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Abstract—Fast and reliable communication links are of vital
importance for the successful operation of many robot systems.
In situations where wired or local wireless communications are
infeasible, such as robots operating in extremely remote conditions
or in areas with limited communications infrastructure, mobile
communication networks can provide a solution to share sensing
data or provide motion plans over the network from a remote
base station. However, typically robot motion planners do not
consider the impact of network dynamics when performing
robotic motion plans, and thus robots can easily enter areas
of low signal quality, compromising overall performance. In
this work, we address the co-simulation of networked robotic
systems by directly integrating ray-tracing-based radio map
estimation with robot motion planning algorithms. We present
a framework for communication-aware motion planning that
seamlessly incorporates wireless network dynamics into robot
navigation. In particular, our approach converts radio map
estimates into service-specific risk maps, which capture the
likelihood of QoS violations along potential trajectories. By fusing
uplink and downlink metrics into an end-to-end service-aware
risk estimate, our method enables robots to proactively avoid
regions of low communication quality. We evaluate the framework
in simulation, showing that trajectories planned using QoS-
to-risk maps yields 1.5 — 2x improvement in communication
performance compared to shortest-path baselines.

Index Terms—Robot motion planning, communication-aware,
radio maps, online estimation

I. INTRODUCTION

Robots navigating in real-world environments, e.g., on city
streets or on smart farms, can benefit from high quality
communication links in order to transmit and receive sensory
data for off-board processing. This is especially relevant due
to the rise of computationally expensive image processing
techniques, such as transformer-based vision-language models
(VLMs) [1], which are more likely to be accessed remotely
than hosted directly on robot hardware. Mobile communication
networks can provide these links, however, due to variations
in radio coverage, a robot navigating ‘blindly’ with respect
to the underlying network conditions would be expected to
intermittently enter areas of low coverage, thus compromising
quality of service.

This interplay between robot and network dynamics has
been studied in a number of previous works within the field
of co-simulation of networking and physical systems, with
approaches varying from combined simulation via virtual
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machines [2] to interfaces between concurrent robot/network
simulations [3]. In a previous work, we investigated enabling
robot motion planners to directly predict network coverage, thus
influencing robotic motion plans [4] with minimal additional
computational overhead. In this paper, we extend our work to
the case of online communication-aware motion planning, with
dynamic remapping of unknown or changing environments,
and the potential for dynamic update of network infrastructure
parameters, e.g., transmitter locations or operating frequencies.
We demonstrate the framework through simulation scenarios
which model robots with varying communication requirements
navigating in a communication-constrained environment.

Specifically, we focus on communication-aware path plan-
ning using a QoS-to-risk map formulation. Here, radio maps are
translated into service-specific risk maps that capture the likeli-
hood of communication violations along potential trajectories.
By fusing uplink and downlink metrics into a conservative, end-
to-end risk estimate while preserving service awareness through
category-specific QoS thresholds and weighting parameters, our
approach enables robots to actively plan paths that minimize
communication risk. Unlike our previous work, which focused
on predicting coverage, this study demonstrates QoS-driven
path optimization, quantifies communication performance via
a trajectory-averaged QoS satisfaction ratio, and evaluates
the effectiveness of risk-informed navigation across multiple
service categories.

II. RELATED WORK

Co-simulation of Networked Robotic Systems: Many
current applications of robots involve wireless networked
communication, for example, communication between mo-
bile robots comprising a multi-agent system, communication
between disaster recovery robots and a remote operator, or
network offloading of computationally intensive tasks. In the
coming years, it is widely expected that the uptake of robotic
technologies will increase, leading to an increased demand
on wireless communication systems, with robotics already a
key topic area for current research & development towards
5G-Advanced and 6G mobile communications networks [5].

To appropriately control & plan for robots operating in such
scenarios, it is important to consider both robotic (physical)
dynamics as well as the dynamics of the communication



network. Typically, such approaches are termed co-simulation
of networked robotic systems [6]. Of the existing works in this
area, many are somewhat limited in scope by a focus towards
a specific robotic embodiment (e.g., UAVs [7] or robot swarms
[8]), or a specific combination of robot and network simulator.

