
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

On High-Speed Flow-based Intrusion Detection
using Snort-compatible Signatures

Felix Erlacher Student Member, IEEE and Falko Dressler Fellow, IEEE

Abstract—Signature-based Network Intrusion Detection Systems (NIDS) have become state-of-the-art in modern network security
solutions. However, most systems are not designed for modern high-speed network links. In the field of network monitoring, an alternative
solution has become the choice for such high-speed networks. Flow-monitoring, typically based on the Internet Protocol Flow Information
Export (IPFIX) standard, now goes well beyond collecting statistical information about network connections. Current solutions are even
able to include selected parts of the payload in these Flows to be used in conjunction with NIDS. Recently, we extended this concept to
application layer HTTP Flows. We now present our improved version of the IPFIX-based Signature-based Intrusion Detection System
(FIXIDS). FIXIDS makes use of HTTP intrusion detection signatures from the popular Snort system and applies them to incoming
IPFIX-conforming HTTP Flows. Our evaluation shows that FIXIDS can deal with four times higher network data rates without drops
compared to Snort, while maintaining the same event detection rate. Furthermore, a substantial part of the data traffic can be outsourced
to FIXIDS so that Snort can be relieved of a significant portion of rules and traffic. This increases both the detection rate and the data rate
the overall security appliance can handle.

Index Terms—Network security, intrusion detection, flow monitoring, high-speed networks.
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1 INTRODUCTION

TODAY’S computer networks, and most prominently the
Internet, are constantly threatened by malware and other

IT security attacks [1]. Network Intrusion Detection Systems
(NIDS) provide a very efficient tool not only to detect such
threats and attacks, but also to enforce usage policies to avoid
internal misuse [2]. According to established taxonomies (e.g.,
[3]), NIDS can be categorized according to the used detection
method: Anomaly-based NIDS use behavior-based methods
by defining a model of normal network behavior and then
detecting deviations to this model [4]. Knowledge-based
systems, on the other hand, use a precise definition of the
attack and match incoming traffic against this definition. The
most widespread variants of knowledge-based systems are
signature or rule-based NIDS. We concentrate on signature-
based systems such as Snort [5], which allow a very precise
description of attacks that are then identified using Deep
Packet Inspection (DPI) methods. They offer a very high
detection rate at the cost of comparably low performance.

In signature-based NIDS, a detection engine applies a
rule-set to all received packets. The majority of state-of-the-
art Snort rules contain patterns that are matched against the
payload of the received packets. These patterns range from
specific bytes to complex Regular Expressions (RegExes)
matching not only individual packets but also payload
in a packet flow. Because of these performance intensive
pattern-matching operations, such systems can only cope
with relatively low packet rates.

A different approach to network intrusion detection is to
exploit Flow-based traffic data [6–8]. Here, a Flow denotes
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a set of elements containing aggregated information of a
number of packets sharing the same properties. Typically,
these properties are composed by the following quintuple:
source/destination addresses, source/destination ports, and
transport protocol. We capitalize the word Flow (as in IPFIX
Flow) to emphasize the distinction from other meanings of
the word flow. Compared to the standard DPI approaches,
the analysis of Flow-based traffic data requires an additional
step in which the data is aggregated into so-called Flow
records with the advantage of significantly reducing the
amount of data to be analyzed. Flow monitoring has become
quite popular in a wide range of applications due to its
ability to work in high-speed networks. The Internet Protocol
Flow Information Export (IPFIX) protocol [9–11] has become
the primary standard, which is used to aggregate packet
information into Flow records for further post-processing.
Flow records can be adapted to the application scenario by
choosing appropriate Information Elements (IEs).

The fact that the Hypertext Transfer Protocol (HTTP) has
become the dominant protocol in the Internet [12, 13] has
motivated us to introduce IPFIX IEs to extend the concept
of IP flows to HTTP related information [14]. As a result,
a single HTTP dialog (request and response) can now be
aggregated and exported as one IPFIX Flow record. Such
a Flow record contains, in addition to the aforementioned
IP quintuple, the most important HTTP header information
as well as a configurable amount of HTTP payload data.
Meanwhile, these HTTP related IEs have been standardized
by the Internet Assigned Numbers Authority (IANA).1

Commercial and Open Source network appliances have also
started to include HTTP IEs into their set of exportable

1. https://www.iana.org/assignments/ipfix/ipfix.xhtml
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Flow fields. Examples are Citrix,2 Sonicwall,3 Vermont,4

and Ntop.5 The format of the exported HTTP data fields
is basically the same, even though not all are already using
the standardized IEs.

With FIXIDS, we go one step beyond and came up with a
novel Flow-based intrusion detection method. We use HTTP
related Snort signatures and apply them to IPFIX Flows
containing HTTP information. To the best of our knowledge,
this is the first time that HTTP payload-based IEs are directly
exploited for signature-based intrusion detection. By relying
on Snort signatures, we ensure that community validated
signatures are available for the developed system. The usage
of Flow data guarantees high network throughput because
less data has to be analyzed when searching for signatures.
As we will show in this article, FIXIDS analyzes HTTP
signatures substantially faster than Snort while maintaining
essentially the same detection rate.

In comparison to DPI, Flow-based intrusion detection
offers the additional advantage of supporting parallelization
of work by separating the task of fetching packets and
aggregating Flows from the task of analyzing Flows. This
separation is not possible with DPI-based intrusion detection
where both tasks have to be done in a tightly coupled fashion.

Clearly, FIXIDS can not replace DPI-based systems such as
Snort but instead works in tandem with such systems. Con-
ceptually, FIXIDS is best suited for high data rate scenarios
where network traffic is already aggregated in form of IPFIX
Flows. Thus, in many realistic scenarios, FIXIDS can analyze
HTTP traffic using all HTTP rules, while Snort analyzes all
remaining traffic using the remaining rules. This leads to
a significant speed-up because Snort processes both fewer
rules and less traffic.

