
Foundations and Trends® in Networking

Resilience in Edge Computing:
Challenges and Concepts

Suggested Citation: Doğanalp Ergenç, Agon Memedi, Mathias Fischer and Falko Dressler
(2025), “Resilience in Edge Computing: Challenges and Concepts”, Foundations and
Trends® in Networking: Vol. 14, No. 4, pp 254–340. DOI: 10.1561/1300000074.

Doğanalp Ergenç
TU Berlin

doganalp.ergenc@tu-berlin.de

Agon Memedi
TU Berlin

agon.memedi@tu-berlin.de

Mathias Fischer
University of Hamburg

mathias.fischer@uni-hamburg.de

Falko Dressler
TU Berlin

falko.dressler@tu-berlin.de

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft



Contents

1 Introduction 256

2 Related Work 260
2.1 Resilience in Cloud-based Distributed Computing . . . . . 261
2.2 Security in Edge Computing . . . . . . . . . . . . . . . . . 262
2.3 Resilience in Edge Computing: The Need for a Holistic

View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

3 System Model and Reference Architecture 266
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 267
3.2 ETSI Reference Model . . . . . . . . . . . . . . . . . . . . 272

4 Resilience Challenges and Objectives 276
4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 277
4.2 Objectives and Techniques . . . . . . . . . . . . . . . . . 281

5 Resilience Concepts and Measures 286
5.1 Adaptive Redundancy and Fault Tolerance . . . . . . . . . 289
5.2 Real-time Monitoring and Anomaly Detection . . . . . . . 293
5.3 Joint Computation and Connectivity Optimization . . . . . 295
5.4 Multi-level Resource Allocation and Coordination . . . . . 297
5.5 Middlewares for Computation and Communication . . . . . 299



5.6 Bilateral Reputation Assessment . . . . . . . . . . . . . . 302
5.7 Cross-domain Federation and Access Control . . . . . . . . 305
5.8 Privacy-preserving Task Offloading and Management . . . 308

6 Discussion and Future Directions 312

7 Conclusion 323

References 325



Resilience in Edge Computing:
Challenges and Concepts
Doğanalp Ergenç1, Agon Memedi1, Mathias Fischer2 and
Falko Dressler1

1Technical University of Berlin, Germany;
doganalp.ergenc@tu-berlin.de, agon.memedi@tu-berlin.de,
falko.dressler@tu-berlin.de
2University of Hamburg, Germany; mathias.fischer@uni-hamburg.de

ABSTRACT
Edge computing has evolved significantly from early research
ideas to modern 5G mobile and multi-access edge comput-
ing (MEC). In many 6G-related projects, we see a clear
trend toward virtualizing computing resources at the edge.
Motivated by the cloud-edge-continuum that is the basis
for next-generation metaverse applications, and the need
for low-latency solutions, distributed computing is now re-
ceiving even more attention. A final hurdle for the wide use
of (virtualized) edge computing for mission-critical applica-
tions is resilience. In this context, resilience is the ability of
modern communication and computation systems to deal
with unknown and unforeseen events, both from internal
and external sources. Thus, making MEC resilient to out-
ages (e.g., system failures or energy outages due to natural
disasters), security incidents (e.g., the use of intelligent jam-
ming or malicious users), and overall challenging conditions
(e.g., high mobility or impaired connectivity) is of the high-
est importance. In this monograph, we review the current
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state-of-the-art of resilience in mobile edge computing. We
explore MEC-specific challenges and resilience objectives,
and discuss selected resilience measures. We trust that this
monograph will be an invaluable resource for beginners and
experts in the field as a compound resource on resilience in
MEC.



1
Introduction

Computing paradigms have continuously evolved to address the growing
demands of modern applications. Initially, cloud computing emerged as
a transformative approach, enabling the offloading of computationally
intensive tasks to centralized and virtualized infrastructures. These
infrastructures provide resource scalability and flexibility, and thus can
adapt to the diverse applications with varying requirements. However,
the centralized nature of cloud computing resources induce additional
communication delay and cause network overhead. This is especially
problematic for time-sensitive and mission-critical applications. Even-
tually, edge computing is introduced as a complementary paradigm,
bringing computational resources closer to end-users and devices [42].
This proximity benefits time-critical applications by reducing delays
and improving responsiveness. It also offers better privacy by processing
sensitive data locally on devices or nearby servers, reducing the risk of
exposure during transmission to centralized cloud systems.