ROS-NetSim [3] is a recent approach to co-simulation which
aims to be more widely applicable, by defining a framework
which interfaces separate network and robotic simulators, and
is designed to be agnostic to the choice of each. The framework
is built in ROS1, and uses TUN virtual network interfaces to
capture messages from ROS1 nodes and pass them to a network
simulator for processing. ROS-NetSim is flexible to the choice
of network or robotics simulator, but is limited by being based
on ROS1 which will be discontinued in 2025, and an inherent
lack of scalability due to the need to introduce increasingly
more TUN nodes in complex ROS1 systems (e.g., with many
robots).

Ray Tracing for Radio Map Estimation: Simulation-
based ray tracing is one approach to network propagation
modeling, the process of estimating the field and signal
strength characteristics of wireless channels given appropriate
input parameters. Ray tracing models radio waves propagating
through the environment as rays following geometric optics
principles, and relies on numerical methods to compute all
possible propagation paths from a source (transmitter) to a sink
(receiver) [9].

GPU acceleration can significantly improve runtimes of
ray-tracing algorithms compared to CPU-based approaches. In
particular, Nvidia’s Sionna and Instant-RM are two recent radio
propagation modeling libraries with different feature sets that
enable fast computation of radio maps [10], [11].

III. METHODOLOGY
A. Co-simulation Architecture

In our previous work on communication-aware motion
planning [4], we presented a prototype implementation which
utilized Nvidia Sionna to pre-compute radio maps for a robotic
simulation environment. Although this work highlighted the
potential of our approach to co-simulation of networked robotic
systems, there were a number of limitations. Firstly, radio
maps could only be computed for known environments, with
environmental geometry and material properties required to be
specified in advance. Furthermore, radio maps were static, and
could not be dynamically updated in response to an unexpected
change in the environment. Radio map computation could take
up to 10s, and therefore intermittent re-planning based on radio
map updates was slow, and not suited to online applications.
Finally, the implementation was limited to a single transmitter,
fixed at a point in space relative to the Sionna representation
of the environment.

To address these limitations, the architecture of the technical
implementation underlying this paper, termed ROS2-RM, has
been designed to achieve the following advancements compared
to our prior work, targeting four key features: (1) Support
for robots navigating in unmapped areas; (2) Dynamically
updating radio maps; (3) Real-time performance; (4) Support
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Fig. 1. High-level architecture of ROS2-RM for interfacing robot motion
planning with real-time radio map estimation.

for multiple, mobile transmitters. The high-level architecture
for our implementation is shown in Fig. 1. The key components
of the framework are:

1) The environment layer, which maintains a representation
of the environment compatible with the underlying ray
tracing simulator. The environment can be static, or
updated dynamically based on robot sensor data.

2) The radio mapping layer, which integrates the
ROS2/Gazebo-based robotics simulator with the ray
tracing simulator to produce radio map estimates at the
current time t. Network infrastructure parameters (e.g.,
transmitter locations or frequencies) can be specified
on startup and modified during runtime to update the
corresponding radio map estimate. Transmitter locations
can be attached to frames published on a ROS2 topic,
allowing for mobile transmitters.

3) The communication layer, which translates from raw ra-
dio maps to high-level communication metrics according
to the communication requirements of individual robots,
and maps these metrics on to a costmap for motion
planning.

In the following, we provide a detailed description of each
component.



Fig. 2. Snapshots from the simulation test environment during environment reconstruction with Nav2’s STVL, showing simulated depth sensor data, the robot
navigating in the simulated environment, and the subsequent formation of voxels.

B. Environment Layer

Robots are expected to operate in dynamic scenarios, with

changing environments and the presence of moving obstacles.

In such conditions, network propagation characteristics are
likely to be highly variable, and a static radio map is unlikely
to be accurate. To provide support for estimating radio maps of
dynamic environments, our framework includes the capability
to generate 3D maps of environments from robot sensor data,
via a two-point process of:

1) Collecting and maintaining a voxel-filtered grid of point
cloud data from the environment.

2) Generating meshes of the environment from the point
cloud information.

In practice, Nav2’s Spatio-temporal Voxel Layer [12] is used
to maintain a voxel grid of the environment, while Open3D

[13] is used to subsequently produce meshes from voxel grids.

The process of producing a voxelised representation of the
environment is presented for reference in Fig. 2. Here, a
custom mobile manipulator robot MELISAC [4], consisting of
a MIR600 base and two URS5e robot arms attached to a frame,
navigates in a simulated living room environment [14].