In the evaluation, we confirm that by using aggregated
Flow data the performance of signature-based intrusion
detection can be raised significantly. Our solution is also
compatible with encrypted network traffic and privacy
concerns. To support encrypted traffic, we propose to use TLS
interception proxies [15], the standard for most commercial
firewall systems. With respect to privacy concerns, our Flow-
based solution requires much less data compared to DPI-
based solutions and, thus, has the potential to provide better
privacy protection [16, 17].

Our main contributions can be summarized as follows:
• We present our IPFIX-based Signature-based Intrusion

Detection System concept as an extension of the work
presented in [18] in Section 3. The pattern matching of
FIXIDS has been parallelized leading to a significant rise
in network throughput.

• We thoroughly evaluated the detection accuracy in
Section 5. We kept the very high detection accuracy
(>99%) while at the same time supporting more than
three times as many rules and much higher network
throughput rates.

• We also extensively assessed the performance of our
FIXIDS system in Section 6. We show that our system,

2. https://www.citrix.com/products/netscaler-adc/
netscaler-data-sheet.html

3. https://www.sonicwall.com/en-us/products/firewalls/
management-and-reporting/global-management-system

4. https://github.com/felixe/ccsVermont
5. http://www.ntop.org/products/netflow/nbox/

running on commodity hardware, is able to support line
rates of 10 Gbit/s.

2 RELATED WORK

We first review current efforts regarding the performance of
NIDS and then look at related work on Flow-based NIDS.

Several approaches improve performance by executing
performance intensive operations on special hardware. Vasil-
iadis et al. [19] proposed using a Graphics Processing Unit
(GPU) to perform signature pattern matching. They were
able to increase the processing throughput by a factor of two.
Multiple publications use Field Programmable Gate Arrays
(FPGAs) to parallelize performance intensive operations.
Sommer et al. [20] use FPGA based Network Interface Con-
trollers (NICs) to distribute the incoming packets to multiple
parallel analysis threads. Similarly, the distribution of the
traffic on multiple intrusion detection instances by using a
system that monitors the load of the single instances has
been proposed by Limmer and Dressler [7]. This approach
should guarantee that no instance gets overloaded while
other resources remain idle.

There have also been advances in software-based accel-
eration of NIDS. For example, Stylianopoulos et al. [21]
proposed a parallelized pattern matching algorithm, which
exploits cache locality and Intel’s modern Single Instruction
Mutliple Data (SIMD) instructions. They were able to reach
a speed-up of more than a factor of two compared to the
traditional Aho-Corasick algorithm. Furthermore, methods
have been proposed to reduce the data that a NIDS has to
analyze by intelligently filtering the network traffic while
maintaining a high detection rate [8, 22, 23].

Intrusion detection and prevention on Flow data requires
an additional processing step for aggregating network pack-
ets into Flow records. While this is mostly done on dedicated
hardware (e.g., on Flow-monitoring enabled switches), this
stage has also been subject of improvements: Pus et al.
[24] use dedicated hardware and Fusco and Deri [25] use
hardware features of modern NICs to bypass the kernel
drivers.

Flow-based NIDS inherently process much less data
compared to DPI-based systems, so they typically have better
throughput. Until now, Flow-based NIDS primarily relied on
packet-header information – typically employing anomaly-
based detection techniques. Thus, it is only possible to detect
a subset of all possible network attacks [26, 27]. Prominent ex-
amples are Distributed Denial of Service (DDOS) attacks [28],
scans [29], and Internet worms [30]. Deep flow inspection
has been, for example, addressed by Liu et al. [31].

Because of the lack of payload-based IEs, only a few
examples of Flow-based NIDS use knowledge-based meth-
ods. For example, honey-pot logs provide attack statistics
that can be used to detect attacks in IPFIX Flow IEs [32].
Vizvary and Vykopal [33] use statistical properties gained
from Netflow [11] data to detect brute-force attacks. More
recently, a system called SSHCure has been presented by
Hofstede and Hendriks [34] that detects SSH intrusions by
identifying the different phases of such an attack in the
statistical properties of Flows. Because they use only header
information, all these systems offer rather static definitions of
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attacks. To the best of our knowledge, there is no Flow-based
NIDS supporting user-definable signatures.

Hofstede et al. [35] analyze the impact of measurement
or export artifacts in Flow data. They find several artifacts
in real-world scenarios that have never occurred in their
lab experiments. They conclude that it is important to
understand what impact such artifacts may have on the
specific application scenario. Most of the artifacts found relate
to timing issues like inaccurate timestamps or imprecise
Flow cache entry expiration. They will, however, not have an
impact on the functionality of FIXIDS, as it only relies on cor-
rect aggregation of HTTP related fields. The other fields are
not analyzed but still exported for statistical/informational
reasons.

3 IPFIX-BASED SIGNATURE-BASED INTRUSION
DETECTION SYSTEM

In the following, we introduce and explain our novel Flow-
based NIDS FIXIDS. The goal is to be able to perform
signature-based intrusion detection at high-speed while
still being able to detect a very high number of events. By
using IPFIX Flows, we can keep the amount of data to be
analyzed relatively low. At the same time, combining HTTP
IEs with signatures allows FIXIDS to detect essentially all
HTTP related attacks.

3.1 Rules and Signatures
We use the same rules syntax as Snort so that we can
take advantage of the various up-to-date and community
validated databases of Snort signatures. Obviously, FIXIDS
only supports HTTP-related rules and does not support
all options that are possible within Snort signatures. Rules
that are not supported are signaled and ignored during
the initial parsing process. Among other capabilities, Snort
searches for content patterns in the payload of the bypassing
traffic. To be able to narrow the search space and speed
up the pattern matching process, Snort offers the option to
apply so called content modifiers to the pattern search. The
idea is to restrict the search of content patterns to certain
payload fields. The fact that most of the content modifiers
in Snort restrict the pattern search to HTTP related fields
shows again the importance of HTTP for intrusion detection.
We exploit this by using Snort rules with HTTP content
modifiers and apply them to the corresponding HTTP related
IEs. Table 1 shows the currently supported content modifiers
and the corresponding HTTP related IPFIX IE together with
the IANA IE ID.

