
Distributed Software Management in Sensor Networks using Profiling Techniques

Gerhard Fuchs, Sébastien Truchat, Falko Dressler
University of Erlangen-Nuremberg

Autonomic Networking Group, Department of Computer Science 7
Martensstr. 3, 91058 Erlangen, Germany

{gerhard.fuchs,sebastien.truchat,dressler}@informatik.uni-erlangen.de

Abstract –Methodologies for efficient software management in
wireless sensor networks (WSN) need to be investigated for
operating and maintaining large-scale sensor networks. Until
now, some network-based approaches have been described that
are limited in terms of scalability, i.e. dependency on reliable
end-to-end communication, and security. In this paper, we
describe a distributed software management architecture using
profiling techniques. We exploit the advantages of robot-based
reconfiguration and re-programming methods for efficient and
secure software management. The developed methods are
depicted in detail. Additionally, demonstrate their applicability
and advantages.

Keywords – wireless sensor network, software management,

profiling techniques, re-configuration and re-programming

I. INTRODUCTION
Software management for wireless sensor networks is an

ongoing research area. Due to the heterogeneity of employed
hardware platforms and the low resources in terms of
processing power, available memory, and networking
capacities, new approaches for efficient software engineering
are needed. An overview to the issues in sensor nodes is
provided in [2]. Culler and coworkers describe the necessity
for network-oriented software architectures. Issues on the
questions of how to configure, re-configure, program, and re-
program networked embedded systems such as sensor nodes
are discussed in [7].

The development and the control of self-organizing, self-
configuring, self-healing, self-managing, and adaptive
communication systems and networks are primary research
aspects of our Autonomic Networking group at the chair for
Computer Networks and Communication Systems. In the
frame of the ROSES (Robot Assisted Sensor Networks)
project, we study these aspects on a combination of mobile
robots and stationary sensor networks. We call this
combination a mobile sensor/actuator network. In this
context, we distinguish between sensor assisted teams of
mobile robots and robot assisted sensor networks. An
example for the former scenario is sensor-based localization
and navigation. We developed a robot control system named
Robrain [8] for general purpose applications in multi-robot
systems. Part of this work was an interface between the robot
systems and our sensor motes (see below). This allowed us to
study the applicability of the ad hoc sensor network for
localization assistance [3]. An example for the latter scenario
is assistance for maintenance and deployment of sensor nodes

as well as for task and resource allocation [4]. Currently, we
are investigating methods for adaptive re-configuration of
sensor nodes using mobile robot systems. Two separate goals
should be achieved using these techniques: calibration of
sensor hardware and re-programming based on changes in the
environment. In order to address these issues, we apply
profiling mechanisms as described in this paper.

The use of mobile robots for reconfiguring single sensor
nodes and, therefore, larger ad hoc sensor networks has many
advantages. For example, the robot systems usually have
much more available resources and can store and maintain
software modules needed by the sensor nodes. Additionally,
there are multiple reasons for employing mobile robot
systems for re-programming the sensor nodes First of all,
applications like sensor calibration can be done only locally.
Calibration means to have an expensive high quality sensor
attached to the robot system and much cheaper sensors
distributed in the field. We discovered that these sensors need
a re-calibration in regular intervals. A second reason is
security. To achieve mutual trust between a sensor node and a
server is much easier if less complex communication
protocols are used. Therefore, sensors should deny any
reconfiguration from distant systems. Finally, the localized
reconfiguration using mobile robots can speed up the re-
programming task and save resources like bandwidth and
energy because the sensor network is not influenced by the
re-programming activities.

Similar work was done mainly based on network-centric
reprogramming. For example, the Deluge system [1] was
developed for re-programming Mica2 motes. Deluge
propagates software update over the ad hoc network and can
switch between several images to run on the sensor nodes. An
role assignment system was developed at the ETH Zurich [5]
to switch between multiple tasks depending on the current
requirements. The flexible exchange of software components
in TinyOS was investigated at the University of Stuttgart. The
developed toolkit FlexCup [6] introduces software
engineering methods for sensor node programming.
Incremental network (re-)programming was studied in [9].
The primary focus of this work was on the delivery of
software images over an ad hoc network.

The rest of the paper is organized as follows. In section II,
the developed profiling techniques are depicted. The
proposed reconfiguration scheme is discussed in detail in
section III. Implementation details are shown in section IV.
Some conclusions summarize the paper.