As a natural progression, multi-access edge computing (MEC) has
emerged to address the unique requirements of highly dynamic envi-
ronments. Unlike traditional edge computing, MEC is tailored to the
mobility and connectivity constraints of devices that cannot rely on
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consistent connection with centralized entities [76]. For instance, modern
connected vehicles must process vast amounts of sensory data for tasks
like obstacle detection, navigation, and collision avoidance. MEC can
offload these computationally intensive tasks to nearby edge servers, re-
ducing the processing burden on individual vehicles and enabling faster
response times [21], [54]. Moreover, internet of things (IoT) applications
in smart cities, healthcare, and industrial automation, all orchestrated
with mobile sensors, require real-time monitoring and analysis, and thus
necessitate MEC solutions close to the data sources [43], [47], [58], [84].
Immersive applications like the Metaverse, using virtual and extended
reality (VR/XR) technologies, take place in large-scale events, training
simulations, digital twins, and collaborative mobile environments [48],
[100], [102]. These applications generate massive amounts of data, re-
quiring artificial intelligence (AI)-empowered processing at the edge due
to the limited computational capacity of user devices. These diverse
application requirements make it challenging to provision computational
resources dynamically, and they remain a persistent hurdle for MEC
systems.

Apart from the variety of MEC applications, the heterogeneity of
MEC resources is also rapidly increasing, adding further complexity to
MEC ecosystems. Initially, these resources were dedicated virtualized
servers managed centrally by edge or cloud controllers. However, ad-
vancements such as 5G-enabled computation at the network edge have
pushed these resources closer to applications, making them an integral
part of the communication infrastructure, such as 5G base stations [98].
The evolution has also introduced mobile entities, like connected vehi-
cles, which can act as both consumers and providers of computational
resources. This dual role introduces additional layers of complexity, as
computing resources are now not only heterogeneous but also mobile.
Emerging concepts like virtual edge computing (V-Edge) are further de-
centralizing computation by enabling ad-hoc resource aggregation from
diverse nodes like modern cars with advanced computational capabilities
[20]. Ensuring interoperability across this heterogeneous landscape is
an ongoing challenge.

In the light of this complexity, resilience has become a critical
concern for MEC systems [7], [83]. It can be defined as “the ability
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(of the network) to provide and maintain an acceptable level of service
in the face of various faults and challenges to normal operation” [85].
As an example, for critical applications, computational results must
be reliable and accurate despite potential failures in virtualized edge
resources, e.g., as a result of system overloads, operational errors, or
connectivity loss. Since the MEC ecosystem becomes more diverse, a
multitude of security threats can be found at different MEC actors and
components, such as (malicious) end hosts, (compromised) virtualized
environments, and communication infrastructure and protocols. Privacy
is another concern, particularly for offloaded tasks that involve sensitive
user or application data [15], [88]. As a result, resilience objectives
such as availability, reliability, security, and privacy must be carefully
considered in the design of MEC systems.

Given the inherent complexity of MEC systems and their diverse
resilience objectives, it is crucial to develop effective resilience mea-
sures. These must address potential faults and attack vectors while also
overcoming the unique challenges to which MEC systems are exposed.
Accordingly, this monograph provides a systematic analysis of potential
resilience measures designed to fulfill the selected resilience objectives.
Our contributions can be summarized as follows:

• We first present an overview of a heterogeneous MEC system
model, analyzing key characteristics of different components within
the MEC ecosystem. We also associate this model with an existing
reference MEC architecture to align our analysis with the literature
and standardization efforts.

• Second, we identify the primary challenges that limit and also
necessitate the development of resilience measures. We also present
the main resilience objectives (dependability and trustworthiness)
and techniques (proactive and reactive) that are aimed at and
employed in common by several resilience measures.