FIXIDS also supports the uricontent keyword, which is
semantically equivalent to a content keyword with the

Table 1
Snort content modifiers and their correspondig IPFIX IE

Content modifier HTTP IE IANA IE ID

http_method → httpRequestMethod 459
http_uri → httpRequestTarget 461
http_raw_uri → httpRequestTarget 461
http_stat_code → httpStatusCode 457
http_stat_msg → httpReasonPhrase 470

Table 2
Modifiers for pcre content definitions supported by FIXIDS

Modifier Description

i pcre pattern searches are by default case sensitive; this
turns case insensitive pattern matching on

U, I The pcre pattern search is applied to httpRequestTarget
M The pcre pattern search is applied to httpRequest-

Method
S The pcre pattern search is applied to httpStatusCode
Y The pcre pattern search is applied to httpReasonPhrase

http_uri content modifier. FIXIDS also accepts the nocase
modifier, which enables case insensitive text search for the
corresponding content pattern. The content patterns can
be text and binary data (as hexadecimal numbers). FIXIDS
also supports pattern descriptions as RegExes. Again, Snort
supports using specific modifiers to be able to narrow down
the RegEx pattern search space. Table 2 shows the modifiers
supported by FIXIDS and explains their behavior.

Of course, FIXIDS also supports using user-generated
rules, which can be customized for a certain application
scenario.

3.2 Implementation
FIXIDS is implemented as part of the Open Source network
monitoring toolkit Vermont. It is licensed under a GNU
General Public License (GPL) and freely available.6 Vermont
is written in C and C++ and its functionality is divided
among different modules, each having its own purpose.
The FIXIDS component is implemented in its own module,
accepting as input IPFIX Flows. A minimal working Vermont
configuration including the FIXIDS functionality is sketched
in Figure 1.

An external IPFIX exporter sends IPFIX Flows containing
HTTP IEs to Vermont (currently, TCP, SCTP, UDP, and DTLS
over UDP and SCTP are supported transport protocols). In
Vermont, the IPFIX Collector module receives the Flows and
hands them over to the FIXIDS module via a Flow buffer.

6. https://github.com/felixe/ccsVermont
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At startup, the FIXIDS module parses all signatures and
options from the rules file given in the configuration. At
run-time, it compares the IEs of every incoming Flow to the
corresponding signature patterns of every rule.

In this work, we further introduce parallel pattern
matching. A detailed sketch of the parallel behavior of the
FIXIDS module is shown in Figure 2. The number of pattern
matching threads (n) can be set in the configuration file and
should be adapted to the number of cores available. Hereby
it is important to keep in mind that every Vermont module
already uses a dedicated CPU core. Because these CPU cores
are under heavy usage, they should not be used for pattern
matching.

The parallel processing of IPFIX Flows works the follow-
ing way: Incoming Flows are distributed in a round-robin
fashion to n FIFO queues. These queues are used as input
by n pattern matching threads. Every thread continuously
reads and removes a Flow from its dedicated input queue.
Then it compares all rules from the rules file (which are
already parsed and in memory) to this Flow. To compare
the string patterns of a rule to the (UTF encoded) content
of the corresponding IEs, FIXIDS uses the strstr() C string-
compare function (and strcasestr() for case insensitive search).
This function is written in an assembler and makes direct
usage of CPU registers and, thus, outperforms other C
and C++ string-compare functions. FIXIDS also supports
perl compatible RegEx content patterns. To compare RegEx
patterns to the HTTP IEs, we use the boost::regex library.7

A rule might contain multiple patterns to compare (e.g., a
“GET” in the httpRequestMethod IE and multiple patterns
in the httpRequestTarget IE). If one of the matches fails, the
execution of the remaining pattern matches of the current
rule is aborted. If all patterns match, an alarm is triggered
and the event information is written to the event file of this
thread and pattern matching is continued with the remaining
rules.

Every pattern matching thread uses the same input queue
and the same event file over the whole runtime; this avoids
race conditions or expensive access control mechanisms. The
event files can be concatenated and sorted to achieve the
same format as single-threaded FIXIDS event files.

Vermont can also be configured to read network packets
from a NIC or a captured network trace (pcap file) and
aggregate the packets to IPFIX Flows before handing these
Flows to the FIXIDS module.

4 EXPERIMENT SETUP

In this section, we provide a short description of how we
configured the used software parts for our experiments. We
provide all configuration files used and other resources to
reproduce the results on the author’s homepage.8

4.1 Snort
Snort is the most widely used NIDS. During the evaluation
experiments, we used Snort as a baseline both in functionality
and performance. For the functional tests, we use Snort to
produce the ground truth of events that are present in the

7. https://www.boost.org/doc/libs/1_62_0/libs/regex
8. http://www.ccs-labs.org/~erlacher/resources

test traces and compare the results with the detected events
of FIXIDS. It is, however, not our goal to further investigate
if the events produced by Snort are accurate (e.g., false-
positives). We used Snort version 2.9.11.1 in IDS mode, with
the default snort.conf configuration file, which is shipped
with the installation archive.

The only relevant changes made to the default Snort con-
figuration are the following: We increased the queue sizes of
the detection engine (max_queue_events: 1000, max_queue:
1000, log: 1000, and max_queued_bytes for the stream5_tcp
preprocessor: 1.5 MByte). This was necessary because if the
number of events per packet/message exceeds the queue size,
they are not reported anymore by Snort. The queue changes
were necessary to be able to realistically compare the outcome
of the two tested NIDS as FIXIDS always reports all events.
We also adapted the memory limits of the TCP reassembly
engine (stream5) to be able to cope with very high network
throughput speeds (memcap: 512 MByte, max_queued_bytes:
128 MByte, and max_queued_segs: 20000). To avoid Snort
skipping packets with checksum errors, we turned this
behavior off (-k none switch).

4.2 IPFIX-based Signature-based Intrusion Detection
System (FIXIDS)
When talking about FIXIDS, we refer to the Vermont configu-
ration with the FIXIDS module as depicted in Figure 1. In this
configuration, the IPFIX Flow Collector module listens to a
configurable port for incoming Flows from a Flow source.
These Flows are handed over to the FIXIDS module via a
Flow queue. The FIXIDS module analyzes the incoming Flows
comparing its fields with the patterns from the signatures
in the rule file. In all the experiments for this work, FIXIDS
is configured to use four pattern matching threads. Finally,
all the detected events are written to the file given in the
configuration.

