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Abstract—This paper introduces a novel analytical frame-
work for evaluating energy-efficient, QoS-aware network-sharing
strategies in cellular networks. Leveraging stochastic geometry,
our framework enables the systematic assessment of network
performance across a range of sharing paradigms, including
both conventional single-operator scenarios and advanced hybrid
strategies that enable full integration and cooperation among
multiple mobile network operators. Our framework incorporates
diverse user densities, rate requirements, and energy consump-
tion models to ensure comprehensive analysis. Applying our
results to real-world datasets from French mobile network
operators, we demonstrate that hybrid network sharing can
yield substantial energy savings, up to 35%, while maintaining
QoS. Furthermore, our results allow us to characterize how the
benefits of network sharing vary as a function of the geographical
and functional characteristics of the deployment area. These
findings highlight the potential of collaborative sharing strategies
to enhance operational efficiency and sustainability in next-
generation cellular networks.

Index Terms—Network Sharing, Stochastic Geometry, Energy
Efficiency, Resilient Network Management

I. INTRODUCTION

The deployment of next-generation mobile networks is
driven by the need to meet stringent QoS requirements such
as ultra-low latency, high data rates, massive connectivity,
and enhanced reliability [1]. Despite widespread 5G adoption,
challenges remain in delivering high-bandwidth, low-latency
services efficiently. To meet these demands, Mobile Network
Operators (MNOs) are deploying dense RANs, which increase
costs, energy consumption, and risk of infrastructure under-
utilization in areas with fluctuating demand [2].

Network sharing (NS) [3] (Fig. 1) has emerged as a promis-
ing solution, enabling multiple MNOs to share base stations
(BSs) and optimize infrastructure use. By allowing multiple
MNOs to share base stations (BSs), NS enables more effi-
cient use of network infrastructure. For instance, during off-
peak hours, a BS can be placed in sleep mode while its
traffic is seamlessly offloaded to a neighboring shared BS,
reducing energy consumption and operational costs. More-
over, NS can significantly improve resource allocation and
service continuity during emergencies or network failures,
when only a subset of the infrastructure remains functional.
This collaborative approach enhances both the resilience and
efficiency of mobile networks, particularly under challenging
or unpredictable conditions. [4] shows how two MNOs may
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Fig. 1. Scheme illustrating the idea underlying network sharing. Cyj, is a
safety threshold beyond which offloading cannot take place.

achieve a fair, cooperative NS approach that lowers failure
rates while promoting economic collaboration.

Network sharing strategies in mobile communications range
from basic infrastructure co-location to advanced resource
virtualization [3, 5]. Active sharing enables multiple operators
to share radio access equipment, either with separate spectrum
or shared spectrum. More advanced approaches include core
network sharing, where operators share back-end systems,
and spectrum sharing, which improves utilization of licensed
frequencies [5]. In 5G, network slicing introduces dynamic,
virtual networks over shared infrastructure tailored to spe-
cific services. Previous research introduced data-driven NS
strategies that dynamically adjust BS sleep modes, optimizing
performance by tuning NS parameters according to traffic
demands [6]. Furthermore, dynamically configured network
sharing strategies tailored to traffic and location-specific char-
acteristics that can significantly optimize RAN efficiency are
considered in [7].

The impact of co-location on network resources was in-
vestigated in [8], showing that it negatively impacts the
network power consumption. [9] uses stochastic geometry to
model spectrum sharing between terrestrial and non-terrestrial
networks. An analytical model for NS is proposed in [10]
in which the strategies are investigated using game theory.
However, the authors only focus on the cost of network sharing
without any consideration of energy or QoS for served users.
In [11], the authors investigated the optimal NS strategy,
examining the profits for both users and MNOs without
considering the energy constraints of the network.



Overall, existing studies on network sharing often overlook

the spatial randomness of real-world deployments and rarely
address both energy efficiency and QoS in a unified analytical
framework. Most prior work focuses on cost or uses sim-
ulations, lacking generalizable, tractable models. Stochastic
geometry enables rigorous, scalable analysis of diverse sharing
strategies under realistic conditions.
The present work fills a key gap by providing an analytical tool
for the joint evaluation of energy and QoS in networks where
sharing strategies are applied. The advantage of our analytical
approach lies in its ability to provide decisive information for
network planning without being constrained to a specific setup.
In particular, our study presents a preliminary evaluation of
energy savings achieved by synergistically combining tradi-
tional sleep mode mechanisms with a collaborative network-
sharing strategy. This approach allows multiple operators to
utilize their respective infrastructures collectively, resulting in
improved overall network performance while maintaining fair-
ness in resource distribution among all operators involved. In
this perspective, the implementation of a cell-by-cell roaming
strategy can be considered as well. To the best of our knowl-
edge, this is the first work that applies stochastic geometry to
model QoS-aware network sharing in a cellular network.