II. PROFILING
Our profiling (or profile matching) concept has grown in

the frame of a project about interoperative systems: Mo.S.I.S
(Modular Software engineering for Interoperative Systems).
One essential goal was to elaborate a generic reconfiguration
mechanism based on profiling in combination with a
lightweight non-blocking RPC mechanism [12].

This profiling mechanism consists of two parts:
1. A definition of profiles that characterize a software

service, e.g. software modules, and such profiles that
characterize environments, i.e. platforms on which
services can be offered, e.g. sensor nodes.

2. A definition of profile matching rules defining how these
platforms can be reconfigured with these services. The
word reconfiguration stands here in general for any new
software configuration (in the sense of loading new
software).

An ontology can be seen as a formal specification on how
to represent objects or entities, and the defining of rules on
how they stand in relationship. Therefore, profiling can be
seen as a kind of interoperative reconfiguration ontology.

Composite Capabilities / Preference Profiles (CC/PP) [10]
offers a way to describe profiles. One typical application for
CC/PP is content adaptation. A client sends a HTTP request
including its profile, and the web server matches the
document profile with the device profile to adapt the
document that is sent back in the HTTP response.

This scenario offers similarities with the re-configuration
and re-programming issues as investigated in the ROSES
project:
1. A sensor node first sends its profile to a robot system (a

profile characterizing its hardware capabilities and the
installed software modules).

2. In a second step, the application for the sensor node has
to be compiled by assembling several software modules
stored as code fragments on the mobile robot that
performs the role of a local server. The selection of these
software modules is made based on a profile comparison
between the hardware profile of the sensor node and the
profile of the software module.

3. At the end of the reconfiguration, the profile
characterizing the installed software on the node has to
be updated.

For adaptive sensor network re-programming, we had to
define a byte-oriented profile in order to meet the demands of
the very limited hardware and communication resources. An
ID (identification number) defines each hardware element
plugged into a node. Such an ID can be stored in one byte. In
the same way, an ID stored in one byte defines each software
module. Usually, no more than three hardware elements are
installed at a single sensor node. Also, we decided that a node
can host up to five software modules. Therefore, we
consequently need only eight bytes to characterize the
hardware and software of a single sensor node. As we only
need a few RPC commands, we reserve only one byte for the

RPC command. Thus, the communication datagram for
reconfiguration only needs to be nine bytes.

The robot, having definitely more resources, hosts the
database where the complete profile description related to an
ID can be found. In that way, once the node has transmitted
its profile, the robot can decide with which software modules
to reconfigure the node through profile matching.

III. RECONFIGURATION

A. Application Scenario
In our laboratory, we use the Robertino robot platform

developed at the Fraunhofer Institute AIS1 running
Embedded Linux and the Mica2 sensor motes running
TinyOS developed at the University of Berkeley2. We have
connected a MIB510 programming and serial interface board
with the Robertino and installed a Mica2 node as a base
station. This enables our robot to communicate directly with
the wireless sensor network. In the following, we concentrate
on the reprogramming of the sensor nodes for dynamic
adaptation to environmental changes.

For re-programming, we prepare our sensor motes with an
initial binary, which contains a module for profiling concerns.
The robot can use this module to receive information about
the hardware configuration and the currently installed
applications of the sensor mote, e.g. Mica2 / Mica2dot,
temperature measurement / localization. On the robot, we
store nesC-code and code templates that are described by
profiles. This enables the robot to select and adapt the source
code concerning the current context and requirements and,
finally, to create a new binary for the sensor node. The robot
can install the image over the air.

Fig 1. Application scenario for reconfiguration

1 www.openrobertino.org
2 www.tinyos.net

Fig 1 shows the principal concept of reconfiguration:
a) Depending on the goal, the robot drives to the position in

the sensor network, where reconfiguration is necessary
(we do not assume a particular navigation scheme,
various mobility models can be applied).

b) The robot collects information about the environment,
builds the context and explores its neighborhood. In this
step, additional actions can be initiated such as preparing
the sensor calibration or starting an algorithm for
dynamic addressing schemes.

c) All sensor motes, which have received the exploration
message, send their current profiles that contain
information about the hardware and software of the node.

d) The robot uses the information gathered in steps b) and
c) to assign the roles of the sensor motes, optimized for
the current goal. As a result, it creates the new binaries of
the sensor motes. Eventually, additional processing or
communication with other entities might be necessary
unrelated to the re-configuration itself.

e) The robot re-programs selected sensor motes over the air.