Our experiments revealed that this number is the main
limitation for the speed-up achievable by multi-core systems.
In our experiment, the system had six physical cores, of
which one is busy with Operating System (OS) tasks (in
our case mostly network related tasks), one is occupied
by the Vermont IPFIX Collector module, and four are left
for pattern matching. Using the hyperthreaded cores for
parallelization did not lead to any performance increases.
This means that the performance of FIXIDS will very likely
increase on workstations with more physical cores.

4.3 Vermont Flow Probe
For some experiments, we also used Vermont as a Flow probe
for aggregating packets to IPFIX Flows. Please note that in
the configuration used in this work, Vermont is configured to
export only Flows containing HTTP. The detection of HTTP
traffic is done by checking for a valid HTTP header.

One of the configuration options is to select the IE fields
of the Flow to be exported. Among the necessary HTTP IE
fields that FIXIDS needs for intrusion detection is the HTTP
Universal Resource Identifier (URI) field. The length of this
field is configurable. An examination of the URI lengths of
HTTP traffic captured at an HTTP proxy (cf. Section 4.8) over
a week showed the following results: the average length
is 99.8 Byte, the median length is 55 Byte, the maximum
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length is 2913 Byte, and the 85 % percentile is 143 Byte.
This matches with the results of a similar investigation on
HTTP header lengths done by Google and presented in the
SPDY whitepaper.9 According to these results, we configured
Vermont to export the first 150 Byte of the HTTP URI. This
also follows the findings in [14, 23] that the most relevant
data for intrusion detection is found at the beginning of a
HTTP stream.

Experiments not shown here demonstrated that the
transport of IPFIX Flows between Vermont and FIXIDS works
best over the PR-SCTP protocol [36]. Thus, we used PR-
SCTP as the default transport protocol for IPFIX Flows with
Vermont.

4.4 Nprobe Flow Probe

To assess FIXIDS also beyond the integration with Vermont us-
ing third party Flow probes, we also conducted experiments
using Ntop’s network probe Nprobe (Version 8.6) [37]. It is
available as software or incorporated on dedicated hardware
under the brand Nbox.10 Using its HTTP plugin, it also
exports HTTP related information in IPFIX Flows but uses
proprietary enterprise specific IEs. We extended FIXIDS with
a configuration option to also accept the enterprise specific
HTTP related IEs of Nprobe. Because we are interested in
IPFIX Flows containing HTTP fields, we configured Nprobe
to only aggregate TCP flows on port 80.

Experiments not shown here demonstrated that the
transport of IPFIX Flows between Nprobe and FIXIDS works
best over the TCP protocol. Thus, we used TCP as the default
transport protocol for IPFIX Flows with Nprobe.

4.5 Network Setup

For all of the experiments reported in this paper, we used one
or more of the following three workstations: Workstation 1
and Workstation 2 are equipped with an Intel Xeon i7-3930K
CPU and 32 GByte of RAM. Both workstations make use of
an Intel 82599 10 Gbit/s dual port NIC. Workstation 1 and
Workstation 2 are interconnected via a Cisco Catalyst 4506-E
10 Gbit/s switch. This way, we guarantee that the routing
of the network traffic itself has no performance impact on
the experiment results. Workstation 2 also has a dedicated
1 Gbit/s link to Workstation 3. Workstation 3 is equipped
with an Intel i7-7700K CPU and 32 GByte of RAM. All of the
workstations are running Ubuntu 16.04 with kernel 4.4.0 as
the OS.

4.6 Used Detection Rules

For both FIXIDS and Snort we used the same set of detection
rules. We downloaded and used the most current Snort rules
from three sources:11

• All Snort rules (snapshot 29111) as provided to Snort.org
subscribers;

• the community rule-set from Snort.org; and
• all rules from the Emerging Threats rule-set.12

9. http://dev.chromium.org/spdy/spdy-whitepaper
10. http://www.ntop.org/products/netflow/nbox/
11. as of June 22nd, 2018
12. http://doc.emergingthreats.net/bin/view/Main/AllRulesets

From these rule-sets, we used all HTTP-related rules as
supported by FIXIDS. The total number of rules used for the
evaluation is 5540.

4.7 Attack Network Traffic
Choosing the traffic for evaluating a NIDS is a difficult task.
Most publications use either real traffic from a live network
or one of the publicly available network traces (e.g., [38,
39]). As only very few researchers have access to carrier
grade networks, publicly available network traces are the
first choice for such evaluations. But there are a few problems
arising with these traces [40]. First, many of these traces are
multiple years old, some even decades and, thus, do not
contain recent attacks. Secondly, almost all of the publicly
available traces do not contain any payload information
for privacy reasons. This disqualifies most of them for the
evaluation of signature-based NIDS. Furthermore, even if
researchers would have realistic and up-to-date network
traffic containing application payload at hand, it will not
contain a big enough number of diverse attacks to prove that
a NIDS has broad detection coverage.

A typical approach to this problem is to create your own
attacks and mix them with benign, realistic traffic. Malicious
traffic is crafted by hand [8] or by using attack frameworks
like Metasploit13 [41, 42]. However, this manual process
is cumbersome and time intensive and, thus, the resulting
traces still do not contain a sufficiently high number of
unique attacks.

This problem has been addressed in the Generat-
ing Events for Signature Intrusion Detection Systems
(GENESIDS) framework [43]. GENESIDS is a system that
automatically generates HTTP attacks and, thus, allows for
straightforward generation of network traces (or live traffic)
where the number of different detectable events is precisely
defined by the given attack configuration. One of the main
advantages of GENESIDS is that it uses the Snort syntax
as input format and, thus, the user can take advantage of
thousands of up-to-date and realistic attack definitions.