Currently, material characteristics from dynamically updated
environments must be specified in advance (or manually during
operation), but estimation of material characteristics from
sensor data is an immediate source of further work, and a
potential application of radio-based sensing modalities such
as THz sensing, which may be suited to the identification of
material characteristics. In scenarios which are expected to not
have a dynamically changing environment, it remains possible
to generate a static radio map from an existing 3D model of
the space.

C. Radio Mapping Layer

The primary purpose of the radio mapping layer is to
provide an interface between the robotics simulator and ray
tracing tool via ROS2. In our previous work, we used Nvidia
Sionna [10] as our ray tracing tool. To improve computation
speed, our framework integrates Instant-RM [11], a package
for real-time estimation of radio maps given information on the
structure of the environment and network parameters, which
utilises alternate models of material characteristics, as well as
modifications to the underlying renderer in order to compute
radio maps at a faster rate.

In addition to improvements in computation speed, the radio
mapping layer allows for transmitter positions to be specified
relative to frames published via tf2, the ROS2 transformation
library. This allows transmitters to be attached directly to robots
to simulate mobile base stations.

D. Communication Layer

We derive spatially varying Quality-of-Service (QoS) maps
for downlink (DL) and uplink (UL) communication using a
theoretical model that converts ray-traced radio signal strength
(RSS) maps into per-location estimates of throughput, delay,
and packet error rate (PER).

Let Rpr, € R7T*W denote the downlink RSS map in dBm,
where each grid cell corresponds to a spatial location. The map
captures large-scale path loss and site-specific propagation
effects and is resized to match the robot navigation grid.
To model large-scale fading variability, Gaussian log-normal
shadowing may be added:

RDL(iaj) = RDL(ivj) + AshadOW(ivj)



where Aghadow (i, §) ~ N(0,02,40w) are Gaussian random vari-

ables modeling log-normal shadowing, with standard deviation
Oshadow = 2 dB. The downlink SINR is computed as

Psig
b
Pnoise + Pint

with thermal noise

YpL = Pig = 10RDL/10;

P = —174 4+ 10log,4(B) + NF, B = Npp-12-Af,

noise

where NF' is the receiver noise figure, Ngp the number of
resource blocks, and A f the subcarrier spacing. Interference
power P, is optional.

For the uplink, pathloss reciprocity is assumed. With PS5
and P the gNB and UE transmit powers, respectively, the

pathloss is
L=P5 —Rpr, Rur =P +Gep — L,

and the UL SINR ~yr, is computed analogously.
Bit error rate (BER) for modulation order M and coding
rate r. is approximated by [15]

4 Q 3 Te SINRlinear
logy M V M- ’

with packet error rate

BER ~

PER =1 — (1 — BER)%»*e,

for packet length L. The achievable physical-layer data rate
(Ceor) and goodput (G) in bits per second are

Ceo = nBlogy(14+7), G = Ces(1 —PER),

where 1 € (0,1) accounts for coding, pilot, and MAC-layer
overhead.

End-to-end packet delay is modeled as the sum of scheduling,
retransmission, and queueing delays:

_ 1
~ 1-PER’
where Trpr is the HARQ round-trip time, and Dgyeue

increases linearly with PER to reflect congestion from re-
transmissions: Dgueue = Dpase(1 + 2 - PER).

E[N} D = Tichea + E[N] -TrrT + uneuea

E. QoS-to-Risk Map Formulation

To uniformly capture the impact of heterogeneous QoS
requirements, we define a normalized risk map that combines
throughput, latency, and packet error rate (PER) into a single
scalar metric.

Let q(x) = [T(x), D(x), P(x)] denote the QoS vector at
location x, where T is the achievable goodput, D is the
end-to-end delay, and P is the packet error rate. The overall
communication risk is defined as

R(x) = wrrr(T(x)) + wp rp(D(x)) + wp rp(P(x)), (1)

where wr + wp + wp = 1, and r7(+), rp(-), and rp(-) are
normalized risk functions mapping each QoS metric to the
interval [0, 1].
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Fig. 3. (a) Simulation setup in Gazebo; (b) Sample estimated uplink throughput
map; (c) Service-aware normalized risk map.

Specifically, we adopt
1

rr(T) =1~ 1+exp (—kp(T — Tin))’ ?
rp(D) = 1+exp(—kp(D — Dyy))’ ©
rp(P) 1 @

1y exp (—kp(logioP — logioPuw))’

where Ty, Din, and Py, denote service-specific QoS thresholds,
and kr, kp, and kp control the steepness of the corresponding
risk transitions.

