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Abstract—This paper introduces a novel analytical frame-
work for evaluating energy-efficient, QoS-aware network-sharing
strategies in cellular networks. Leveraging stochastic geometry,
our framework enables the systematic assessment of network
performance across a range of sharing paradigms, including
both conventional single-operator scenarios and advanced hybrid
strategies that enable full integration and cooperation among
multiple mobile network operators. Our framework incorporates
diverse user densities, rate requirements, and energy consump-
tion models to ensure comprehensive analysis. Applying our
results to real-world datasets from French mobile network
operators, we demonstrate that hybrid network sharing can yield
substantial energy savings, up to 35%, while maintaining quality
of service. Furthermore, our results allow us to characterizing
how the benefits of network sharing vary as a function of the geo-
graphical and functional characteristics of the deployment area.
These findings highlight the potential of collaborative sharing
strategies to enhance operational efficiency and sustainability in
next-generation cellular networks.

Index Terms—Network Sharing, Stochastic Geometry, Energy
Efficiency, Resilient Network Management

I. INTRODUCTION

The rollout of next-generation mobile networks (5G/6G) is
propelled by the need to support increasingly stringent quality
of service (QoS) requirements, including ultra-low latency,
high data rates, massive device connectivity, and enhanced
reliability [1]. Although 5G technology has seen widespread
deployment, it continues to face significant challenges in
meeting the growing demand for high-bandwidth and low-
latency services in a resource-efficient manner. To address
these requirements, Mobile Network Operators (MNOs) are
increasingly deploying dense Radio Access Networks (RANs),
which can lead to higher operational and capital expenditures
(OPEX and CAPEX), increased energy consumption, and
periods of infrastructure under-utilization, particularly in areas
with fluctuating or uneven user demand [2].

Under these circumstances, network sharing (NS) [3], [4]
(Fig. 1) has emerged as a potential strategy to tackle these
inefficiencies. By allowing multiple MNOs to share base
stations (BSs), NS enables more efficient use of network
infrastructure. For instance, during off-peak hours, a BS can be
placed in sleep mode while its traffic is seamlessly offloaded
to a neighboring shared BS, reducing energy consumption
and operational costs. Moreover, NS can significantly improve
resource allocation and service continuity during emergencies

Fig. 1. Scheme illustrating the idea underlying network sharing: when both
the traffic of two operators is low, one can decide to transfer its load to the
other. Cth is a safety threshold beyond which offloading cannot take place.

or network failures, when only a subset of the infrastructure
remains functional. This collaborative approach enhances both
the resilience and efficiency of mobile networks, particularly
under challenging or unpredictable conditions. [5] shows how
two MNOs may achieve a fair, cooperative NS approach that
lowers failure rates while promoting economic collaboration.

Network sharing strategies in mobile communications range
from basic infrastructure co-location to advanced resource
virtualization [3], [4], [6]. Active sharing enables multiple
operators to share radio access equipment, either with sepa-
rate spectrum (MORAN) or shared spectrum (MOCN). More
advanced approaches include core network sharing, where
operators share back-end systems, and spectrum sharing,
which improves utilization of licensed frequencies [6]. In 5G,
network slicing introduces dynamic, virtual networks over
shared infrastructure tailored to specific services. Previous
research introduced data-driven NS strategies that dynamically
adjust BS sleep modes, optimizing performance by tuning
NS parameters according to traffic demands [7]. Furthermore,
dynamically configured network sharing strategies tailored to
traffic and location-specific characteristics that can signifi-
cantly optimize RAN efficiency are considered in [8].

The impact of co-location on network resources was in-
vestigated in [9], showing that it negatively impacts the
network power consumption. [10] uses stochastic geometry to



model spectrum sharing between terrestrial and non-terrestrial
networks. An analytical model for NS is proposed in [11]
in which the strategies are investigated using game theory.
However, the authors only focus on the cost of network sharing
without any consideration of energy or QoS for served users.
In [12], the authors investigated the optimal NS strategy,
examining the profits for both users and MNOs without
considering the energy constraints of the network.

Overall, existing studies on network sharing often overlook
the spatial randomness of real-world deployments and rarely
address both energy efficiency and QoS in a unified analytical
framework. Most prior work focuses on cost or uses sim-
ulations, lacking generalizable, tractable models. Stochastic
geometry enables rigorous, scalable analysis of diverse sharing
strategies under realistic conditions.