• We introduce advanced resilience concepts, linking them to MEC
components and addressing identified challenges. This analysis is
based on a literature review, each article providing essential build-
ing blocks for implementing comprehensive resilience measures.
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Following these contributions, the methodological overview of our
analysis is also shown in Figure 1.1. The rest of the work is organized
as follows: Section 2 reviews related work that addresses resilience
in the context of MEC. Section 3 introduces a system model for a
comprehensive MEC ecosystem, encompassing various types of resources,
users, and interfaces. Section 4 discusses the challenges specific to MEC
that influence the design of resilient systems and highlights key resilience
objectives considered in our analysis. Section 5 categorizes our resilience
concepts by analyzing several selected studies from the literature and
underlining their relevance with the presented resilience challenges and
objectives. Section 6 outlines potential future directions, and Section 7
concludes the monograph.

Resilience Concepts
(Section 5)

Challenges 
(Section 4.1)

Resilience Objectives (Section 4.2.1)

Dependability

Availability

Reliability

Trustworthiness

Security

Trust

Privacy

MEC System
(Section 3)

Resources (R)

Users (U)

Interfaces (I)

Resilience Techniques (Section 4.2.2)

Proactive Reactive

Figure 1.1: Overview of our analysis of challenges, objectives, and concepts of
resilience in MEC.



2
Related Work

In recent years, mobile edge computing (MEC), and distributed comput-
ing paradigms more generally, have attracted significant attention from
the research community due to their potential to meet the low-latency,
scalability, and computational demands of emerging applications with
stringent resource requirements. Researchers have extensively explored
critical aspects of MEC, such as efficient resource allocation and utiliza-
tion [115], energy efficiency [38], and task scheduling [58]. Among these,
resilience has emerged as an essential topic, addressing the need for
robust operation under dynamic environments, hardware and software
failures, and security threats. Multiple surveys and review articles have
investigated resilience alongside other topics, each employing varying
scopes, methodologies, and focuses.

In the literature, resilience and security in edge computing are often
discussed in surveys with a broader and holistic framework on distributed
computing, treating edge computing as a specific case of distributed
computing paradigms [61], [73], [83]. In other cases, resilience and
security are briefly addressed in surveys that discuss edge computing in
general, including its architecture, resource and energy efficiency, latency
optimization, etc., but not specifically focusing on resilience and security

260
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[44], [63], [101]. Additionally, there are works that focus exclusively
on edge computing environments, addressing threats, challenges, and
mechanisms unique to the edge context [4], [23], [76], [93], [107], [110].

In the following, we provide a summary of related work on resilience
in edge computing – focusing on selected survey papers. We divide our
related work study in two categories: First, presenting relevant surveys
on resilience and security in cloud-based distributed computing, and
secondly, presenting surveys with a stronger or resilience in the specific
context of edge computing. Although this overview is not exhaustive, it
represents a selected subset of studies that complement our work while
also highlighting their respective unique contributions.

2.1 Resilience in Cloud-based Distributed Computing

Works that adopt a holistic perspective on resilience across different
distributed computing paradigms treat edge computing as an extension
of the cloud architecture, often together with fog computing. These
surveys explore the shared resilience issues inherent in distributed
systems while also addressing the unique challenges each paradigm
presents. By examining these aspects across a range of paradigms, they
provide a broader understanding of the threats and mechanisms needed
to ensure the resilience and security of distributed infrastructures.

Shirazi et al. [83] provide a comprehensive survey that focuses on
resilience in edge and fog computing, as two paradigms that extend tra-
ditional cloud computing. Using the ETSI MEC reference architecture
(see Section 3.2) as a basis for edge computing, they identify distinct
security and resilience requirements for both edge and fog computing.
Their work emphasizes the need for tailored security mechanisms to
ensure resilience in these decentralized environments. The paper also in-
troduces resilience strategies such as the D2R2+DR framework (Defend,
Detect, Remediate, Recover, Diagnose, and Refine), which is mapped
to the ETSI MEC architecture to improve reliability.