The parameters {wr,wp,wp} and thresholds are selected
according to the QoS category of the service under considera-
tion, as summarized in Table I and II.

IV. SIMULATIONS

The communication-aware motion planning framework was
evaluated in a simulated office environment using the Gazebo
simulator. This environment is a modified version of the world
first shown in [4], with updated material characteristics to
match the material surface models used by Instant-RM. The
materials contained within the model correspond to concrete
(for the floor, ceiling, and walls), metal (for the shelving and
storage units) and wood (for the chairs, desks, and boxes). The
office is 17m in width, 30m in length, and 2m in height. A
top-down view of the environment is shown for reference in
Figure 3a.

To generate radio maps, three transmitters were placed in
the scene at fixed locations corresponding to the top left, top
right, and bottom-right rooms. All transmitters were oriented
towards the floor, and shared the same operating frequency of
2.5 GHz.

The QoS risk map was estimated using the communication
model described in Section III-D with Ngrg = 50 resource
blocks and a subcarrier spacing of Af = 15 kHz. The gNB
downlink transmit power is set to 44 dBm, while the UE uplink
transmit power is 23 dBm, with a receiver noise figure of 6 dB.
A practical link efficiency factor of n = 0.6 is applied with
M=4 (QPSK) modulation, coding rate . = 0.5 and a packet
size of 1500 bytes. Hybrid ARQ is modeled with a round-trip
time of 8 ms, scheduling delay of 2 ms and Dy,se = 5 ms. A
sample of the the resulting throughput and risk map is depicted
in Subfig. 3c and 3b.



TABLE I
QOS-DRIVEN SERVICE CATEGORIES AND DOMINANT RISK DIMENSIONS.

Category Latency  Throughput Reliability

UC1: URLLC-like control ~ High Low Very High

UC2: Tele-operation High High Medium

UC3: Periodic control Medium  Low Very High

UC4: HD map streaming Low Very High Medium
TABLE I

USE-CASE—SPECIFIC QOS TARGETS AND WEIGHTING PARAMETERS.

Use Latency (ms) Throughput (Mbps) PER
case

9gp wp kp gr wr kr gp wp  kp
UuCl 20 045 1 5 0.1 0.2 0.001 045 25
uc2 80 0.4 1 25 04 04 0.01 0.2 10
Uuc3 200 0.2 003 5 0.1 0.5 0.001 0.7 25
uc4 300 02 005 30 06 035 0.05 0.2 5

QoS-Driven Service Categorization: As summarized in
Table I, we classify the considered use-cases into four QoS-
driven categories to enable a unified, service-aware risk
modeling framework for network-aware routing and control.
Category A (UC1) comprises ultra-low-latency and ultra-
reliable services, where packet error rate and latency dominate
the risk. Category B (UC2) includes latency and throughput-
sensitive services, requiring a balance between timely delivery
and high data rates. Category C (UC3) captures reliability-
dominated periodic control services with relaxed latency but
stringent consistency requirements. Finally, Category D (UC 4)
covers throughput-dominated streaming and map provisioning
services, where sustained data rate is the primary concern and
short-term latency or reliability degradations can be tolerated.

V. RESULTS AND DISCUSSION

Using the QoS-to-risk mapping in Section III-E, we generate
risk maps for each service category. For simplicity, a weighted
linear combination of the UL-DL risk maps is used, providing a
conservative end-to-end risk estimate while maintaining service
awareness via category-specific QoS thresholds and weights,
as summarized in Table II.

A. Communication Performance

To evaluate communication-aware navigation, we quantify
communication performance via a QoS satisfaction ratio metric,
defined as the trajectory-averaged satisfaction score. For each
trajectory sample, throughput, delay, and packet error rate (PER)
are mapped to normalized satisfaction values in [0, 1] with
respect to task-specific QoS requirements. These per-metric
scores are then combined using use-case-dependent weights
(wq, wr,wy), capturing the relative importance of each QoS
dimension. To preserve sensitivity to strict service guarantees,
the aggregated soft score is penalized whenever hard QoS
constraints (gp, gr, gp) are violated, yielding a hybrid metric
that balances robustness and interpretability. The resulting QoS
satisfaction ratio reflects how well a trajectory supports the
intended service over its entire execution. For each use-case,
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Fig. 4. Communication performance: (a) Communication-aware navigation
significantly improves the QoS satisfaction ratio; (b)-(d) Empirical CDFs of
the QoS metrics measured along the executed trajectories.
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Fig. 5. Communication-aware navigation actively avoids severe QoS violation
regions, in contrast to the shortest-path baseline.

including the baseline, the robot is assigned the same sequence
of goal waypoints, starting from the bottom-left room.