The present work fills a key gap, by providing an analytical
tool for the joint evaluation of energy and QoS in networks
where sharing strategies are applied. The advantage of our
analytical approach lies in its ability to provide decisive
information for network planning without being constrained
to a specific setup. In particular, our study presents a pre-
liminary evaluation of energy savings achieved by synergis-
tically combining traditional sleep mode mechanisms with a
collaborative network-sharing strategy. This approach allows
multiple operators to utilize their respective infrastructures col-
lectively, resulting in improved overall network performance
while maintaining fairness in resource distribution among all
operators involved. In this perspective, the implementation of
a cell-by-cell roaming strategy can be considered as well. To
the best of our knowledge, this is the first work that applies
stochastic geometry to model QoS-aware network sharing in
a cellular network.

The main contributions can be summarized as follows:
• We provide an analytical framework for a first-order

evaluation of the potential energy savings of QoS-aware
network sharing strategies.

• We apply it to a realistic, measurement-based scenario
with two MNOs, and we evaluate the savings achievable
by traditional NS approaches, based on switching off the
whole network of one or more operators, as well as those
attainable through a collaborative approach by which
all operators share resources and infrastructures. Results
show that energy savings achievable in such realistic
scenarios reach up to 35% with respect to QoS-aware
sleep modes applied independently by each operator.

II. SYSTEM MODEL

We consider a region of space in which a set of base stations
(BSs) are deployed, modeling a 5G/6G cellular network. Each
BS belongs to one of I MNOs. A fraction c of the overall base
stations are co-located, i.e., they share the installation site (and
thus the same position in space) with BSs from other operators.
This models deployments in which several MNOs share the
same antenna mast or roof area. In what follows, we assume
that at every point in space in which there is colocation, there
is a BS from each of the I MNOs, though our analysis can

be extended easily to more general settings. BSs are assumed
to be Urban Macrocells (UMs) [13]. Note, however, that our
framework can be easily extended to any combination of
UMs, small cells, and femtocells. For any MNO i, users are
distributed in space according to a homogeneous Poisson Point
process (PPP) with intensity λi

u.
For each MNO i, we model the BS locations as a homoge-

neous PPP with spatial intensity λi. For ease of analytical
treatment, we adopt a channel model that considers only
distance-dependent path loss. However, our findings can be
easily extended to include other propagation effects, such as
stochastic fading and shadowing. We assume random fre-
quency reuse is in place. We focus on the downlink component
of the cellular network, as it accounts for the majority of
energy consumption at the BS level [9]. We assume that every
user is served by the BS that provides the largest signal-to-
noise ratio (SINR) at the user’s location. Due to interference,
such BS may not necessarily be the nearest one. Nevertheless,
in settings with a significant propagation attenuation (i.e.,
when the attenuation coefficient α is 3 or higher, which is often
the case in urban areas), this assumption remains a reasonable
approximation [14]. According to Shannon’s capacity law, the
capacity of a user of the i− th MNO located at a distance r
from its serving BS is

Ci(r) =
Bi

k
log2

(
1 +

Pr−α

N0 + Ii(r, k)

)
Here, Bi stands for the channel bandwidth, Ii is the total
interference power received from the other BSs of the i− th
MNO, k is the reuse factor, P the BS transmit power, and N0

is the power spectral density of the additive white Gaussian
noise. As each MNO uses a different frequency band, the
interference perceived by a user is due only to BSs from the
same MNO as the serving BS.
To model the QoS perceived by a user, we use the per-bit de-
lay, defined as the inverse of short-term user throughput [15].
Specifically, the key performance parameter of the network
is the Palm expectation of the per-bit delay experienced by a
typical user who is just beginning service [16].
We assume users are partitioned into J classes, and let j be
the label of the j−th class. This partition is made according to
the required QoS, in terms of mean per-bit delay τ0j (or equiv-
alently, of mean short-term throughput R0,j = (τ0j )

−1). ∀j, γj
denotes the mean fraction of users belonging to class j. We
assume that a weighted processor-sharing (WPS) mechanism
is employed to allocate BS time among all connected users.
For any user class j, let wj be the WPS weight associated with
that class, with wJ = 1. If Nj is the number of users from
class j at a given BS, then the utilization of that BS (i.e., the
fraction of time during which it is actively serving users) is
U =

∑
j wjNj∑

j wjNj+ι , where ι is the fraction of time during which
the BS does not serve any user. Thus, by tuning ι, each BS
may vary the amount of time spent serving users, and thus
the QoS perceived by each of them. The fact that all users
from the same class have the same WPS weight implements
a degree of fairness among users within the same class and
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associated with the same BS, as they all receive an equal share
of BS time. At the same time, to ensure fairness in resource
scheduling between classes, we assume that ∀j, wj =

R0,j

R0,J
.