While the primary focus of [83] is on resilience, Roman et al. [73]
put a strong emphasis on security, still following a holistic model of
different computing paradigms that bring cloud-like capabilities to the
network edge (fog computing, mobile edge computing (MEC), and mo-
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bile cloud computing). This survey offers a comprehensive analysis of
security threats, challenges, and corresponding security mechanisms
across various edge computing paradigms. It also examines the differ-
ences in security requirements for different edge paradigms, taking into
account their unique characteristics, and identifies shared vulnerabilities
that could be addressed through cross-paradigm solutions. Roman et
al. [73] also discuss a range of security mechanisms applicable across
edge paradigms, as well as the integration of solutions from other fields
like cloud computing and grid computing.

Maciel et al. [61] integrate multiple paradigms, analyzing edge, fog,
and cloud computing. Unlike broader surveys that focus more generally
on security and resilience, this work specializes in reliability and avail-
ability metrics, with a particular focus on addressing delay-sensitive
and context-aware challenges in IoT environments. It emphasizes the
need for hierarchical edge–fog–cloud architecture to improve system
performance and dependability for delay-sensitive tasks.

The articles discussed so far offer a general overview of resilience
and security in cloud-based distributed computing, often examining
these aspects in relation to architectural distinctions between cloud, fog,
and edge computing. However, their broader scope limits their ability
to provide a detailed overview of resilience concepts and measures
specifically tailored to MEC.

2.2 Security in Edge Computing

Compared to surveys that address holistic security architectures span-
ning the different cloud computing layers, several studies specifically
target the unique challenges and requirements of edge computing en-
vironments. However, despite its critical importance, resilience as a
concept within the MEC context is often overlooked. Instead, many sur-
veys focus on areas such as energy efficiency [38], resource optimization
through task offloading [58], [115], latency minimization [40], [46], and
security and privacy, often narrowing their scope to specific use cases.
For example, some studies investigate security and privacy mechanisms
tailored to edge-assisted IoT systems [4], [23], while others emphasize
the role of AI in mitigating security threats in MEC environments [93].



2.2. Security in Edge Computing 263

Xiao et al. [107] present a survey on security threats and corre-
sponding defense mechanisms in edge computing, focusing on four
practically relevant attack types: distributed denial-of-service (DDoS),
side-channel, malware injection, and authentication and authorization
attacks. By comparing edge computing security challenges with those in
cloud computing, the survey emphasizes how decentralization, limited
resources, and multi-actor environments worsen security in edge systems.
The authors identify root causes such as design flaws, misconfigura-
tions, and inadequate access control, while proposing detection- and
prevention-based defense mechanisms.

Zeyu et al. [110] present a detailed review of edge computing security,
focusing on research efforts in five key domains: access control, key man-
agement, privacy protection, attack mitigation, and anomaly detection.
The survey identifies critical security challenges that arise from the
decentralized and resource-constrained nature of edge computing, the
integration of emerging technologies, and the increasing demands for
privacy. Each research area is thoroughly reviewed, highlighting current
advancements and limitations in addressing these challenges. The paper
emphasizes the complexities of managing decentralized access, ensuring
robust privacy mechanisms, mitigating sophisticated cyber-attacks, and
developing effective anomaly detection techniques. The survey suggests
future research should focus on scalable and adaptive security solutions,
interdisciplinary approaches, and holistic frameworks to enhance edge
computing resilience and privacy protection.

Alwarafy et al. [4] conduct a survey on security and privacy in
edge computing-assisted IoT systems (EC-IoT), emphasizing the unique
vulnerabilities and threats in these environments. The paper provides a
detailed classification of attacks based on type, security objectives, and
network layers, offering an in-depth exploration of specific threats and
countermeasures for EC-IoT integration. Compared to broader surveys
on edge computing, this work specializes in IoT contexts, highlighting
the interplay between IoT-specific challenges and EC capabilities. The
survey also identifies open research questions and future directions to
enhance security and privacy of EC-IoT systems.

