Poster: Towards Open Wireless Time-sensitive
Networking in Linux

Doganalp Ergeng
ergenc@ccs-labs.org
EECS, TU Berlin
Berlin, Germany

Ahmed Hasan Ansari
ansari@ccs-labs.org
EECS, TU Berlin
Berlin, Germany

Abstract

The integration of IEEE 802.1 Time-sensitive Networking
(TSN) with wireless technologies promises to support real-
time applications over hybrid networks. Although TSN over
Ethernet is well established, extending its capabilities to
WiFi remains a technical challenge due to hardware and
protocol differences. In this work, we integrate a core TSN
scheduling mechanism, IEEE 802.1Qbv Time-aware Shaper
(TAS), with WiFi interfaces in the Linux kernel. Our approach
enables scheduling for mixed-criticality traffic over wired
and wireless links using standard Linux tools. We provide
our implementation and evaluation scenarios as open source
to support further research in TSN-WiFi integration.

CCS Concepts

« Networks — Link-layer protocols.

Keywords
WiFi, TSN, Linux, Time-aware Shaper, TAPRIO

ACM Reference Format:

Doganalp Ergeng, Ahmed Abdulfattah, Ahmed Hasan Ansari, and Falko
Dressler. 2025. Poster: Towards Open Wireless Time-sensitive Net-
working in Linux. In The 31st Annual International Conference on
Mobile Computing and Networking (ACM MOBICOM °25), November
4-8, 2025, Hong Kong, China. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3680207.3765673

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ACM MOBICOM °25, Hong Kong, China

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1129-9/2025/11
https://doi.org/10.1145/3680207.3765673

Ahmed Abdulfattah
a.abdulfattah@tu-berlin.de
EECS, TU Berlin
Berlin, Germany

Falko Dressler

dressler@ccs-labs.org
EECS, TU Berlin
Berlin, Germany

1 Introduction

Mission-critical systems have become highly heterogeneous
interconnecting several stationary and mobile components.
This necessitates the design of hybrid networks combin-
ing wired and wireless technologies to fulfill end-to-end
quality of service (QoS) and reliability requirements for
mixed-criticality traffic. On the wired side, IEEE 802.1 Time-
sensitive Networking (TSN) is now the defacto standard
to enable time-sensitive communication over Ethernet net-
works. On the wireless side, the current generation of WiFi
introduces new features for reliable and real-time wireless
communication. Although there is a growing research effort
to enable cooperation between TSN and WiFi [1, 2], their
coexistence introduces significant integration challenges due
to hardware and protocol differences. In parallel, recent open-
source projects provide new interfaces between TSN pro-
tocols and Linux systems to simplify implementation and
configuration [3, 4]. Nevertheless, integrating TSN protocols
over WiFi requires substantial engineering effort and adap-
tation of TSN configuration routines to the wireless domain.
Currently, the available tooling for this is highly limited.

Our main contribution is the integration of the prominent
TSN scheduling protocol, IEEE 802.1Qbv Time-aware Shaper
(TAS), with WiFi interfaces in Linux. TAS enables scheduling
for mixed-criticality traffic, and is already supported via
the Linux Time-aware Priority Scheduler (TAPRIO) utility.!
Since TAPRIO is currently only configurable on Ethernet
interfaces, we extend the Linux kernel to enable shaping
of egress traffic over WiFi interfaces. This allows: (i) the
design of hybrid TSN-WiFi networks using standard Linux
tooling and (ii) unified traffic scheduling managed by a single
TSN controller across wired and wireless segments. We also
release our implementation and several evaluation scenarios
in a Linux-based network emulator as open source.?

TSN for Linux, https://tsn.readthedocs.io/qdiscs.html
%The source code will be available at https://github.com/tkn-tub.

https://orcid.org/0000-0003-4640-031X
https://orcid.org/0009-0008-1169-8578
https://orcid.org/0000-0002-9273-0793
https://orcid.org/0000-0002-1989-1750
https://doi.org/10.1145/3680207.3765673
https://doi.org/10.1145/3680207.3765673
https://tsn.readthedocs.io/qdiscs.html
https://github.com/tkn-tub

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Switching Fabric (Ingress)

Qo a1 a7
-
3 3 S
£ § |oo 5
S S & GeL
«Q

Tx. algo. Tx. algo. tp: 00110011
»| t;:01000001

Tx. algo.
: t,: 11000000
Gatel - - - | Gate7 |!

Switching Fabric (Egress)

Figure 1: Overview of IEEE 802.1Qbv TAS.

2 Preliminaries

IEEE 802.1Qbv Time-aware Shaper: TAS schedules mixed-
criticality Ethernet frames per their priority into time slots
(to, t1..t;) of a schedule cycle. It models multiple priority
queues with transmission gates controlled by a gate con-
trol list (GCL). For each time slot, the GCL can open multiple
transmission gates according to its configuration. For exam-
ple, in Figure 1, GCL is configured at the window ¢; to allow
only TAS gate 0 and 7 to be open (green) and the other is
closed (red). Per queue, a transmission selection algorithm
decides on the frames to be forwarded first.