GENESIDS creates one TCP flow per input rule. Every
generated TCP flow contains one HTTP request containing
all patterns of the given rule. Until now, no rule from all rule-
sets that we downloaded uses HTTP content that has to be
found in an HTTP response. Thus, all attacks generated by
GENESIDS are located in an HTTP request. Additionally,
GENESIDS adds a custom HTTP header to the request,
which contains the unique rule sid so that we can assess
if the generated attack triggered the corresponding event in
a NIDS. Apart from a rule file, GENESIDS requires also a
working HTTP server URI as input, which it uses to send the
generated HTTP requests to. In our experiments, an Apache
HTTP server (default configuration) has been used. This
means that for most requests the server response will be
a ’404, Not Found’. This does not influence the detection
result because, as stated before, all patterns to be detected
are located in the HTTP request. In summary, GENESIDS
allows us to test FIXIDS with an unprecedented variety of
different attacks. GENESIDS can also be combined with
traffic generators [44] to create mixed traffic traces and to
maintain typical load patterns as background traffic.

13. http://www.metasploit.com
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4.8 Realistic Network Traffic

For most performance evaluation experiments, we use
Cisco’s TRex traffic generator (version 2.41).14 It allows
for stateful, timely, precise, and realistic high-speed traffic
generation, and it is one of very few generators that supports
the custom creation of application layer payload [45]. TRex
ships with a set of realistic traffic pattern templates. These
templates consist of a list of pcap network traces. For every
pcap trace in the template file, there exists an entry stating
how many Connections Per Second (CPS) TRex should
generate with this trace. For every new connection, TRex
uses a new IP src/dst pair from a pool of addresses stated in
the configuration file. To control the throughput rate of the
generated traffic, TRex offers a numerical multiplier switch.
This number is multiplied with the CPS rate of every trace
defined in the template.

Please note that there is a crucial difference between
replaying the same traffic with different Packets Per Second
(PPS) rates or replaying it with different CPS rates. With
increasing PPS rates, the inter-packet time is reduced and the
same traffic gets simply compressed in time. With increasing
CPS rates, on the other hand, one connection (as defined in
the TRex template) remains unchanged in time domain, but
to increase the packet throughput, the same connection is
repeated in shorter intervals. This has a significant impact
on the performance of NIDS, because when increasing the
packet throughput by increasing the CPS, more connections
per time unit have to be kept in cache. This is not the case
when increasing the packet throughput by increasing the
PPS rate. Even more importantly, increasing the PPS rate is
not what happens in real world networks with high network
throughput rates. Here, the challenge is to cope with a huge
amount of concurrent connections, which is exactly what we
mimic when increasing the network throughput with higher
CPS rates.

Figure 3 shows our evaluation setup using TRex as a
traffic generator and the Cisco switch to copy the network
traffic to our FIXIDS system for analysis. We will maintain
this setup for the rest of the performance measurements.
At startup, TRex reads all the pcap files from the traffic
template and the corresponding CPS rates. It then starts with
the first request packet from every pcap trace in the traffic
template and sends it out on the configured egress NIC to a
switch, which is connected via a mirroring port to the NIDS
under test. The switch is configured to send a copy of every
bypassing network packet to the mirroring port. The source
and destination addresses of the packets generated by TRex
are defined in the traffic template. The switch is also used to
route packets with such destination addresses to the ingress

14. http://trex-tgn.cisco.com

Table 3
Statistical properties of the SFR network traffic generated by TRex

Protocol Packets Bytes CPS

TCP 61% 69% 2059
→ HTTP 32% 49% 1519
UDP 39% 31% 2004

NIC of the TRex device. As soon as the packet arrives at the
ingress NIC, TRex answers with the response packet sent
through the egress device, routed through the switch and
arriving at the ingress device. This process is started multiple
times per second per pcap trace depending on the configured
CPS of the pcap trace.

The TRex traffic template that we use in the following
experiments is a traffic mix defined by the french Telco
provider SFR France15 to represent typical Internet traffic.
According to the TRex manual,16 this template is also used
by Cisco to benchmark their ASR1k/ISR-G2 routers. Table 3
shows the basic composition of this traffic. Not surprisingly,
this traffic does not generate any events with Snort or with
FIXIDS. For the remainder of this paper, we call this traffic
“SFR traffic.”

For the experiments in Section 6.1, we further require a
network trace file containing mostly realistic traffic, but also
some events to be able to assess the impact of packet/Flow
losses on the event detection accuracy. We generated two dif-
ferent traces. For the first trace, we use a pcap file that we cre-
ated by capturing 120 s of the SFR traffic generated at a speed
of 1 Gbit/s. This trace contains almost 25 000 000 packets. We
than added 500 random attacks generated by GENESIDS.
The attacks are distributed evenly over the trace. Finally, we
replicated this trace six times and concatenated the resulting
traces. To avoid that repetitions of the same connection
end up in the same Flow, we rewrote the IP addresses in
every repetition using the tool tcprewrite. tcprewrite uses a
deterministic way of changing IP addresses and, thus, retains
TCP sessions between two hosts. When using Vermont as
a Flow probe (with the same configuration as used in the
experiments), it exports 1 485 000 Flows including HTTP IE
fields. We call this trace the “SFR+500x6 trace.”

The second trace was created by capturing the traffic
going through an HTTP proxy used by a scientific work
group for one week. This trace contains only HTTP traffic
and consists of 2 200 000 packets. Again, we added 500
attacks. To have a comparable number of exported Flows
we replicated and concatenated the trace 35 times. When
using the same configuration as below, Vermont will export
1 494 000 Flows including HTTP IE fields. We call this trace
the “PROXY+500x35 trace.”

5 FUNCTIONAL EVALUATION

In the functional evaluation, we assess that the methods
and algorithms implemented in FIXIDS work as expected
and, thus, accurately and precisely detect a broad variety of
events in the analyzed network traffic. We asses the general
detection functionality by using GENESIDS to create attack

15. https://www.sfr.fr
16. https://trex-tgn.cisco.com/trex/doc/trex_manual.html
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Figure 4. Sketch of the functional evaluation experiments

traffic. As input we used the rule-set described in Section 4.6
with 5540 different rules. The experiment setup is sketched
in Figure 4.