Wang et al. [93] present a comprehensive survey on security and
privacy in multi-access edge computing, focusing on using AI to ad-
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dress complex and evolving threats. Using the ETSI MEC reference
architecture as a framework, and extending it with software-defined
networking (SDN) and network functions virtualization (NFV), the
survey examines AI-driven solutions for specific security challenges. It
highlights the trade-offs between real-time communication demands
and robust security in time-sensitive MEC scenarios and outlines future
research opportunities emphasizing the potential of AI in securing MEC
environments. Although not a survey, the white paper by Sabella et al.
[75] provide a detailed overview of security challenges in MEC, focusing
exclusively on the ETSI MEC architecture emphasizing standardiza-
tion, regulation, and collaboration between stakeholders, which are less
prominent in other surveys that focus on technical attacks or specific
architectures.

The narrow focus of the aforementioned surveys on security is helpful
for understanding the unique security challenges, including attacks and
potential measures against them in the context of edge computing.
However, this omits a broader discussion on other resilience objectives,
such as dependability and trustworthiness.

2.3 Resilience in Edge Computing: The Need for a Holistic View

In the current body of literature, we have identified a noticeable gap
between surveys adopting a broad and holistic perspective on resilience
across various distributed computing paradigms and those focusing
specifically on security within edge computing environments. Therefore,
in this monograph, we address this gap in the literature by using the con-
cept of resilience to systematically describe open requirements, existing
solutions, and unresolved research challenges in resilient edge computing.

Unlike existing surveys and reviews that categorize approaches
based on specific resilience objectives, such as reliability or security, our
primary aim is to derive overarching resilience concepts and measures.
These include the general trends observed in the literature toward
designing robust and resilient MEC systems. By adopting this approach,
we aim to provide a more comprehensive view of the challenges and
solutions in the field, offering a clearer understanding of the broader
research landscape.
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Additionally, instead of comparing the state-of-the-art computing
paradigms – namely cloud, fog, and edge computing – an approach often
taken in other surveys, we focus explicitly on the unique characteristics
of MEC. These characteristics necessitate specialized resilience measures
or pose additional challenges in their development. This targeted focus
allows us to highlight these distinctive challenges and illustrate how the
proposed resilience strategies address them effectively.

Finally, rather than simplifying the system model to a standalone
MEC server interacting with remote virtualized servers and mobile
users, we conceptualize a more comprehensive MEC ecosystem. This
ecosystem accounts for the diverse resources, user types, and their
interactions. By doing so, we associate the proposed resilience measures
with specific MEC actors and components, thereby emphasizing their
relevance to distinct aspects of edge computing. This perspective enables
a more detailed analysis of resilience requirements and the practical
applicability of proposed solutions.



3
System Model and Reference Architecture

In this section, we present a comprehensive MEC system model that
emphasizes the heterogeneity of MEC resources, application and user
types, and the interfaces connecting MEC systems and users. The
diverse characteristics of these actors and components impose different
challenges for the design of MEC systems and also necessitate the
development of suitable resilience measures. While similar models have
been introduced and discussed under various paradigms such as cloudlets
and fog computing, we specifically frame these elements within the
context of the MEC ecosystem, focusing on key aspects that are directly
relevant to our resilience discussions in the following sections.

Additionally, we review the European Telecommunications Stan-
dards Institute (ETSI) reference MEC architecture,1 which is widely
regarded within the MEC community as a foundational framework
outlining the primary design components. Although it does not fully
capture the architectural complexity of a heterogeneous MEC ecosys-
tem, it provides a high-level abstraction of essential components and
interfaces. To align with existing efforts that adopt this reference model

1ETSI MEC Framework, https://www.etsi.org/deliver/etsi_gs/mec/001_099/
003/02.01.01_60/gs_mec003v020101p.pdf.
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as the basis for MEC design and analysis, we map the respective parts of
our system model to corresponding elements of the ETSI reference archi-
tecture. This alignment ensures consistency and enhances the relevance
of our discussions in the context of established frameworks.

3.1 System Model

A comprehensive system model is depicted in Figure 3.1, highlighting
several key actors and components in the MEC ecosystem that are most
relevant to the resilience discussions in the following sections.