In what follows, we assume that each BS in the network tunes
its utilization in such a way as to have, for each user class,
the Palm expectation of the per-bit delay perceived by all the
users coincide with the target value for that class.As for the
BS energy consumption, we consider a flexible, measurement-
based model, by which the power consumed by a BS with
utilization U from MNO i is [17]:

Ei(U,P ) = q1 + U(q2 + q3P ) (1)

q1 models the part of the consumed power that is independent
of the traffic load and transmit power. q2 and q3 model the
contribution to power consumption due to computational and
cooling processes, which scale proportionally with utilization,
as well as the power consumed during signal transmission,
which depends on both utilization and transmit power.

To save energy, we assume that each operator i may turn to
low power mode (or completely off) a fraction (1− βi) of its
BSs. We assume random sleep modes are used, by which each
BS from the i−th operator may be turned off with probability
(1− βi).

III. USER-PERCEIVED PERFORMANCE

In this section, we derive analytical expressions for the
primary performance indicators of our system as a function
of its main parameters, based on the tools of Stochastic
Geometry. To this end, we focus on the derivation of the ideal
per-bit delay experienced by the typical user, defined as the
per-bit delay experienced when the serving base station has
utilization equal to 1. Thus, the actual per-bit delay perceived
by the typical user is given by the product of the ideal per-bit
delay and the utilization of its serving BS.

Let S(x) denote the location of the BS that is serving the
user located at x. For the typical class j user at the origin,
served by the BS in S(0) from the i − th operator, the ideal
per-bit delay perceived is

τ ij(S(0)) =

∑
j wjNj

wjCi(D(0))
(2)

where D(0) is the distance between the given user at the origin
and its serving BS.

For the derivation of an analytical expression for the Palm
expectation of the ideal per-bit delay, we need to derive the
average interference perceived by a user. Let τ̄ ij denote the
Palm expectation of the ideal per-bit delay perceived by a
typical class j user joining a network where network sharing
is in place, and served by a BS from the i − th MNO. We
have the following result:

Lemma 1 (Mean Interference power). The mean interference
perceived by a user of the i − th MNO at a distance r from
its serving BS is:

Īi(r) =
2Pπr2−α

τ0Jk(α− 2)
τ̄ iJβiλi

The proof is an extension of the one for Lemma 1 in
[18]. The following theorem expresses the Palm expectation
of the ideal per-bit delay τ̄j as a function of the main system
parameters.

Theorem 1. In a system with I MNOs, when network sharing
is in place, for any user class j the Palm expectation of the
ideal per-bit delay perceived by a typical class j user joining
the system, is the unique solution of the following fixed-point
problem:

τ̄j =
∑
i

τ̄ ijpi =
∑
i

piλ
i
u(
∑
j

γjwj)

∫ ∞

0

h(r)Hi(P, r)dr

(3)
where pi =

λc∑
i′ βi′λi′

pc +
βiλi−λc/I∑
i′ βi′λi′−λc

(1− pc) is the proba-
bility of being served by MNO i, pc is the probability of a BS
to be co-located, βiλi is the fraction of active BS of operator
i, and

Hi(P, r) =
e−(

∑
i′ βi′λi′ )πr

2

(
∑

i′ βi′λi′)2πr

Ci(r)

h(r) =

∫ ∞

0

∫ 2π

0

e−
∑

i′ βi′λi′A(r,x,θ)xdθdx (4)

and A(r, x, θ) = πx2 −
[
r2 arccos

(
r+x sin(θ)
d(r,x,θ)

)
+

+x2 arccos
(

x+r sin(θ)
d(r,x,θ)

)
− 1

2

√
r2 − (d(r, x, θ)− x)2·

·
√

(d(r, x, θ) + x)2 − r2
]

. d(r, x, θ) being the Euclidean

distance between (x, θ) and (0,−r).