B. Formal Description
The activity diagram of the reconfiguration process of the

mobile sensor network is shown in Fig 2. We distinguish
between strategic and technical actions. The strategic actions
are responsible for the behavior of the whole system. They
depend on a global goal (e.g. a task) and control the
reconfiguration process of the sensor network. The technical
actions are independent of the goal. They are always the same
and provide the functional basics for reconfiguration. Without
them, no autonomous reconfiguration is possible.

In the rest of the paper, we use the following shortcuts:

• <XYZ> is short for the action / activity with the name
XYZ

• NP = node profile
• AP = application profile
• MP = module profile
• NP*/AP*/MP* = at least one NP/AP/MP

After the start of the reconfiguration process, <prepare> is

started. The robot does some initial actions, which depend on
the goal, e.g. it moves to a particular position. Then, it
determines the current context, i.e. requests the profiles of
neighboring sensor motes. By the use of this information, it
works out the configuration and the list of applications that is
needed in the current context. The results parameterize the
technical actions <match profiles> and <make binaries>.

Actions and activities:
a) First, <explore> is started. As a result, the robot has the

current configuration of all sensor motes in its sphere of
influence in form of a list of NPs.

b) <match profiles> determines all possible combinations
of applications and modules, which can run on the nodes.
For this, the MPs and APs on the robot and the NPs from
the nods are needed. The output is a list of matching
profiles. Each entry has the form (NP, AP*, MP*).

a) <assign> reduces the cardinality of the result. This action
is a strategic action and, therefore, depends on the global
goal. The output is the final mapping for the
reconfiguration of the sensor nodes.

b) In <make binary> the binaries for the sensor nodes are
generated. This action needs the list of matching profiles
from the previous step, the code templates, the source
code, and the configuration. The result is a list of (node
address, binary)-mappings.

c) Finally, this is taken as the input for <reprogram>, which
is the last step of the reconfiguration loop. The robot re-
programs the notes over the air.

Fig 2. Activity diagram of the reconfiguration process (NP = node
profile, AP = application profile, MP = module profile; XP* = at
least one profile of X)

IV. REALIZATION OF THE TECHNICAL ASPECTS OF
RECONFIGURATION

In the following subsections, some details on the
realization of the profiling concept for wireless sensor
networks are discussed in more detail.

A. Neighborhood Exploration
Neighborhood exploration covers two separate steps. The

first one, which is optional depending on the configuration of
the wireless sensor networks, is the setup of address
information. In several scenarios, addresses are not necessary
to operate a sensor network. Therefore, also the
communication between the mobile robot and a given sensor
node cannot be directed using address information. We
propose to initiate a dynamic addressing algorithm first [11].
In the lab, we implemented a simple addressing scheme for
this initial task.

The second step is to explore the neighborhood. All nearby
sensor nodes must be identified and their profiles must be
collected. A simple broadcast to the neighboring nodes
allows to send a single request to all relevant sensor nodes.
Then, each node sends a reply including its current profile.
This profile is taken as input for the following profile-
matching algorithm.

B. Profile Matching
The primary goal of profile matching is to create all

possible combinations of executable source code. Again, we
use a straightforward terminology for the definitions. (NP,
AP*, MP*) means on the node described with NP the
applications described by AP* with the modules described by
MP* can be installed. Each module or application can be
realized using different source files. For example, a module
may consist of various sub-modules that can be found in
multiple nesC files.

For profile matching, the name of the description in the
profile is important for its realization. In the following, we
present several examples for profiles of nodes, applications,
and modules. The profiles are depicted in pseudo-code of the
profiles. Usually, the node profile is only a bitmap. Please
note the importance of having unique names of modules and
applications.