I

I

II

I

I

Figure 3.1: System model of an heterogeneous MEC environment.

We categorize these actors and components into three classes: MEC
resources (R), users (U), and interfaces (I). MEC resources refer to the
core MEC systems with virtualized infrastructure that hosts virtual
machines (VMs) and containers and enables the execution of various
tasks and applications. The resources also include MEC controllers
and managers responsible for orchestrating and monitoring the systems
within and across different MEC providers. MEC users represent a
diverse set of applications with different resource and latency require-
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ments, and criticality. Finally, MEC interfaces encompass intra- and
inter-component connections that facilitate communication and interop-
erability between the components in the ecosystem. Table 3.1 provides a
summary of the types of MEC resources, users, and interfaces presented.

Table 3.1: Description of the main types of actors and components in an MEC
environment.

MEC Components Description

Resources
R1 Dedicated and stationary MEC systems at established com-

putation and data servers.
R2 Stationary MEC systems integrated to the communication

infrastructure.
R3 Ad-hoc and mobile MEC systems with opportunistic com-

putational resources.

Users
U1 Steady users with consistent and predictable requirements.
U2 Temporary and mobile users with changing application

demands.
U3 Highly mobile users with time-critical applications.

Interfaces
I1 Interfaces between MEC users and resources.
I2 Internal management interfaces between and within MEC

systems and controllers.
I3 Inter-host and inter-controller interfaces between different

MEC resources.

3.1.1 Resources

In our system model, we group different MEC resources in the following
hierarchy: dedicated cloud-edge resources (R1), edge resources integrated
to the communication infrastructure (R2), and ad-hoc or virtual edge
resources (R3).

Dedicated cloud-edge resources (R1) represent the cloud-edge
continuum, consisting of dedicated MEC systems [9], [24]. These re-
sources, often deployed at centralized or edge-specific facilities in the
form of server farms or computing clusters, provide the backbone for
many mobile edge applications. R1 resources ensure high availability
and scalability, making them suitable for large-scale applications. Their
centralized nature eases configuration and maintenance. However, their
physical distance from users may result in higher latency compared to
other resource types.
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Edge resources on communication infrastructure (R2) bring
MEC resources closer to the users by integrating them into the commu-
nication infrastructure, such as cellular base stations or small cell towers
[68]. As such, this is a logical extension of the cloud-edge continuum.
The proximity reduces latency and data forwarding overhead. However,
the physical accessibility of R2 resources introduces additional vulner-
abilities, as these infrastructure points are more exposed to physical
attacks or tampering compared to the isolated servers of R1. Besides,
typically, a large number of these resources are distributed in wide ar-
eas, which makes their management and orchestration more challenging.
Despite being less powerful than R1, R2 resources play a critical role in
delivering fast responses for MEC applications, especially in urban or
densely populated areas.

Ad-hoc (or opportunistic) edge resources (R3) represent a
dynamic and mobile resource pool, in which mobile servers and users can
be utilized as MEC systems on-demand. One example is autonomous
vehicles (e.g., vehicular edge hosts) that can share their excess compu-
tational power with other users in the MEC ecosystem and take part
as temporary MEC systems [20]. Here, they can often function as both
provider and consumers of edge resources, adding further complexity to
resource orchestration. Another example is UAV-based MEC systems
that leverage the mobility of aerial vehicles to quickly deploy and trans-
fer edge resources when needed [8]. Despite their flexibility, the mobility
and variability of R3 resources pose challenges for resource management,
requiring robust mechanisms to ensure service continuity and fairness
in such fluctuating resource environments. In most cases, R3 resources
will be inherently heterogeneous, differing in computational capabilities
and roles.