The main contributions can be summarized as follows:

¢ We provide an analytical framework for a first-order
evaluation of the potential energy savings of QoS-aware
network sharing strategies.

o We apply it to a realistic, measurement-based scenario
with two MNOs, and we evaluate the savings achievable
by traditional NS approaches, based on switching off the
whole network of one or more operators, as well as those
attainable through a collaborative approach by which
all operators share resources and infrastructures. Results
show that energy savings achievable in such realistic
scenarios reach up to 35% with respect to QoS-aware
sleep modes applied independently by each operator.

II. SYSTEM MODEL

We consider a region of space in which a set of base
stations are deployed, modeling a 5G/6G cellular network.
Each BS belongs to one of / MNOs. A fraction c of the overall
base stations are co-located, i.e., they share the installation
site (and thus the same position in space) with BSs from
other operators. This models deployments in which several
MNOs share the same antenna mast or roof area. In what
follows, we assume that at every point in space in which
there is colocation, there is a BS from each of the I MNOs,
though our analysis can be extended easily to more general
settings. BSs are assumed to be Urban Macrocells (UMas)
[12]. Note, however, that our framework can be easily ex-
tended to any combination of macro, small, and femtocells.
For any MNO 14, users are distributed in space according to
a homogeneous Poisson Point process (HPPP) with intensity
)\Z. For each MNO i, we model the BS locations as an HPPP
with spatial intensity \;. For ease of analytical treatment, we
adopt a channel model that considers only distance-dependent

path loss. However, our findings can be easily extended to
include other propagation effects, such as stochastic fading
and shadowing. We assume random frequency reuse is in
place. We focus on the downlink component of the cellular
network, as it accounts for the majority of energy consumption
at the BS level [8]. We assume that every user is served by
the BS that provides the largest signal-to-noise ratio (SINR)
at the user’s location. Due to interference, such BS may not
necessarily be the nearest one. Nevertheless, in settings with a
significant propagation attenuation (i.e., when the attenuation
coefficient «v is 3 or higher, which is often the case in urban
areas), this assumption remains a reasonable approximation
[13]. According to Shannon’s capacity law, the capacity of a
user of the ¢ —th MNO located at a distance r from its serving
BS is

B; Pr—«
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Here, B; stands for the channel bandwidth, I; is the total
interference power received from the other BSs of the ¢ — th
MNO, k is the reuse factor, P the BS transmit power, and Ny
is the power spectral density of the additive white Gaussian
noise. As each MNO uses a different frequency band, the
interference perceived by a user is due only to BSs from the
same MNO as the serving BS.

To model the QoS perceived by a user, we use the per-
bit delay, defined as the inverse of short-term user throughput
[14]. Specifically, the key performance parameter of the net-
work is the Palm expectation of the per-bit delay experienced
by a typical user who is just beginning service [15].

We assume users are partitioned into J classes, and let
7 be the label of the j — th class. This partition is made
according to the required QoS, in terms of mean per-bit
delay TJQ (or equivalently, of mean short-term throughput
Roj = (77)7"). Vj, ~; denotes the mean fraction of users
belonging to class j. We assume that a weighted processor-
sharing (WPS) mechanism is employed to allocate BS time
among all connected users. For any user class j, let w; be the
WPS weight associated with that class, with wy = 1. If Nj;
is the number of users from class j at a given BS, then the
utilization of that BS (i.e., the fraction of time during which
., . . . cwji N .
it is actively serving users) is U = W, where ¢ is the

J
fraction of time during which the BS does not serve any user.
Thus, by tuning ¢, each BS may vary the amount of time spent
serving users, and thus the QoS perceived by each of them.
The fact that all users from the same class have the same
WPS weight implements a degree of fairness among users
within the same class and associated with the same BS, as
they all receive an equal share of BS time. At the same time,
to ensure fairness in resource scheduling between classes, we
assume that Vj, w; = %. In what follows, we assume that
each BS in the network tunes its utilization in such a way as
to have, for each user class, the Palm expectation of the per-
bit delay perceived by all the users coincide with the target
value for that class. As for the BS energy consumption, we



consider a flexible, measurement-based model, by which the
power consumed by a BS with utilization U is [16]:

E(U,P)=q +U(g2+ q3P) )]

g1 models the part of the consumed power that is independent
of the traffic load and transmit power. g and g3 model the
contribution to power consumption due to computational and
cooling processes, which scale proportionally with utilization,
as well as the power consumed during signal transmission,
which depends on both utilization and transmit power.