In these examples, NP1 is a typical Mica2 sensor mote that
has installed additional senor hardware. The node is used for
light measurement. AP1 is an application that measures the
temperature. It was developed for Mica2 motes. MP1 and
MP2 represent alternatives of a software module for different
hardware systems. Finally, MP3 is a hardware-independent
module to calculate some statistics of measured data.

node {

 properties:

 address = 1;

 board = mica2;

 sensors = mts310;

 appl. = LightMeasurement;

} (NP1)

application {

 properties:

 name = TemperatureMeasurement;

 modules = TempSensorM, CalcM;

 requirements:

 board = mica2;

} (AP1)

module {

 properties:

 name = TempSensorM;

 requirements:

 sensor = mts310;

} (MP1)

module {

 properties:

 name = TempSensorM;

 requirements:

 sensor = mts101;

} (MP2)

module {

 properties:

 name = CalcM;

} (MP3)

An application can be installed if the AP matches the NP

(board-property) and all MP listed in AP.modules match NP
(sensor-property). Profiles can be extended at any time. Each
module profile describes a code fragment. This is either a
static nesC-file or a configurable template. If the profiles
match, the described code fragments for the APs and MPs
can be compiled. The complete profile matching procedure is
depicted in Fig 3.

Fig 3. Activity diagram of the profile matching action (NP = node
profile, AP = application profile, MP = module profile; XP* = at
least one profile of X)

<match appl.>, <match modules>, and <match> use rules

working with the profiles.
First, <match appl> is initiated. In our example, the

operation “<match appl>: NP1.board == AP1.board
match” is successful, i.e. the application can be complied for
the given sensor hardware. Afterwards, <analyze> is
employed to generate a list of needed modules. In our case,
TempSensorM and CalcM are involved and forwarded to the
<match modules> procedure.

The second part of the profile-matching algorithm is the
module match. In the provided example, the <match
modules> operation performs the following checks:
“NP1.sensor == MP1.senor OK”, “NP1.sensor !=
MP2.senor !OK”, and “MP3 OK (no requirements)”. A
list of MPs is created that meet the requirements.

Finally, <match> perfoms a test of the APs and MPs.
Using the example again, “<match> (AP1, MP1, MP3)”
produced a final list of matching profiles that build the basis
for composing the matching profiles. If <match> produces no
match, i.e. the empty set, no modules to build the desired
application are available and no corresponding binary can be
generated. At <match> (AP*, MP*) is one entry of the list.
Finally, “<compose> (NP1, AP1, MP1, MP3)” is called to
add the node profile to the profile list for further processing
during the binary generation.

C. Generation of the Binary
To be flexible, the robot builds the binaries of the sensor

motes just in time. Therefore, it needs a dynamic source code
selection and generation system.

Fig 4 shows the activity diagram for making one binary.
One static input pin belongs to the code templates for the
generation of the wiring, the node profiles and the
configuration, another to the source code of the modules
(nesC–files). The dynamic inputs are the current
configuration and the matching profiles. The goal is to create
a binary, that runs on the node described by NP and contains
all applications and modules described by AP* and MP*.

<split> extracts the information of the profiles and
provides it for further processing. <select src> selects the
source code, which is described by the APs and MPs (there is
a unique mapping) and puts it into a temporary buffer.
<generate wiring, node profile and configurable modules>
generates the dynamic nesC-files, depending on the current
configuration and the different combinations of APs and
MPs, and puts them into another temporary puffer. Therefore,
the code templates are used. <compile> compiles all the
nesC-files. <compose> maps the resulting binary with the
corresponding node address.

Fig 4. Activity diagram of the make binary action (NP = node
profile, AP = application profile, MP = module profile; XP* = at
least one profile of X)

The structure of TinyOS programs requires some

additional handling in combination with the selection of

source files. First, the wiring between the modules must be
defined. Using the profile-based description, the APs, MPs,
and templates can be used for an unambiguous wiring.
Secondly, some parts of the nesC-code have to be adapted to
different hardware configurations. To prevent the necessity of
providing mostly identical software modules, i.e. such that
differ only in few lines of code, we propose the utilization of
templates. A template and a configuration defined by a
profile will be substituted to a configurable software module
that is adapted to a particular hardware configuration.

In a final step, the node profile is transformed to a nesC-
file that can be compiled to a new binary. This binary reflects
the application profile and corresponds to the actual hardware
capabilities.