For all MEC systems, controllers (whether centralized or decentral-
ized) are critical for resource coordination. Furthermore, collaboration
among different MEC systems expands the resource pool, necessitating
efficient inter-controller communication. In ad-hoc environments like R3,
MEC systems may also serve users directly in a peer-to-peer manner.
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3.1.2 Users

Among the various types of MEC users, based on their persistence,
mobility, and application characteristics, we identify three primary
categories: steady users (U1), sporadic users (U2), and critical users
(U3):

Steady users (U1) have consistent and predictable requirements,
such as connected IoT devices deployed on public transportation systems
or smart city sensors and actors, which continuously offload data for
analysis to R1 resources. These systems typically operate with pre-
defined QoS requirements and benefit from the reliability and scalability
of dedicated MEC resources.

Sporadic users (U2) represent applications that require MEC
resources temporarily and involve dynamic mobility. Examples include
augmented reality (AR) applications used at public events such as games
or festivals, where participants receive real-time directions, updates, or
event overlays on their devices. Since the number of users can fluctuate
dynamically, these applications require efficient registration and resource
allocation processes through MEC controllers and across different MEC
systems.

Critical users (U3) encompass users running highly mobile,
latency-sensitive, and safety-critical applications. Examples include
autonomous vehicle coordination during high-speed road travel or UAV
swarm control and coordination. These applications have strict deadlines
for computational tasks, such as obstacle detection or route planning,
and demand reliable, low-latency connections to MEC systems. Failures
in communication or computation can lead to severe consequences, such
as accidents or mission failure.

Each MEC user type faces distinct challenges and vulnerabilities.
For instance, while U1 users benefit from pre-established authentication
and authorization mechanisms, the dynamic nature of U2 users increases
the risk of unauthorized or malicious actors infiltrating the system. For
U3, even minor disruptions of the communication with MEC systems
can lead to intolerable delays, making resilience a critical factor for this
category.
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3.1.3 Interfaces

We represent the functional connections and communication in the
MEC ecosystem through user interfaces (I1), internal MEC interfaces
(I2), and inter-MEC interfaces (I3) as shown in Figure 3.1.

User interfaces (I1) represent the interaction between MEC users
and systems, encompassing both control data (e.g., service requests,
QoS configurations) and application data (e.g., sensory input, task
results). These interactions are typically facilitated through wireless
communication technologies such as 5G/6G and Wi-Fi. As the communi-
cation infrastructure is often managed independently of MEC providers,
any impairments in wireless links or disconnections cannot be directly
mitigated by MEC providers but still have a significant impact on the I1
interface. Consequently, the allocation of MEC resources to users must
carefully account for the reliability of the I1 interface, ensuring that
the connectivity provided is sufficient to meet the service requirements
of the respective users. For MEC resources that combine computation
and communication infrastructure, i.e., R2, the communication links
can also be optimally configured. We will discuss this in more detail in
Section 5.3.

Internal MEC interfaces (I2) enable the management and or-
chestration processes between MEC controllers and systems through
the internal management modules of MEC systems. These interfaces
oversee fundamental operations such as the installation and migration
of VMs and containers. To ensure operational integrity, monitoring and
anomaly detection mechanisms are typically employed to continuously
observe the I2 interface for potential issues or irregularities.

Inter-MEC interfaces (I3) extend I2 to enable collaboration
between multiple MEC systems. This interface supports resource shar-
ing across different MEC systems and domains, such as coordinating
workloads between R1 resources at a data center and R2 nodes in a
metropolitan area. Alternatively, it can manage hierarchical aggregation
of diverse resource types, such as integrating R3 resources from a fleet of
vehicles with existing R2 infrastructure for large-scale disaster response
coordination. This is also relevant to handle handovers between MEC
systems, which may require inter-MEC synchronization.
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3.2 ETSI Reference Model

The ETSI reference model provides an abstract architecture outlining
the fundamental modules and components within MEC systems and
controllers. This can be considered as a zoom-in view of the resources
introduced in Section 3.1.1, comprising the internals of MEC systems.
Figure 3.2 illustrates an adaptation of this model, highlighting only the
relevant modules for our subsequent discussions.

MEC Host

PlatformApplications

Service 
Registry

Traffic 
handling

App.

MEC Controller

Orchestrator

Operations Service Management
App. Lifecycle 
Management 

Proxy 

Platform Manager

App. rules & 
request mgmt.

App. lifecycle 
mgmt.