To save energy, we assume that each operator ¢ may turn
to low power mode (or completely off) a fraction (1 — ;) of
its BSs.

III. USER-PERCEIVED PERFORMANCE

In this section, we derive analytical expressions for the
primary performance indicators of our system as a function
of its main parameters, based on the tools of Stochastic
Geometry. To this end, we focus on the derivation of the ideal
per-bit delay experienced by the typical user, defined as the
per-bit delay experienced when the serving base station has
utilization equal to 1. Thus, the actual per-bit delay perceived
by the typical user is given by the product of the ideal per-bit
delay and the utilization of its serving BS.

Let S(z) denote the location of the BS that is serving the
user located at z. For the typical class j user at the origin,
served by the BS in S(0) from the ¢ — th operator, the ideal
per-bit delay perceived is
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where D(0) is the distance between the given user at the origin
and its serving BS.

For the derivation of an analytical expression for the Palm
expectation of the ideal per-bit delay, we need to derive the
average interference perceived by a user. Let 7"} denote the
Palm expectation of the ideal per-bit delay perceived by a
typical class j user joining a network where network sharing
is in place, and served by a BS from the i — th MNO. We
have the following result:

Lemma 1 (Mean Interference power). The mean interference
perceived by a user of the i — th MNO at a distance r from
its serving BS is:
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The proof is an extension of the one for Lemma 1 in
[17]. The following theorem expresses the Palm expectation
of the ideal per-bit delay 7; as a function of the main system
parameters.

Theorem 1. In a NS system with I MNOs, the Palm expecta-
tion of the ideal per-bit delay perceived by a typical class j
user joining the system, is the unique solution of the following
fixed-point problem:
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bility of being served by MNO i, p. is the probability of a BS
to be co-located, B;)\; is the fraction of active BS of operator
1, and
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distance between (x,0) and (0, —r).

For the proof, please refer to the extended version in [18].

As a corollary, note that, when there is no sharing, the ideal
per bit delay for a class 7 user from the ¢ —th MNO is given
by the expression for 77 in Th. 1.

IV. ENERGY-OPTIMAL FULL NETWORK SHARING

Th. 1 gives an analytical expression for the ideal per-bit
delay perceived by a user, as a function of the density of active
BS for each operator. When no sharing is in place, the tuning
of the fraction of active BSs is performed independently by
each operator, with the goal of delivering the target QoS to its
users while minimizing the energy consumed. We consider a
version of NS, that we denote as full NS, in which every MNO
may serve users from other MNOs, and every MNO agrees to
tune the fraction of its BS that are active in order to minimize
the total amount of energy required to serve the aggregate
of all users, while delivering the target QoS to all the users
from all classes and MNOs. Thus, in the Full NS scheme, the
fraction of active BSs for each MNO determines the service
capacity which each MNO provides to the aggregate of all
users from all MNOs participating to the NS scheme.

We formulate the energy-optimal problem, which aims to
identify for each MNO the optimal fraction of active infras-
tructure that allows delivering the target QoS to all the users
from all classes and MNOs, while minimizing the energy
required to perform this task. The input for this problem
includes, for each operator ¢, the density of deployed BSs A;,
and the density of users from each MNO.

Problem 1. Energy optimal network configuration for full

NS
minimize Zﬁi)\iEi(fnP)
{Bi} P
Subject to:
Vi 7<) (5)
Vi 0<6;<1 (6)
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Fig. 2. The considered region of Paris, partitioned into urban, suburban, and
rural areas.

where F; is the energy consumed by a BS of the ¢ — th
MNO from Eq. 1, and 7; derives from Th. 1. We assume that
operators are self sufficient, i.e., that in absence of network
sharing, for every MNO 1, there exist at least one value of
B; for which the operator is able to provide its users with the
required QoS. It is easy to see that, when every operator is self
sufficient, Problem 1 has always a solution. The problem is
linear in the variables but has non-linear constraints. However,
it has been solved optimally using the interior point method
with non-linear constraints.