In a first step, we configured GENESIDS, running on
Workstation 1, to send all HTTP requests to an HTTP server
located at Workstation 2. On Workstation 2, we captured
all the HTTP traffic using the network traffic capturing tool
tcpdump and saved the traffic to a pcap network trace. In
a second step, we configured Snort and FIXIDS to analyze
this network trace. We configured Snort to take as input the
pcap network trace and use all signatures from our rule-set.
The triggered events were written to a file and can then be
compared to the events detected by FIXIDS. To be able to
analyze this pcap file with FIXIDS, we configured Vermont as
a Flow probe, reading the packets directly from the network
trace, aggregating them to IPFIX Flows, and then handing
them over to FIXIDS. Again, the events triggered by FIXIDS
were written to a file.

For the evaluation, we compared the triggered events
of Snort and FIXIDS. It is important to note that we did
not simply check if Snort or FIXIDS triggered an event
for a malicious HTTP packet, but we only denoted a true
positive if the triggered event corresponds to the exact
attack contained in the appertaining HTTP attack request.
We accomplished this by comparing the port number and
corresponding rule sid of the GENESIDS HTTP request with
the rule sid and port number of the triggered event. This, of
course, assumes that GENESIDS uses a unique port number
for every HTTP request, which we verified beforehand.

To assess the detection robustness of FIXIDS, we repeated
the experiment 100 times with changing attack traffic. The
attack traffic generated by GENESIDS for the same rules
differs between the individual runs. First, if a rule pattern is
defined by a RegEx containing a subexpression that matches
multiple characters (e.g., ’.’ matches any character, or \d
matches any digit), the result will be a random string
matching this subexpression and, thus, it will most likely
differ in independent runs. Secondly, as GENESIDS generates
events in the same order they appear in the rule file, we
always randomly changed the order of the rules and, thus,
the order of the generated HTTP attack requests also differs
in every run.

Figure 5 shows the true positive events that have been
detected during the experiment. GENESIDS created all 5540
attacks over all runs. Snort as well as FIXIDS have a reliably
high true positive detection rate of more than 99 %. Snort,
on average, detected 5489 true positives of the generated
attacks with a maximum of 5494 detected events and a
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Figure 5. Detected true positive events by Snort and by FIXIDS in 100
different attack traces generated with GENESIDS
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Figure 6. Detected false positive events by Snort and by FIXIDS in 100
different attack traces generated with GENESIDS

minimum of 5481. FIXIDS detected slightly more with an
average of 5490 true positives of the generated attacks and a
maximum of 5495 detected events and a minimum of 5483.
These experiment results show that FIXIDS has essentially
the same detection accuracy as Snort and, thus, its detection
functionality can be considered equal to the state-of-the-art.

The reason that both NIDS did not detect all of the
generated attacks is because GENESIDS, in very rare cases,
is not able to generate the attack as defined in the rule
and, thus, the NIDS using these rules can not detect it. For
example, if a rule defines multiple HTTP header patterns
ending with \r\n\r\n, this would require GENESIDS to
generate an illegal HTTP request. Nevertheless, the fraction
of generated attacks that could not be detected is less than
1 % and, thus, negligible for our purposes.

Figure 6 shows the false positive events that have been
detected during the experiment. Snort triggered on average
of 2530 and FIXIDS triggered an average of 2519 false positive
events over the 100 runs. Such a high number of false
positives is not unusual, if rules are not adapted to the
application scenario. The reason is the overlap of patterns in
rules [46], causing multiple rules to trigger an alarm for
the same packet. A closer look at the false positives in
our experiment shows that 74 % of the false positives are
triggered by only three rules. This implies that removing
only few rules will dramatically reduce the false positive
rate.

Finally, we compare the differences between the detected
true positive events of Snort and FIXIDS. While almost all
attacks were detected correctly by both NIDS, there were
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subtle differences in the detected events that we elaborate
in the following. Please keep in mind that the following
discussion only applies to a very small fraction of the events
(at maximum 11 per run, i.e., 0.02 %). The influence on the
detected events is negligible, but it helps to identify the
detection differences between Snort and FIXIDS.

Over all 100 runs, Snort detected 624 events generated by
11 unique rules, that FIXIDS did not detect. In almost all cases
(523 out of 624) the reason was that the URI stretched over
more then 150 Byte. Thus, patterns that were located beyond
that limit could not be detected by FIXIDS. This could be
avoided by changing the IPFIX aggregation configuration to
include more characters in the HTTP URI. For the remaining
missed attacks, we identified the following reasons:

• One attack contains as HTTP method a “post”. As HTTP
methods are case sensitive, the whole HTTP request is
not recognized as valid HTTP by the Vermont IPFIX
aggregation engine and, thus, the HTTP related fields
in the IPFIX Flow are not filled. This attack was missed
100 times, once every run.

• One attack contains a double slash. Snort, in the standard
configuration removes double slashes from the URI, and
then this URI matches the RegEx. FIXIDS analyzes the
URI with double slashes and, thus, it does not match
the RegEx.

FIXIDS, on the other hand, detected 834 events over all
100 runs, generated by 65 unique rules that Snort did not
detect (minimum six per run, maximum 11). Most of the
reasons have to do with one of the Snort preprocessors,
which prepare and arrange the data for faster analysis and
to avoid so called evasion attacks.

• Certain attacks contain “\\”, which, in the default
configuration, is converted to “//”. Thus, this pattern
in the packet does not match the pattern in the rule
anymore.

• Some attacks contain a “+” directly after the “/” at the
beginning of the HTTP URI. The “+” sign is normally
used to denote a whitespace. Because Snort does not
expect a whitespace character at the beginning of the
URI the normalization engine removes it before analysis.

• Some attacks contain a “http\ :” which is normalized by
Snort to “http://”.

• The remaining attacks in this category all occurred less
than 5 times in 100 runs. The reasons were mostly special
characters (mostly whitespace characters), which are
interpreted differently by Snort and by FIXIDS.

In summary, FIXIDS has essentially the same, very high
detection rate (>99 %), as Snort on more than 5000 different,
up-to-date attack patterns with a slightly lower false positive
rate. This makes us confident that the detection functionality
of FIXIDS is precise and reliable.