D. Reprogramming
The last part of the node reconfiguration using profiling

techniques is the re-programming of the nodes for which new
binaries have been generated in the last step. We intend to use
an extended version of Deluge for this purpose. In the context
of code generation, the re-programming method needs to be
considered in terms of special modules or software
modifications required for re-programming purposes. In our
case, an additional software module will always be installed
in any generated binary image that is responsible for
network-centric re-programming.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a method for distributed

software management in wireless sensor networks using
profiling techniques. We elaborated the profile matching
architecture and presented the necessary steps for node
reconfiguration. The scenario is based on stationary sensor
networks and mobile robots that perform management and
configuration tasks. Based on the available resources at the
robot systems, sophisticates software architectures can be
maintained and applied for task allocation, sensor calibration,
and general-purpose reconfiguration of surrounding sensor
nodes. Additionally, the complexity of communication over
the ad hoc network as well as the security concerns in
network-based node re-programming are minimized.

The presented profiling techniques build the basis for the
development of dynamic reconfiguration in large-scale sensor
networks. The adaptive exchange of software modules
depending on the global goals and environmental factors has
become possible. In future and related work, strategies for the
robot-based re-programming must be developed that are
optimized for efficiency and coverage.

REFERENCES
[1] A. Chlipala, J. Hui, and G. Tolle, "Deluge: Data Dissemination for

Network Reprogramming at Scale," 2004.
(http://www.cs.berkeley.edu/~jwhui/research/)

[2] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, "A
Network-Centric Approach to Embedded Software for Tiny Devices,"
Proceedings of First International Workshop on Embedded Software
(EMSOFT 2001), Tahoe City, CA, USA, October 2001.

[3] F. Dressler, "Sensor-Based Localization-Assistance for Mobile Nodes,"
Proceedings of 4. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze,
Zurich, Switzerland, March 2005, pp. 102-106.

[4] F. Dressler and G. Fuchs, "Energy-aware Operation and Task
Allocation of Autonomous Robots," Proceedings of 5th IEEE
International Workshop on Robot Motion and Control (IEEE
RoMoCo'05), Dymaczewo, Poland, June 2005, pp. 163-168.

[5] C. Frank and K. Römer, "Algorithms for Generic Role Assignment in
Wireless Sensor Networks," Proceedings of 3rd ACM Conference on
Embedded Networked Sensor Systems (SenSys), San Diego, CA,
USA, November 2005.

[6] M. Gauger, "Dynamic Component Exchange in TinyOS (Dynamischer
Austausch von Komponenten in TinyOS)," Master's Thesis
(Diplomarbeit), Distributed Systems, University of Stuttgart, April
2005.

[7] V. Handziski, J. Polastrey, J.-H. Hauer, C. Sharpy, A. Wolisz, and D.
Cullery, "Flexible Hardware Abstraction for Wireless Sensor
Networks," Proceedings of 2nd European Workshop on Wireless
Sensor Networks (EWSN 2005), Istanbul, Turkey, February 2005.

[8] M. Ipek and F. Dressler, "An Extensible System Architecture for
Cooperative Mobile Robots," Proceedings of IEEE International
Conference on Robotics and Automation (ICRA 2006), Orlando,
Florida, 2006. (submitted)

[9] J. Jeong and D. Culler, "Incremental Network Programming for
Wireless Sensors," Proceedings of First IEEE International Conference
on Sensor and Ad hoc Communications and Networks (IEEE SECON),
June 2004.

[10] M. Nilsson, J. Hjelm, and H. Ohto, "Composite Capabilities/Preference
Profiles: Requirements and Architecture," W3C, W3C Working Draft
21, July 2000. (http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/)

[11] Y. Sun and E. M. Belding-Royer, "A study of dynamic addressing
techniques in mobile ad hoc networks," Wireless Communications and
Mobile Computing, vol. 4 (3), pp. 315-329, April 2004.

[12] S. Truchat and A. Pflaum, "Reconfigurable consumer direct logistics
systems," Proceedings of 14. GI/ITG Fachtagung Kommunikation in
Verteilten Systemen (KiVS'05), Kaiserslautern, Germany, February
2005.

http://www.cs.berkeley.edu/%7Ejwhui/research/
http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/

	I. Introduction
	II. Profiling
	III. Reconfiguration
	A. Application Scenario
	B. Formal Description

	IV. Realization of the Technical Aspects of Reconfiguration
	A. Neighborhood Exploration
	B. Profile Matching
	C. Generation of the Binary
	D. Reprogramming

	V. Conclusions and Future Work