V. NUMERICAL EVALUATION

In this section, we assess numerically our analytical ap-
proach to energy-optimal NS and characterize the optimal
sharing strategies stemming from the solutions of Problem 1.

We considered two different setups for the BS energy
model. The first, denoted as HLP (high load proportionality)
models more recent UMa architectures characterized by high
modularity, which allows a power consumption more sensitive
to the amount of traffic served by the BS. Specifically, we
considered a fixed energy consumption accounting for 36% of
the overall energy consumed [16]. The second class of BSs,
denoted as LLP (low load proportionality), is characterized
by a fixed component accounting for the vast majority of
the overall energy consumption (set to 75%). In both cases,
we assumed a transmit power of 20 W, and a bandwidth of
20 MHz [19]. In our evaluation, in addition to full NS, we
consider the following network sharing strategies: No sharing
where each MNO serves only its subscribers independently of
the other MNOs, thus without sharing its network resources.
Each MNO adopts sleep strategies to adapt the fraction of
its active BSs to the actual demand, and Operator switch off
where only the network of one operator is active, and it serves
users from all operators.

To evaluate the effectiveness of our analytical approach, we
applied it to a measurement-based scenario constituted by the
urban region of Paris. Specifically, data are extracted from
[20] and are relative to two of the main French MNOs. The
position of each BS for the two MNOs, as well as the fraction
of colocated BS for each operator, are derived from [21].

The density of users for each network has been derived
from traffic volume, as follows. We have categorized the traffic
volume into three classes: high-demand (H), which includes
video streaming services, with a target mean rate of 5 Mbit/s;
medium-demand (M), relative to audio streaming applications,
with a mean rate of 0.2 Mbit/s; and low-demand (L), compris-
ing social media, business apps, and general web browsing,
with a 0.05 Mbit/s rate. Generally, in realistic scenarios, user
densities for each user class vary over time. However, many
of these variations are known to exhibit periodic behavior over
different time frames (e.g., days, weeks). Thus, in our analysis,
we consider the given urban region over a 24 h period [20].
Such a time interval has been divided into slots of 15 min,
a duration which is generally short compared to the speed at
which user density and network traffic vary over time. Thus,
within each slot, we have assumed user density to be constant
in the scenario.

For the urban area under study, we have derived the share
of each traffic class over each 15-minute interval in the given
period. To derive an estimation for the mean number of users
for each class at each BS and at each time slot, for each class,
we have divided the traffic volume by the mean data rate of
that class. Then, through Voronoi tessellation, we have derived
the spatial distribution of users in the whole region, for the
three classes and for each time slot.

To get insights into such a spatial distribution, we
have partitioned the districts of the Paris region into ur-
ban/suburban/rural (Fig. 2): the 20 arrondissements of Paris
are classified as urban. For the remaining districts, we adopted
INSEE’s median population density (8161 inhabitants per km?
[22]) as a threshold between suburban and rural regions.

Fig. 3 displays daily traffic patterns for urban, suburban,
and rural areas for the 3 classes of traffic. All of the regions
follow the same daily pattern, which is linked to people’s daily
actions: morning increases, lunch peaks, and evening peaks
associated with relaxing time. The only significant variation
is scale: urban areas have the highest traffic since they have
the most users; suburban areas are in the middle, and rural
areas show the lowest volumes as well as the user density.
The fraction of colocated BS in the scenario is roughly the
same in all types of area in the Paris scenario (31.98 in urban,
27.81 in suburban, and 27.85 in rural areas).

To identify traffic profiles linked to a business area use, if
Vinax,we and Vinax wa denote the weekend and weekday traffic
peak for a BS, respectively, we define its traffic profile as
business if ﬁ < P with Py, = 0.6. This criterion
captures BSs that are relatively idle on weekends, thus offering
a high potential for energy savings via NS schemes during
weekends. As a result, 6.4% of all BSs in the Paris region have
been classified as having a traffic profile of the business type.
Fig. 3d and 3e show the daily traffic patterns of the business
type, for the three classes of traffic. Business traffic profile
exhibits a narrower peak of traffic, and a peak-to-trough ratio
that goes from 14 during weekdays to about 7 over weekends.
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traffic class, for the Paris scenario, per (d) weekday and (e) weekend.