Linux Time-aware Priority Scheduler: TAPRIO is one of
the queuing disciplines (qdiscs) in Linux to schedule mixed-
criticality Ethernet traffic based on time and priority, directly
corresponding with TAS. It processes socket buffers (skb),
which is the fundamental data structure for network packets
within the kernel. Each skb carries a priority field, which
can be set by classifiers, and is used by the kernel’s qdiscs
for traffic prioritization and scheduling.

The TAPRIO command below sets up four traffic classes
(num_tc) on the 10 interface and maps skb priorities 0-3 to
traffic classes 0-3 (map). Each class is assigned one transmis-
sion queue (queues). The schedule (sched-entry) defines
two slots of 5 ms: the first allows transmission from classes
0 and 1 (0x@3), and the second from classes 0 and 2 (0x05).

tc qdisc replace dev if@ parent root handle 10 taprio
num_tc 4 map @123 00000
queues 1@ 1@1 1@2 1@3 base-time 1753168134
sched-entry S 0x03 5000000
sched-entry S 0x05 5000000
clockid CLOCK_TAI

3 Design

Originally, TAPRIO only supports Ethernet interfaces with
multiple hardware queues. Enabling it on WiFi necessitates
modifications on several modules in the Linux kernel (see
Figure 2). In this section, we highlight the necessary changes
and describe the transmission process as following:

(1) The application packets (e.g., TCP or UDP) are encap-
sulated in skb and passed to TAPRIO.

Ergeng et al.

l o Setting skb priorities

TAPRIO { tc (net/sched/sch_taprio.c)
(sch_taprio)

l e Queueing and scheduling
WME (net/mac80211/wme.c)
o Queue matching
TX (net/mac80211/tx.c)

Interface (net/mac80211/iface.c)

I o Interface initialization
WiFi Driver |

MAC
(mac80211)

oriver { |

Figure 2: TAPRIO-enabled WiFi stack in Linux kernel.

(2) TAPRIO pushes them into the priority queues accord-
ing to their priority matching, and forwards them to
MAC in their scheduled slots.

(3) On the kernel-side, packets are further matched with
WiFi queues and passed to the transmission module.

(4) They are passed on to the driver for transmission.

MAC Modifications: mac80211 provides implements WiFi
MAC in Linux kernel. iface. c implements the creation of
802.11 interfaces. Normally, the recent kernels do not expose
the hardware queues of WiFi equipment to the higher-level
traffic control utilities but leaves the autonomy to the WiFi
equipment. Instead, we modified it to allocate multiple trans-
mission queues at the MAC level, accessible by TAPRIO for
scheduling. The number of allocated queues are limited with
the available hardware queues in the WiFi interface.
However, this modification still necessitates one-to-one
mapping between scheduler queues and those in the WiFi
interface. We further modified wme. c and tx. c to bypass the
existing WiFi QoS management and consider queue map-
ping enforced by TAPRIO (i.e., skb->queue_mapping) in-
stead. Here, WME is responsible for QoS management, specifi-
cally matching between packet priorities and WiFi access cat-
egories (ACs). TX performs transmission-related operations
before the frames are handed over the WiFi driver. In both
modules, we utilize the variable (skb->tc_skip_classify)
set in TAPRIO module and described in the next section.

Scheduler Modifications: sch_taprio implements TAP-
RIO. We modified it to mark scheduled packets by setting
skb->tc_skip_classify to 1. Normally, this flag is used by
intermediate functional block (IFB) devices to avoid further
QoS management when the packets are already processed.
We repurpose this to override WiFi QoS management at WME.

Another change is in budgeting. TAPRIO calculates a bud-
get to determine how many frames can be sent during a
schedule time slot, based on the gate opening duration and
bitrate of the network interface. Although TAPRIO can de-
tect the speed of Ethernet interfaces via kernel functions, the
specifications of WiFi interfaces are not accessible. Therefore,
we set the budget based on the effective bitrate of 35 Mbit/s
for 802.11g as used in our experiments.

Poster: Towards Open Wireless Time-sensitive Networking in Linux

il—lii‘"" 1 (High prio))
DYGEN

. 4
L2 .
Stream 2 (Low prio.)

Figure 3: Experiment topology.

Note that effective use of the scheduler requires disabling
the default contention-based channel access in WiFi. This
can be achieved by setting backoff counters to minimum
while retaining channel sensing to avoid collisions.

4 FEvaluation

We evaluate our implementation in the Linux-based network
emulator Mininet-WiFi.? It creates virtual Ethernet and WiFi
interfaces and emulates wireless medium in Linux. It uses
mac80211_hwsimkernel module to emulate WiFi drivers and
does not perform channel contention. Therefore, transmis-
sions are performed based on TAPRIO scheduling.

