffic
patterns and routing for the purpose of predicting delay
and jitter, along with a combination of topologies [13,
14]. The TM Forum’s IG 1230 set of technical guidelines
[15] advocates the architecture for autonomous NMS with
distributed intelligence, along with suggesting the Intent-based Networking
  (IBN) framework [16] as an enabler
for achieving autonomous networks. The IG 1253 relies
on the so-called Intent Management Function   (IMF) as
the atomic building blocks holding abstracted knowledge,
logic and actions; here each IMF is responsible for one
or many CCLs. Although the framework is intuitive, it
lacks a reference implementation due to the heterogeneity
of the network, requiring a collaborative environment
between exclusive and inclusive models. GNN-ATIVE
is a first look on this collaborative environment between
L1, L2 and L3 models bridged by the KG. The advantage
of management through distributed CCL has been well
documented [12, 17]. In a similar direction, the European Telecommunications Standards Institute
   (ETSI)’s Zero touch network and Service Management
     (ZSM) proposes a
conceptual architecture for zero-touch service management,
also lacking a reference implementation [18].

I I I . The GNN-ATIVE Framework Design
and Implementation

Figure 2 depicts a possible implementation of the
framework shown in Figure 1. AI models have been shaped
into two categories (exclusive and inclusive), specifically
when applied to telecommunication networks as explained
in Section II. This implementation leverages a combination
of GNNs and KG. A graph consists of a set of nodes
interconnected by a single type of edge. Similarly, a KG
consists of edges of multiple types. Using standardized
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Fig. 3: L3:KG-GPT Tail Reasoning Sub-model

ontology, it’s possible to express knowledge that is both
human and machine-readable. Extending further, the KG
with the help of an agreed-upon ontology can act as a digital
twin of knowledge, that is unambiguously interoperable/ex-
changeable between stakeholders. The KG layer shown in
Figure 2 forms the data layer, simultaneously capturing
the network state and the knowledge. Above the KG
layer, the models named L3:KG-GPT (using a transformer
architecture) and L1:SCHED-CAP (using stacked linear
layers) show examples of L3 and L1 models respectively
constructed using a dedicated GNN pipeline. As this article
focuses on an initial feasibilty analysis of the GNN-ATIVE
framework, the discussion of L2 model is kept out of scope
for the sake of brevity. Together, the L3 and L1 models act
in coordination to manage an OTN detailed in Section IV.

1 @prefix ex1: <http://www.example.org/1/> .
2 @prefix ex2: <http://www.example.org/2> .
3
4 ex1:head1 ex2:relation ex1:tail1 .
5 ex1:head2 ex2:relation ex2:tail2 .

Listing 1: Example KG in RDF Turtle Syntax

The KG is represented using RDF. Listing 1 shows an
example of the KG in turtle syntax [19]. The turtle syntax
allows representing an RDF graph in a compact textual
form. The example KG shown in Listing 1 is composed
of two statements. Each statement is a triple with three
elements- a head, a relation and a tail. Each element in
the triple is represented using Universal Resource Identifier 
(URI) whose prefixes have been declared in the first half
of the example. The KG can also be viewed as a sequence
of statements. The generation of the KG was made
simpler using the Domain Specific Language   (DSL)-to-RDF
toolkit. The toolkit sequentially processes DSL expressions
provided by the user and consults the provided ontology
to construct a semantically structured KG, simultaneously



verifying the integrity of the KG. The role of S-TaI,
the monitoring and the actions blocks have already been
explained in Figure 1. The KG can be hosted on the
disk or on the so-called triple-store database, with which
the monitoring and action agents can populate and query
the information using SPARQL queries, respectively, from
the KG. Through SPARQL queries; create, update, read
and delete operations are possible on graph statements.
Using dedicated GNN pipelines, it’s possible to construct
L1, L2 and L3 models. Drawing parallels to tokens in
natural language, using GNN on KG results in embedding
vectors generated for each node and edge present in the
KG. The generated embedding vector is rich in features
capturing the semantics and context expressed in the KG,
thus easing the process of training L1 and L2 models. The
L3:KG-GPT model simplifies the Graph2Graph problem
to Statement2Statment problem; however, instead of a
sequence of tokens in the case of LLM, the L3:KG-GPT
transacts using sequence of statements. It ingests and
generates KG, providing the reasoning capability. L3:KG-GPT
 further performs three reasoning tasks, namely:
head, relation and tail reasoning. For example, the tail
reasoning task in L3:KG-GPT, accepts the head and
relation of the source statement and generates the tail
of the destination statement. A similar generalization is
possible for relation and head reasoning tasks required
to generate a complete destination statement. The KG-GPT
 thus holds three separate sub-models for each of
the reasoning tasks. Figure 3 shows the model for tail
reasoning following the transformer architecture [20].