TABLE I
ENERGY SAVINGS (%) FOR DIFFERENT STRATEGIES AND PERIODS UNDER
THE HLP MODEL FOR THE BUSINESS TRAFFIC PROFILE.

Period Full NS MNO 1 switchoff MNO 2 switchoff
weekday 33.27 26.44 27.74
weekend 35.68 34.74 35.54

A. Assessment of Network Sharing strategies

In a first set of experiments, we have derived for every time
slot, the energy consumed by the full NS strategy (Problem 1),
as well as that consumed by the operator switchoff strategies,
and we have compared the overall energy savings of each of
these strategies with respect to the case of no sharing, in which
each operator dynamically adapts its fraction of active BSs to
variations in user density and relative share of user classes,
for its own users.

Fig. 4 shows that in all areas, all sharing strategies allow
achieving substantial energy savings with respect to the config-
uration in which every MNO optimizes its energy consumption
independently. In all settings, the largest savings are achieved
by the full NS strategy, in spite of a higher implementation
complexity. The savings are larger in areas characterized
by a higher peak traffic, and thus by a larger amount of
overdimensioning of network resources. In urban areas, in
particular, the full NS strategy almost doubles the savings
with respect to more traditional approaches based on operator
switchoff. As visible in the figure, the combination of NS
strategies with BS architectures with high load proportionality
has a synergetic effect on energy savings, as it increases the
potential impact that the dynamic tuning of active BSs may
have on the overall energy consumption of the network.

Fig. 4c shows the amount of energy consumed in each time
slot for the different strategies, for the given scenario. Despite
the fact that network sharing schemes are often considered as
a way to save energy in periods of low loads, the plot shows
that for all strategies, the most significant savings are achieved
when traffic peaks, with the full NS scheme achieving more
than 30% reduction over energy-optimal network management
without sharing.

Fig. 4(d) shows the percentages of active infrastructures
per operator and time slot at the optimum, for the full NS

scheme. As expected, the service load, in terms of fraction
of active BSs, is almost equally distributed between the 2
operators. In the considered scenario, both BS densities and
user densities are similar between the two MNOs, and they
are both distributed as PPPs. This is mostly true for the rural
area where the ratio between the BS densities of MNO 1
and MNO 2, 1.12, is almost equal to the ratio 1.16 of the
respective user densities. The ratio of the user densities in
other areas is slightly lower, resulting in a lower imbalance in
the performance of the switchoff strategies between the two
MNOs.

With full NS, the higher efficiency comes from the fact that
the average distance between each user and its serving base
station is decreased (indeed, any user has more options as to
which BS to associate), thus improving the mean performance
perceived by the user. Moreover, full NS allows for an overall
interference reduction because users are distributed over two
distinct frequency bands, effectively decreasing the average
interference received by each user.

Finally, we have analyzed the impact of the weekday-
weekend traffic patterns on the savings achievable with the
different NS strategies considered. As Table I shows, the
weekend traffic patterns allow increasing the savings achiev-
able with all NS schemes. Indeed, the use of NS schemes
increases the degree of flexibility and adaptability of the
network configuration, and the impact of this is larger the
more variable and irregular the traffic pattern. Interestingly,
operator switchoff strategies also perform well over weekends.
This is due to the fact that lower traffic levels also lead to lower
interference levels, thus decreasing the advantage that full NS
has over operator switchoff sharing strategies.

VI. CONCLUSIONS

In this work, we propose an analytical framework to eval-
uate the performance of QoS-aware network sharing schemes
in a cellular network. The flexibility of the parameter space
and the stochastic nature of the model make our proposed
tool scalable and suitable for a wide range of scenarios. We
demonstrate its potential in providing high-level insights into
the savings achievable through network sharing, by applying
it to a realistic, measurement-based scenario with two MNOs.
We perform a first assessment of the impact that a set of
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parameters, such as peak-to-through ratio, the degree of load
proportionality of the BS energy model, or the variability of
traffic patterns over the week, have on the effectiveness of
the most common NS strategies. Results show that the most
flexible NS schemes, based on full cooperation among MNOs,
have the potential to enable substantial energy savings with
respect to QoS-aware energy optimization without sharing.
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