For the experiments, we consider the topology in Figure 3.
For wireless interfaces (i3 and i4), we set 802.11g parameters
with 54 Mbit/s bitrate. For traffic model, two wired Ether-
net hosts (H; and H;) send streams at the rate of 2 Mbit/s
and 5 Mbit/s to the station (STA), respectively. They are dis-
tinguished with different VLAN PCP values. To shape the
transmission of these streams, we configure egress is inter-
face of the access point (AP) with a 10 ms schedule cycle
divided into two 5 ms time slots for high and low priority.

Figure 4 shows the frame transmission timeline on i5 (of
AP) with and without TAPRIO configuration. The timelines
are further divided into 5ms time slots for high (Stream 1,
blue) and low (Stream 2, red) priority. As Figure 4a shows,
when AP is not scheduled with TAPRIO, the frames are trans-
mitted without a certain pattern and sent at the transmission
rate of i5. In contrast, in Figure 4b, the TAPRIO-enabled AP
transmits high- and low-criticality frames at their designated
time slots for every schedule cycle.

Figure 5a shows the rolling average (lines) and 95" per-
centile (areas) of end-to-end latency between H;/H, and STA
over the consecutive packets. While most packets are deliv-
ered under 10 ms aligned with the schedule cycle, there are
still several latency peaks due to two main reasons. Firstly,
talkers cannot send packets with perfectly steady intervals
and this causes some frames to miss their transmission slots
at AP. Secondly, the stochastic modeling of the wireless link
between AP and STA induces additional delay.

To eliminate the impact of the talker-induced irregular-
ities, we configure i; and i, interfaces of the talkers with
TAPRIO. This enables H; and H; to send (a burst of) packets
every 5ms, aligning with the configuration at AP. As seen in

sth

3Mininet-WiFi, https://mininet-wifi.github.io/

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

]]]]]]]]]]
]]]]]]]]]]
Stream 2 |, ottt okl 522 2 Ll Ll |l Ll e
(Low prio.) | | | | | (Low prio.) | | | | |
P P
I I I I I I I I I I
]]]]]]]]]]
]]]]]]]]]]
Stream 1 | | | | Stream 1 | | | | |
(ngh prio_) .}. .} L] ‘+ L] }. .} o e (ngh prio_) -} L] } o } - } ..} L]
]]]]]]]]]]
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (milliseconds) Time (milliseconds)
(a) Without TAPRIO (b) With TAPRIO

Figure 4: Transmission timeline on AP.

—— Stream 1
== Stream 2

175 —— Stream 1 175
== Stream 2

) 20 40 60 80 100) 20 40 60 80 100

Packet index Packet index

(a) TAPRIO only at AP (b) TAPRIO at AP and talkers

Figure 5: End-to-end latency.

Figure 5b, all transmissions are achieved under 10 ms latency,
still with a certain jitter due to wireless link characteristics.

5 Conclusion

In this work, we integrate the Linux queuing discipline
TAPRIO with WiFi to enable time-sensitive transmission
of mixed-criticality traffic over wireless links. This facilitates
unified scheduling in hybrid TSN-WiFi networks using open-
source Linux tools. Our evaluation demonstrates improved
latency predictability in an emulation environment. Future
work includes real-world deployment on Linux-based WiFi
devices and developing a wireless-aware scheduler.

Acknowledgments

This work was supported by the OWTSN project as a part
of TARGET-X program under grant number 101096614.

References

[1] Toni Adame, Marc Carrascosa-Zamacois, and Boris Bellalta. 2021. TSN
in IEEE 802.11be: On the Way to Low-Latency WiFi 7. MDPI Sensors 21,
15 (July 2021), 4954. https://doi.org/10.3390/s21154954

Dave Cavalcanti, Carlos Cordeiro, Malcolm Smith, and Alon Regev.
2022. WiFi TSN: Enabling Deterministic Wireless Connectivity over
802.11. IEEE Communications Standards Magazine 6, 4 (Dec. 2022), 22-29.
https://doi.org/10.1109/MCOMSTD.0002.2200039

Wei Quan, Wenwen Fu, Jinli Yan, and Zhigang Sun. 2020. OpenTSN:
An Open-source Project for Time-sensitive Networking System De-
velopment. CCF Transactions on Networking 3 (2020), 51-65. https:
//doi.org/10.1007/s42045-020-00029-8

Filip Rezabek, Marcin Bosk, Georg Carle, and Jorg Ott. 2023. TSN Ex-
periments Using COTS Hardware and Open-Source Solutions: Lessons
Learned. In IEEE PerCom 2023, Workshops. IEEE, Atlanta, GA, 466-471.
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312

[2

—

[3

=

[4

=

https://mininet-wifi.github.io/
https://doi.org/10.3390/s21154954
https://doi.org/10.1109/MCOMSTD.0002.2200039
https://doi.org/10.1007/s42045-020-00029-8
https://doi.org/10.1007/s42045-020-00029-8
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312

	Abstract
	1 Introduction
	2 Preliminaries
	3 Design
	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