Proof. The Palm expectation of τ ij(S(0), D) perceived by a
user in S(0) (i.e. at the origin) at a distance D from its serving
BS is E0[τj(S(0), D)] =

∑
i E

0[τj(S(0), D)|i]pi, where the
conditioning is to the case in which the typical user is served
by a BS from MNO i, and pi is the corresponding probability.
Then E0[τj(S(0), D)|i] = E0[τ ij(S(0), D)] = τ̄ ij . Thus,

E0[τ ij(S(0), D)] = E0

[∑
j wjNj(S(0))

C(D(0),P,I,Bi)

]
≈

∫∞
0

1
Ci(r,P,Ī(D),Bi)

·

·E0

[∑
j

wjNj(S(0))|r ≤ D ≤ r+dr

]
P (r ≤ D ≤ r+dr)dr

where Ī(D) is the mean interference given by Lemma 1. For
dr → 0 we have P (r ≤ D ≤ r + dr) ≈ pdfR(r), where
pdfR(r) = e−(

∑
i′ βi′λi′ )πr

2

(
∑

i′ βi′λi′)2πr is the probability
distribution function of the distance of each user from its
serving BS.

To derive the final expression, we compute the expected
value of the Poisson distribution of users served by a BS
from i E0[

∑
j wjNj(S(0))|r ≤ D ≤ r + dr] of intensity

λi
u(
∑

j γjwj). To compute an expression for the average size
of the Voronoi cell h(r), we move the typical user in (0,−r) so
that its serving BS is located at the origin. Then we consider a
user in (x, θ) served by the BS at the origin and impose that no
other BSs are closer. This event, using the void probability of
the superposed process of all BS with intensity

∑
i′ βi′λi′ , oc-

curs with a probability e−(
∑

i′ βi′λi′ )A(r,x,θ), where A(r, x, θ)
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is the area of the circle centered at (x, θ) that is not overlapped
by the circle centered at the origin. To derive the probability
pi, we should account for the existence of co-located BSs.
To this aim, we define the thinned PPP of co-located BS,
which has intensity λc = c(

∑
i′ βi′λi′)/I and the thinned

PPP of BS from i that are not co-located which has intensity
λ̃i = βiλi − λc/I . It holds that

∑
i′ βi′λi′ =

∑
i′ λ̃i′ + λc

Specifically:

pi = P(Ri ≤ R−i|C)pc + P(Ri ≤ Ri′ |C̄)(1− pc)

where pc is the probability of being co-located, given by the
fraction c of co-located BS, C is the event: base stations are
co-located, Ri and R−i are the RV for the distances between
users and tier i and all the other tiers expect from i, respec-
tively. We proceed with the derivation of P(Ri ≤ R−i|C)
because the remaining probability can be obtained following
the same steps and using the thinned process of non-co-located
BS.

P(Ri ≤ R−i|C) =

∫ ∞

0

P(R−i > r)pdfc(r)dr

where pdfc is obtained in a canonical way as the pdf of the
distance between the typical user and the thinned PPP of co-
located BS, which has intensity λc. The integral becomes:∫ ∞

0

e−(
∑

i′ λi′−λc)πr
2

2πrλce
−πr2λcdr =

λc∑
i′ λi′

Finally:

pi =
λc∑

i′ βi′λi′
pc +

βiλi − λc/I∑
i′ βi′λi′ − λc

(1− pc)

The existence and uniqueness of the fixed point equations for
τ̄ ij , derive from applying the Banach fixed-point theorem to
the problem at hand, as by using well-known inequalities, it
can be proved that the system of equations for the average
per-bit delays is a contraction.

As a corollary, note that, when there is no sharing, the ideal
per bit delay for a class j user from the i− th MNO is given
by the expression for τ̄ ij in Theorem 1.

IV. ENERGY-OPTIMAL FULL NETWORK SHARING

Theorem 1 gives an analytical expression for the ideal per-
bit delay perceived by a user, as a function of the density of
active BS for each operator. When no sharing is in place, the
tuning of the fraction of active BSs is performed independently
by each operator, with the goal of delivering the target QoS
to its users while minimizing the energy consumed. In this
section we consider a version of NS, that we denote as full
NS, in which every MNO may serve users from other MNOs,
and every MNO agrees to tune the fraction of its BS which are
active in order to minimize the total amount of energy required
to serve the aggregate of all users, while delivering the target
QoS to all the users from all classes and MNOs. Thus, in the
Full NS scheme, the fraction of active BSs for each MNO
determines the service capacity which each MNO provides to

Urban (Paris 1–20)

Suburban (≥ 8161 inh/km²)

Rural (< 8161 inh/km²)

Fig. 2. The considered region of Paris, partitioned into urban, suburban, and
rural areas.

the aggregate of all users from all MNOs participating to the
NS scheme.