6 THROUGHPUT PERFORMANCE

In this section, we assess the performance of FIXIDS under
high network traffic throughput. We first evaluate FIXIDS
with two different traffic sets to show the baseline perfor-
mance and to find possible bottlenecks of the analysis process
and then assess the applicability of FIXIDS in combination
with the third party IPFIX Flow probe Nprobe as well
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Figure 7. Sketch of the basic throughput experiments

0 5000 10000 15000 20000 25000 30000

0
2
0

4
0

6
0

8
0

1
0
0

IPFIX Flows per Sec
E

v
en

ts
 D

et
ec

te
d
 %

F
lo

w
s 

D
ro

p
p
ed

 %

FIXIDS Events

FIXIDS Drops

Figure 8. Flow throughput performance of FIXIDS analyzing the
SFR+500x6 trace (average of ten runs)

as in a more realistic scenario. The main metric for the
throughput performance of FIXIDS is (IPFIX) Flows/s. For a
better comparison with Snort, we also converted this metric
to Gbit/s, where possible.

6.1 Basic Throughput Experiments

In this first performance experiment, we assess how many
IPFIX Flows/s FIXIDS can handle. To make sure to also
evaluate the impact of different traffic properties we use
the two realistic network traffic traces SFR+500x6 and
PROXY+500x35 described in Section 4.8.

To avoid possible latencies introduced by replaying traffic,
intermediate routing appliances, or Flow probes, we decided
to subdivide the experiment into two steps as depicted in
Figure 7. In the first step, we read the traffic trace directly
with Vermont and export the IPFIX Flows, including the
necessary HTTP IE fields, to a file. Because we only apply
HTTP rules, only IPFIX Flows with HTTP IEs are exported.
Vermont filters HTTP Flows by checking for a valid HTTP
header. In the second step, we use Vermont to send the
stored IPFIX Flows from Workstation 2 to a FIXIDS instance
running on Workstation 3. FIXIDS is configured the same way
as in the functional evaluation experiments (cf. Section 5)
and as sketched in Figure 1, again using all 5540 rules. We
repeat this step multiple times, always increasing the Flow
throughput in steps of 1000 Flows/s from 1000 Flows/s to
30 000 Flows/s.

The results of this experiment are shown in Figures 8
and 9 for the SFR+500x6 trace and the PROXY+500x35 trace,
respectively. Both plots show the average of ten runs. For
better readability, 95 % confidence intervals are only plotted
if above 2 %. With the SFR+500x6 trace, FIXIDS can cope with
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Figure 9. Flow throughput performance of FIXIDS analyzing the
PROXY+500x35 trace (average of ten runs)

14 000 Flows/s before starting to drop data. As soon as Flows
are dropped, the events contained in these Flows can not
be detected anymore, thus, also the percentage of detected
events starts dropping.

With the PROXY+500x35 trace, FIXIDS starts dropping
Flows a little earlier; at around 11 000 Flows/s we have a
significant rise in Flow drops. At the same time also the
detected event percentage drops significantly, but in a much
more dramatic way. The reason for this is that a few Flows
account for many events (because they also trigger many
false positives). When taking a closer look, these Flows are
the ones that are dropped first, and, thus, the percentage of
detected events drops faster than the percentage of dropped
Flows.

The difference in the throughput rate between the two
traces is due to the difference in the HTTP traffic. The vast
majority of rules uses as the first pattern to look for a “GET”
in the HTTP request. If this pattern is found, FIXIDS will
carry on and search for the next pattern. In many cases a
more complex Perl Compatible Regular Expressions (PCRE)
pattern check follows. In the PROXY+500x35 trace, the ratio
between HTTP GET requests and other HTTP requests is
31 : 1, while with the SFR+500x6 trace this ratio is 7 : 3.
This means that FIXIDS uses more PCRE pattern checks for
the PROXY+500x35 trace than the SFR+500x6 trace because
FIXIDS can continue with the next Flow if the first “GET”
pattern does not match.

6.2 Third Party Flow Exporter Experiments

In the second experiment, we aim to assess how FIXIDS
performs when receiving IPFIX Flows from a third party
device. This will typically happen in a real environment
where the IPFIX Flows are coming from an already in place
Flow exporting device like a switch. The general experiment
setup is the one described in Figure 3. Now, the NIDS under
test are depicted in Figures 10 and 11.

We use the Nprobe Flow exporter to aggregate packets
to IPFIX Flows before analyzing them with FIXIDS. We then
compare the outcome of the experiment to the network
throughput of Snort receiving the same traffic as packets
from the switch. For both, FIXIDS and Snort, we apply all
5540 HTTP rules. Because only HTTP rules are applied to the
traffic we also filter the traffic in front of the corresponding
NIDS (by port) to only contain HTTP traffic.

Workstation 2

1 Gbit/s

Workstation 3

2 x
FIXIDS

NIC 1
6 x

Nprobe
NIC 1 NIC 2

IPFIX FlowsPackets

10 Gbit/s

Figure 10. NIDS under test: 6 Nprobe instances aggregate the incoming
packets to IPFIX Flows and send the flows to 2 FIXIDS instances

Workstation 2

SnortNIC 1
Packets

10 Gbit/s

Figure 11. NIDS under test: Snort directly analyzes the incoming packets
from the switch

An advantage of Nprobe is the capability to cluster
multiple Nprobe instances on one NIC (using the –cluster-id
switch). This allows to distribute the CPU heavy task of
aggregating packets to IPFIX Flows to multiple cores. We
made use of this and clustered six Nprobe instances. One
Nprobe instance uses two cores, using six Nprobe instances
proofed to guarantee full usage of our 12 hyperthreaded
cores. Incoming packets are equally distributed according to
their IP address and port among all instances of an Nprobe
cluster.

We use the TRex stateful traffic generator on Worksta-
tion 1 to generate 5 min of SFR traffic including 100 random
attacks per second. The attacks are randomly chosen from
the set of attacks used in Section 5. The traffic generated by
TRex on NICs 1 and 2 is routed through the Cisco switch.
For the two following experiments, we configured the CPS
multiplier of TRex to replay the traffic at a throughput of
0.5 Gbit/s up to 9.5 Gbit/s in steps of 0.5 Gbit/s. Please note
that the throughput speed is measured at the TRex machine
generating the traffic, both NIDS under test only analyzed
the HTTP part of this traffic.