This architecture has been extended from "Knowformer"
[21] using its attention blocks and reasoning mechanisms,
to align with the transformer encoder-decoder architec-
ture. Knowformer was originally proposed as an encoder-
only architecture for entity or relation reasoning tasks,
specifically exercised on KG. It exploits the Relational Message Passing Neural Network
    (RMPNN) to facilitate
the attention mechanism, processed on the entire KG. The
tail reasoning sub-model extracts the indices of the head
and the relation of the source statement. The encoder
accepts the embedding of the relation and the index of
the head, fed to the query-key attention layer. The tail is
sent as a zero-initialized context tensor into the encoder.
Along with the index of the head and context tensor of the
tail, the encoder executes a value attention layer. The KG
is made available to the encoder, which is then applied
N number of times on the input. The outgoing context
tensor of the tail of the source statement is then fed to the
decoder’s upper sublayer along with the embedding of the
relation in the source statement to perform the query key
attention. Similarly, the decoder lower sub-layer, the head
and relation from the previously generated destination
statement is ingested to generate the context tensor of the
tail of the destination statement, which is then forwarded
to the upper sublayer to finally compute the score of the
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Fig. 4: Model Inference Procedure

tail of the destination statement. The decoder sub-layers
could also be applied multiple times.

With a similar model applied for head and relation rea-
soning, L3:KG-GPT generates the destination statement
for each source statement. Given a KG as a source graph,
L3:KG-GPT ingests a sequence of statements from the
source KG to generate a sequence of destination statements
resulting in a destination KG.

IV. Use-Case Evaluation
Figure 4 presents the experimental setup showing the

proof of concept of the proposed AI-native framework
with GNN. The system interacts with and controls an
OTN, consisting of an aggregation switch, aggregating the
traffic from the RAN and serving as the gateway to the
OTN, followed by programmable Optical Transponder s
(OTs) and Reconfigurable Optical Add-Drop Multiplexer   s
(ROADMs), which represent the OTN layer itself [22, 23].
The aggregation switch reports regularly through telemetry
the maximum aggregated ingress traffic data rate (max-
aggr-rate) to a dedicated telemetry framework [24], which
then feeds these max traffic rate values into the KG.
Finally, a dedicated NETCONF-module communicating
directly with the KG-module, gets the newly computed,
scheduled capacities (sched-cap) periodically from the KG,
reconfiguring the OT when needed. Both processes use
SPARQL query. To provision the scheduled capacity, the
OT has its optical link-rate reconfigured in increments of
100 Gbps, offering only two possible capacities of either
100 Gbps or 200 Gbps. This scheme can also be suc-
cessfully utilized on software-configurable coherent multi-
carrier transceivers [25], where the capacity provisioning
is achieved with a 25 Gbps capacity granularity.

The KG-GPT was constructed using the KG as explained
in Section III. A Graph Encoder periodically querying the
max-aggr-rate from the KG to construct the source graph
as shown in Listing 2. The input graph depicts an intent
expressed using the ontology suggested by [16, 26]. The
graph consists of an intent, holding an expectation along
with an associated expectation parameter. The value of
max-aggr-rate is converted into an entity in the graph,
i.e. out of the possible 400 values in increments of 0.5



from 0 Gbps to 200 Gbps, the graph contains 400 nodes
associated with each possible max-aggr-rate value.