In this section, we formulate the energy-optimal problem,
which aims to identify for each MNO the optimal fraction of
active infrastructure which allows delivering the target QoS to
all the users from all classes and MNOs, while minimizing
the energy required to perform this task. The input for this
problem includes, for each operator i, the density of deployed
BSs λi, and the density of users from each MNO.

Problem 1. Energy optimal network configuration for full
NS

minimize
{βi}

∑
i

βiλiE(τ̄i, P )

Subject to:

∀t, j τ̄j ≤ τ0j (5)

∀i, 0 ≤ βi ≤ 1 (6)

where Ei is the energy consumed by a BS of the i − th
MNO, from Eq. 1, and τ̄j derives from Theorem 1. We assume
that operators are self sufficient, i.e., that in absence of network
sharing, for every MNO i, there exist at least one value of βi

for which the operator is able to provide its users with the
required QoS. It is easy to see that, when every operator is
self sufficient, Problem 1 has always a solution.

The problem is linear in the variables but has non-linear
constraints. However, it has been solved optimally using the
interior point method with nonlinear constraints.

V. NUMERICAL EVALUATION

In this section, we assess numerically our analytical ap-
proach to energy-optimal NS and characterize the optimal
sharing strategies stemming from the solutions of Problem 1.
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A. Setup

We considered two different setups for the BS energy model.
The first, denoted as HLP (high load proportionality), models
more recent macro BS architectures characterized by high
modularity, which allows a power consumption that is more
sensitive to the amount of traffic served by the BS. Specifically,
we considered a fixed energy consumption accounting for 36%
of the overall energy consumed [17]. The second class of BSs,
denoted as LLP (low load proportionality), is characterized
by a fixed component accounting for the vast majority of the
overall energy consumption (set to 75% [17]). In both cases,
we assumed a transmit power of 20 W, and a bandwidth of
20 MHz [19]. In our evaluation, in addition to full NS, we
consider the following network sharing strategies:

• No sharing: In this scenario, each MNO serves only
its subscribers independently of the other MNOs, thus
without sharing its network resources. Each MNO adopts
sleep strategies to adapt the fraction of its active BSs to
the actual demand.

• Operator switch off : Only the network of one operator is
active, and it serves users from all operators.

To evaluate the effectiveness of our analytical approach, we
applied it to a measurement-based scenario constituted by the
urban region of Paris. Specifically, data are extracted from
[20] and are relative to two of the main French MNOs. The
position of each BS for the two MNOs, as well as the fraction
of colocated BS for each operator, are derived from [21].

The density of users for each network has been derived
from traffic volume, as follows. We have categorized the traffic
volume into three classes: high-demand(H), which includes
video streaming services, with a target mean rate of 5 Mbit/s;
medium-demand (M), relative to audio streaming applications,
with a mean rate of 0.2 Mbit/s; and low-demand (L), compris-
ing social media, business apps, and general web browsing,
with a 0.05 Mbit/s rate. Generally, in realistic scenarios, user
densities for each user class vary over time. However, many
of these variations are known to exhibit periodic behavior over
different timeframes (e.g., days, weeks). Thus, in our analysis,
we consider the given urban region over a 24 h period [20].
Such a time interval has been divided into slots of 15 min,
a duration which is generally short compared to the speed at
which user density and network traffic vary over time. Thus,
within each slot, we have assumed user density to be constant
in the scenario.

For the urban area under study, we have derived the share
of each traffic class over each 15-minute interval in the given
period. To derive an estimation for the mean number of users
for each class at each BS and at each time slot, for each class,
we have divided the traffic volume by the mean data rate of
that class. Then, through Voronoi tessellation, we have derived
the spatial distribution of users in the whole region, for the
three classes and for each time slot in the 24 h period.