As shown in Figure 4a, communication-aware navigation
consistently improves the QoS satisfaction ratio across all
four categories, with gains ranging from 1.5 to 2x. These
improvements are also evident in the empirical CDFs of the
QoS metrics measured along the executed trajectories. In
particular, the throughput-dominant UC4 exhibits a pronounced
right shift in the throughput CDF (Figure 4b), with a steep
increase around 55 Mbps. Conversely, the reliability-dominant
UCI and UC3 show strong left shifts toward near-zero packet
error rates in the PER CDF (Figure 4d), reflecting improved
link reliability. In the delay CDF (Figure 4c), all use-cases
strongly outperform the baselines, although the relative gains
are more moderate.

To provide spatial insight into where and why QoS degra-



TABLE III
WEIGHT ABLATION STUDY FOR UC1 WITH QUALITATIVE BEHAVIOR.

Weighting Mean Risk High-Risk Risk

Scheme Area Assessment

Uniform 0.454 53.6% Underestimates

Service-Aware 0.528 53.9% Balanced

PER Only 0.577 57.8% Conservative
TABLE IV

SENSITIVITY OF THE RISK MAP TO LATENCY THRESHOLD VARIATIONS.

Threshold Mean Risk High-Risk Risk Change
Scaling Area

0.8 (Strict) 0.585 55.9% Increased
1.0x (Nominal)  0.528 53.9% —

1.2x (Relaxed)  0.524 53.4% Decreased

dations occur, we also construct a QoS violation map, which
aggregates normalized violations of hard QoS thresholds across
throughput, delay, and PER. At each spatial location, the
violation value is zero when all requirements are satisfied
and increases proportionally with the severity of any violation.
Overlaying executed trajectories on this map, as illustrated in
Figure 5, shows that communication-aware navigation actively
avoids regions with severe QoS violations, whereas the shortest-
path baseline traverses communication-infeasible areas.

B. Ablation and Sensitivity Analysis

To evaluate the impact of service-aware QoS modeling and
assess the robustness of the proposed risk formulation, we
conduct a minimal ablation and sensitivity study focusing on
the most influential parameters.

First, we perform a weight ablation study by comparing
the proposed service-aware weighting for UC1 against two
baselines: (i) uniform weighting across throughput, latency,
and PER, and (ii) a single-metric configuration that considers
PER only, emphasizing reliability exclusively. Table III reports
the resulting mean risk and the fraction of the map classified
as high risk. The service-aware configuration yields a higher
mean risk than the uniform baseline, reflecting its conservative
treatment of stringent URLLC requirements, while maintaining
a comparable high-risk spatial extent. In contrast, the PER-
only configuration results in the highest mean risk and the
largest high-risk area, acting as a worst-case upper bound.
This behavior confirms that packet error rate is the dominant
failure mode for URLLC services, while also demonstrating
that incorporating latency and throughput prevents overly
pessimistic risk inflation. Overall, the service-aware weighting
strikes a balance between conservativeness and spatial risk
assessment.

Second, we analyze the sensitivity of the risk map to the
latency threshold by varying it by +20% around its nominal
value again for UC1 URLLC-control service. As shown in
Table IV, stricter latency requirements lead to higher overall
risk, while relaxed thresholds reduce risk accordingly. The
observed changes are smooth and monotonic, with no abrupt
structural shifts in the risk map. This indicates that the proposed

formulation is robust to moderate parameter variations and does
not rely on fine-grained tuning.

Overall, these results demonstrate that service-aware weight-
ing is essential to capture application-specific risk characteris-
tics, and that the proposed risk model exhibits stable behavior
under realistic uncertainty in QoS operating points.

VI. CONCLUSION

In this paper, we presented a framework for communication-
aware path planning that integrates ray-tracing—based radio map
estimation with robot motion planning. The framework enables
real-time, dynamically updating radio map estimation which
is leveraged for QoS-to-risk map formulation to guide robots
along trajectories that minimize the likelihood of service viola-
tions. Simulation results demonstrate significant improvements
in QoS satisfaction compared to shortest-path baselines, high-
lighting the practical effectiveness of risk-informed navigation
in communication-constrained environments.
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