KG-GPT ingests the statements sequentially, until re-
ceiving the icm:target toco:otnScheduledBandwidthService.
At this point, GraphGPT delegates the inference of the
sched-cap to a L1 model selected via model repository. The
L1 model (L1:SCHED-CAP) is trained to map an incoming
max-aggr-rate to one of the sched-cap value of [100, 200]
Gbps for the OT, or [0, 25, 50, 75, 100, 125, 150, 175, 200]
Gbps for the Coherent Multi-Carrier Transceiver   (CMCT).
Similar to max-aggr-rate, the sched-cap are also available
as nodes in the KG. Using the convolutional encoder
ConvE GNN [27] on the KG, the embedding vectors of
the max-aggr-rate were extracted to train the L1 model,
which is a simple model consisting of 3 linear layers. The
model accepts an embedding vector of dimension 200 of the
max-aggr-rate to generate a one-hot vector of dimension
2 and 8 to signify the sched-cap, the results are shown in
Figure 4 (both for OT and CMCT). The obtained result is
then populated into the intent-report as shown in Listing 3,
in accordance with the ontology suggested by TM Forum
[26] along with the inferred sched-cap and forwarded to
Graph Decoder. The Graph Decoder then updates the
value associated with the transponder in the KG to be
subsequently sent asynchronously to the OT. Figure 5
shows the inference time (from left to right) of the head
reasoning submodel (L3:KG-GPT:HR-SM), the KG-GPT
(in milli seconds), the KG-GPT (in milli seconds) and the
L1 model (in micro seconds). The KG was constructed
using the DSL-to-RDF toolkit as explained in Section III,
consisting of 2142 nodes, 136 relations and 9090 statements
(triples).

1 @prefix toco: <http://purl.org/toco/> .
2 @prefix icm: <https://www.tmforum.org/2020/07/

↪→ IntentCommonModel/> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix owl: <http://www.w3.org/2002/07/owl#> .
6
7 toco:intentStartSubject toco:hasStartStatement toco:

↪→ intentStartObject .
8 toco:ex1Intent rdf:type icm:Intent .
9 toco:ex1Intent icm:hasExpectation toco:

↪→ otnDeliveryExpectation .
10 toco:otnDeliveryExpectation icm:target toco:

↪→ otnScheduledBandwidthService .
11 toco:otnDeliveryExpectation icm:params toco:

↪→ otnMaxAggrBandwidthParam .
12 toco:otnMaxAggrBandwidthParam icm:targetDescription toco:

↪→ MaxAggrIngressRate_26_point0_Gbps .
13 toco:intentEndSubject toco:hasEndStatement toco:

↪→ intentEndObject

Listing 2: Source Graph

1 @prefix toco: <http://purl.org/toco/> .
2 @prefix icm: <https://www.tmforum.org/2020/07/

↪→ IntentCommonModel/> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix owl: <http://www.w3.org/2002/07/owl#> .
6
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7 toco:intentReportStartSubject toco:hasStartStatement toco:
↪→ intentReportStartObject .

8 toco:ex1IntentReport rdf:type icm:IntentReport .
9 toco:ex1IntentReport icm:hasExpectationReport toco:

↪→ otnDeliveryExpectationReport .
10 toco:otnDeliveryExpectationReport icm:target toco:

↪→ otnScheduledBandwidthService .
11 toco:otnDeliveryExpectationReport icm:params toco:

↪→ otnScheduledBandwidthParam .
12 toco:otnScheduledBandwidthParam icm:targetDescription toco:

↪→ ScheduledRate_50_point0_Gbps .
13 toco:intentReportEndSubject toco:hasEndStatement toco:

↪→ intentReportEndObject

Listing 3: Destination Graph

V. Conclusion

In this paper, we introduced GNN-ATIVE, a novel
AI-native, graph-based orchestration framework designed
explicitly for managing the complexities and dynamism of
next-generation wireless networks. Our approach uniquely
combines the strengths of GNNs and semantic KGs within
a structured, hierarchical architecture (L1–L3), facilitating
an intelligent, scalable, and explainable network orches-
tration. The proposed KG-GPT component, leveraging a
customized graph-to-graph transformer architecture, has
demonstrated robust reasoning capabilities by perform-
ing high-level inference directly over semantic knowledge
graphs. Through experimental validation on an OTN



scenario, our framework not only showed an effective real-
time responsiveness but also maintained a low inference
latency which is essential for practical deployments.
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