To get insights into such a spatial distribution, we
have partitioned the districts of the Paris region into ur-
ban/suburban/rural (Fig. 2), as follows. The twenty arrondisse-

ments of Paris are classified as urban. For the remaining dis-
tricts, we adopted INSEE’s median population density (8161
inhabitants per km² [22]) as a threshold between suburban and
rural regions.

Figure 3 displays daily traffic patterns for urban, suburban,
and rural areas for the three classes of traffic. All of the regions
follow the same daily pattern, which is linked to people’s daily
actions: morning increases, lunch peaks, and evening peaks
associated with relaxing time. The only significant variation
is scale: urban areas have the highest traffic since they have
the most users; suburban areas are in the middle, and rural
areas show the lowest volumes as well as the user density. The
fraction of BS which are colocated in the scenario is roughly
the same in all of the three type of areas in the Paris scenario
(31.980 in urban areas, 27.810 in suburban areas, and 27.850
in rural areas).

To identify traffic profiles linked to a business/office area
use, if Vmax,we and Vmax,wd denote the weekend and weekday
traffic peak for a BS, respectively, we define its traffic profile
as business if Vmax,we

Vmax,wd
< Pth with Pth = 0.6. This criterion

captures BSs that are relatively idle on weekends, thus offering
a high potential for energy savings via NS schemes during
weekends. As a result, 6.4% of all BSs in the Paris region
have been classified as having a traffic profile of the business
type. Figure 4 shows the daily traffic patterns of the business
type, for the three classes of traffic. Business traffic profile
exhibits a narrower peak of traffic with respect to the general
traffic profile of the urban area, and a peak-to-trough ratio that
goes from 14 during weekdays to about 7 over weekends.

B. Assessment of Network Sharing strategies

In a first set of experiments, we have derived for every time
slot, the energy consumed by the full NS strategy (Problem 1),
as well as that consumed by the operator switchoff strategies,
and we have compared the overall energy savings of each of
these strategies with respect to the case of no sharing, in which
each operator dynamically adapts its fraction of active BSs to
variations in user density and relative share of user classes,
for its own users.

Figure 5 shows that in all areas, all sharing strategies
allow achieving substantial energy savings with respect to
the configuration in which every MNO optimizes its energy
consumption independently. In all settings, the largest savings
are achieved by the full NS strategy, in spite of a higher
implementation complexity. The savings are larger in areas
characterized by a higher peak traffic, and thus by a larger
amount of overdimensioning of network resources. In urban
areas, in particular, the full NS strategy almost doubles the
savings with respect to more traditional approaches based on
operator switchoff. As visible in the figure, the combination of
NS strategies with BS architectures with high load proportion-
ality has a synergetic effect on energy savings, as it increases
the potential impact that the dynamic tuning of active BSs
may have on the overall energy consumption of the network.

Figure 6(a) shows the amount of energy consumed in each
time slot for the different strategies, for the given scenario.
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Fig. 3. Mean traffic profile over 24 h per traffic class, for the Paris scenario, for the three area types.
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Fig. 4. Mean business traffic profile over 24 h per traffic class, for the Paris scenario, per (a) weekday and (b) weekend.

Despite the fact that network sharing schemes are often
considered as a way to save energy in periods of low loads,
the plot shows that for all strategies, the most significant
savings are achieved when traffic peaks, with the full NS
scheme achieving more than 30% reduction over energy-
optimal network management without sharing.

Figure 6(b) shows the percentages of active infrastructures
per operator and time slot at the optimum, for the full NS
scheme. This plot shows that the service load, in terms of
fraction of active BSs, is almost equally distributed between
the two operators. This is expected, as in the considered sce-
nario both BS densities and user densities are similar between
the two MNOs, and they are both distributed as PPPs. This
is mostly true for the rural area where the ratio between the
BS densities of MNO 1 and MNO 2 (corresponding to 1.12)
is almost equal to the ratio of the respective user densities
(1.16). The ratio of the user densities in other areas is slightly
lower, resulting in a lower imbalance in the performance of
the switchoff strategies between the two MNOs.

With full NS, the higher efficiency comes from the fact that
the average distance between each user and its serving base
station is decreased (indeed, any user has more options as to

TABLE I
ENERGY SAVINGS (%) FOR DIFFERENT STRATEGIES AND PERIODS UNDER

THE HLP MODEL FOR THE BUSINESS TRAFFIC PROFILE.