In the first experiment, our NIDS under test consists of
six clustered Nprobe instances on Workstation 2 aggregating
the incoming packets to IPFIX Flows including the necessary
HTTP IE fields (cf. Figure 10). The resulting IPFIX Flows are
sent via a 1 Gbit/s link to Workstation 3, where two FIXIDS
instances were listening on different ports for incoming IPFIX
Flows. Please note that the line rate of the 1 Gbit/s link
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Figure 12. Event detection rate of Snort and FIXIDS analyzing the
packets/IPFIX Flows of 5 min of SFR traffic including 100 events per
second (average of ten runs)
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used to transport IPFIX Flows from the Flow Exporter to
the machine running FIXIDS was never fully used in our
experiments. Each FIXIDS instance uses four cores for four
pattern matching threads. Each of the three instances of
Nprobe sends its IPFIX Flows to one instance of FIXIDS on
Workstation 3. The results are shown in Figure 12, averaged
over ten runs. Again, 95 % confidence intervals are only
plotted if they are above 2 %. We repeated the experiment to
compare the throughput of FIXIDS with the throughput of
Snort. In this case, the NIDS under test is Snort, which was
configured to analyze the incoming traffic on Workstation 2
and trigger an event if one of the rules matches.

Looking at the results in Figure 12, we see that Snort
detects all events up to a data rate of 2.5 Gbit/s. FIXIDS on
the other hand can cope with the highest rate of 9.5 Gbit/s
without loosing a significant number of events. This is more
than four times faster then Snort. One instance of FIXIDS
had to cope with a maximum Flow rate of 11 000 Flows/s
at 9.5 Gbit/s. This is still far below the drop rate for similar
traffic from the basic throughput experiments in Section 6.1.

6.3 Realistic Application Scenario
In this experiment, we want to show how FIXIDS can be
deployed in an existing IT security setup to reduce the load
on a pre-deployed Snort NIDS. In contrast to the previous
experiments, the goal of the measurements is not to assess
the performance of FIXIDS alone, but to measure the network
throughput increase of Snort, when FIXIDS is added to the
scenario. The scenario is sketched in Figure 13. As a baseline
(first experiment run), Snort receives all data traffic of interest
from a switch and analyzes it. In this experiment, we apply
all 5540 HTTP rules that are supported by FIXIDS plus 5714
non-HTTP rules from the sources described in Section 4.6. In
total, this rule-set consists of 11254 rules. Again, we use TRex

to generate realistic traffic using the SFR traffic template. We
configured the CPS multiplier of TRex to replay the traffic
at a throughput of 0.5 Gbit/s up to 9.5 Gbit/s in steps of
0.5 Gbit/s. This traffic does not contain any attacks.

In our second experiment run we use FIXIDS to reduce
the load on Snort. First, we remove all 5540 HTTP related
rules from the Snort configuration and set up FIXIDS for the
analysis for these rules. Now Snort has to apply only the 5714
non-HTTP rules. This implies that we can split the traffic and
make Snort analyze non-HTTP traffic while FIXIDS analyzes
all HTTP traffic. We filter the traffic by ports, using all ports
that Snort defines as HTTP ports in its standard configuration.
The difference in the switch configuration is that now the
packets are copied to two mirroring ports, one linked to Snort
and one linked to FIXIDS. The FIXIDS configuration is the
same as in Section 6.2, using six Nprobe instances as Flow
exporter and two FIXIDS instances on a second machine.

In our first baseline experiment run, we assess the
network throughput of Snort analyzing all traffic with all
11254 rules. The results (average of ten experiment runs) are
shown in Figure 14. The 95 % confidence intervals were
always below 2 %, so we do not show them for better
readability. The solid line shows that Snort can cope with
about 0.5 Gbit/s of traffic and starts dropping packets at
higher data rates. The reason that Snort can handle less
network throughput than in earlier experiments is because
of the higher number of rules it has to apply during the
analysis.

The dashed line in Figure 14 shows the dropped packets
by Snort for this second experiment. Now Snort can cope
with 1.5 Gbit/s, meaning that with the help of FIXIDS the
network throughput without drops of Snort has tripled. In
theory, the drop rate of FIXIDS has to be added to the drop
rate of Snort. However, in this case, the load on FIXIDS is so
low that no additional drops occur. A look at the maximum
Flow rate shows that at 9.5 Gbit/s the rate is at 8400 Flows/s
per FIXIDS instance and, thus, far below the maximum Flow
throughput. This also means that more rules could be added
to FIXIDS without causing more drops.

7 CONCLUSION

We presented the improved version of the IPFIX-based
Signature-based Intrusion Detection System (FIXIDS). FIXIDS
provides precise event detection in high-speed networks
by using Internet Protocol Flow Information Export (IPFIX)
HTTP Flows for intrusion detection. It is the first signature-
based Network Intrusion Detection System (NIDS) that
completely operates on Flow information using the novel
HTTP IPFIX Information Elements (IEs). Besides custom
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attack signatures, FIXIDS supports using signatures from the
most widely used NIDS Snort. This ensures that thousands of
community validated and up-to-date signatures are available
for FIXIDS. By using Flows the amount of data to be analyzed
is much less compared to traditional Deep Packet Inspection
(DPI)-based NIDS.

In our evaluation, we have shown that FIXIDS has the
same detection accuracy as Snort. On commodity hard-
ware, FIXIDS can cope with up to 14 000 Flows/s without
missing any event. Analyzing the same network traffic as
Snort, FIXIDS can handle more than four times the network
throughput of Snort while retaining the same detection
rate. We also conducted an experiment where FIXIDS was
deployed in a realistic scenario to mitigate high network
loads for Snort. In this case we were able to triple the network
throughput capability of Snort from 0.5 Gbit/s to 1.5 Gbit/s,
while identifying HTTP based attacks even at 9.5 Gbit/s
without drops on FIXIDS.
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