Period Full NS MNO 1 MNO 2
switchoff switchoff

weekday 33.27 26.44 27.74
weekend 35.68 34.74 35.54

which BS to associate), thus improving the mean performance
perceived by the user. Moreover, full NS allows for an overall
interference reduction because users are distributed over two
distinct frequency bands, effectively decreasing the average
interference received by each user.

Finally, we have analyzed the impact of the weekday-
weekend traffic patterns on the savings achievable with the
different NS strategies considered. As Table I shows, the
weekend traffic patterns allow increasing the savings achiev-
able with all NS schemes. Indeed, the use of NS schemes
increases the degree of flexibility and adaptability of the
network configuration, and the impact of this is larger the
more variable and irregular the traffic pattern. Interestingly,
operator switchoff strategies also perform well over weekends.
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Fig. 5. Energy savings over the 24 h of the considered network sharing strategies with respect to the energy consumed when each MNO independently
applies sleep modes to optimize its energy consumption without network sharing, for the Paris scenario.
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Fig. 6. (a) Energy consumed by the different NS strategies, as a function of the time slot over the 24 h, for the HLP BS energy model (b) Percentage of
active base stations at the optimum for each MNO as a function of the time slot over the 24 h, for the full NS strategy.

This is due to the fact that lower traffic levels also lead to lower
interference levels, thus decreasing the advantage that full NS
has over operator switchoff sharing strategies.

VI. CONCLUSIONS

In this work, we propose an analytical framework to eval-
uate the performance of QoS-aware network sharing schemes
in a cellular network. The flexibility of the parameter space
and the stochastic nature of the model make our proposed
tool scalable and suitable for a wide range of scenarios. We
demonstrate its potential in providing high-level insights into
the savings achievable through network sharing, by applying
it to a realistic, measurement-based scenario with two MNOs.
We perform a first assessment of the impact that a set of
parameters, such as peak-to-through ratio, the degree of load
proportionality of the BS energy model, or the variability of
traffic patterns over the week, have on the effectiveness of
the most common NS strategies. Results show that the most
flexible NS schemes, based on full cooperation among MNOs,
have the potential to enable substantial energy savings with
respect to QoS-aware energy optimization without sharing.

ACKNOWLEDGMENTS

This paper was supported by the UNITY-6G project funded
by the European Union’s Horizon Europe Research and In-
novation Programme under Grant Agreement N. 101192650,
the INTERACT COST Action, and the German Research
Foundation (DFG) within the DyMoNet project under grant
DR 639/25-1.

REFERENCES

[1] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A Survey on Resource
Allocation for 5G Heterogeneous Networks: Current Research, Future
Trends, and Challenges,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 668–695, 2021.

[2] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dynamic energy-
efficient operation of cellular network infrastructure,” IEEE Communi-
cations Magazine, vol. 49, no. 6, pp. 56–61, Jun. 2011.

[3] H. Elshaer, H. ElSawy, E. Hossain, and M.-S. Alouini, “Infrastructure
sharing for mobile network operators: Analysis of trade-offs and mar-
ket,” IEEE Transactions on Mobile Computing, vol. 17, no. 12, pp.
2900–2913, 2018.

[4] T. Mahmoodi, H. Tataria, M. Z. Shakir, and M. A. Imran, “On optimal
infrastructure sharing strategies in mobile radio networks,” IEEE Trans-
actions on Wireless Communications, vol. 16, no. 5, pp. 3003–3016,
2017.

7



[5] M. Ni, D. Renga, M. Meo, and M. Ajmone Marsan, “Network sharing
for fault resilience,” in 2024 14th International Workshop on Resilient
Networks Design and Modeling (RNDM), 2024, pp. 1–7.

[6] T. Mahmoodi, H. Tataria, M. Z. Shakir, and M. A. Imran, “Infrastruc-
ture sharing strategies for wireless broadband,” IEEE Communications
Magazine, vol. 60, no. 4, pp. 32–38, 2022.

[7] D. Renga, M. Ni, M. A. Marsan, and M. Meo, “Network sharing to
enable sustainable communications in the era of 5g and beyond,” in
IEEE International Conference on Communications, 2024, pp. 2840–
2846.

[8] ——, “Sharing rans for energy efficiency,” in 2024 IEEE 25th Interna-
tional Workshop on Signal Processing Advances in Wireless Communi-
cations (SPAWC), 2024, pp. 706–710.
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