Devices
Services

Enterprises

VI Manager

Mp3

Mm9

Mm8

Mm1

Mm6

Mm3

Mm4

Mx2

Mp1 Mm5

Mm7

Mp2

Virtualization Infrastructure (VI)

Figure 3.2: MEC reference architecture adapted from the ETSI framework.
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3.2.1 Components

The ETSI architecture contains two main components: MEC system and
MEC controller,2 which together correspond to a MEC resource in Sec-
tion 3.1. The MEC system consists primarily of application modules
(orange): the platform and the virtualization infrastructure (VI), which
supply compute, storage, and network resources to MEC users. The
platform provides essential functionalities such as service registry, traffic
steering, and policy enforcement for running user applications on an
MEC system. It also enables communication with other MEC systems
via control plane interfaces, forming a communication grid that corre-
sponds to the I3 interface described in Section 3.1.3. The virtualization
infrastructure delivers virtualization and containerization technologies
and handles data traffic routing between applications, services, and
networks according to the platform’s forwarding rules.

On top of the VI, applications operate on VMs or containers within
the MEC system. They interact with the platform to consume or
provide services. The platform ensures that applications’ resource and
performance requirements are met and supports application relocation
during events like user handovers.

Within the MEC system, there are also management modules (blue),
the platform manager (PM), and the VI manager (VIM). The PM
oversees MEC system management and orchestration. It handles appli-
cation life-cycle operations, such as instantiation and termination, and
enforces traffic rules through continuous communication, configuration,
and monitoring of the platform. The VIM manages the MEC system’s
virtualized compute, storage, and network resources, functioning as a
hypervisor. It allocates virtual instances, monitors performance and
faults, stores application images for rapid deployment, and maintains
resource availability information.

As the central entity, the MEC controller manages resources and
applications across the entire edge network, potentially encompassing
multiple MEC systems. It has visibility over all MEC systems, ser-

2Our naming convention is slightly different compated to the original proposal.
We simplified some names and terms for a better alignment with the rest of our
discussions.
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vices, and resources; and acts as an orchestrator, ensuring application
requirements are met. The controller oversees application deployment,
integrity checks, relocation, and maintains a catalog of available appli-
cations. It collaborates with the PM and VIM on each host to allocate
resources and monitor their availability. The MEC controller includes
two additional modules: the application life-cycle management proxy
and the operations service management (OSM). Together, they handle
and authorize user requests for application onboarding, instantiation,
termination, integrity checks, and relocation between MEC systems.
The proxy is depicted in a distinct color (green) in Figure 3.2, as it is
the only module offering direct user access, and thus act as a front-end.

3.2.2 Reference Points

The ETSI reference architecture specifies several reference points to
represent interconnections between different modules. Within the MEC
system, there exist reference points like Mp1, Mp2, Mm5, Mm6, and
Mm7 which define interfaces between the platform, VI, and their man-
agers. These typically function in a closed-loop system, such as an
operating system (OS) with a hypervisor, and align with the I2 interface
described in Section 3.1.3. Reference points Mm3 and Mm4 link con-
trollers to hosts. In dedicated MEC systems (e.g., R1 in Section 3.1.1),
where MEC controllers and hosts are co-located, these interfaces can
achieve high reliability and are considered part of I2. In distributed
and heterogeneous MEC systems (e.g., R2 and R3 in Section 3.1.1),
multiple controllers and hosts must coordinate remotely, introducing
diverse interoperability requirements. Their effectiveness depends on
the underlying networking technologies. Reference point Mp3 connects
different MEC systems and can extend to remote hosts. Consequently,
it is exposed to threats and challenges similar to those that affect the
I3 interface. Although not part of the reference architecture, multiple
controllers may require a dedicated interface for collaborative resource
management in some scenarios.

The reference architecture does not extensively cover interfaces
between users and the MEC system. Reference point Mx2 represents
the control interface through which users submit application requests
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to the MEC controller. Afterward, users typically communicate directly
with MEC systems, often over wireless networking technologies. These
interactions correspond to the I1 interface described in Section 3.1.3.



4
Resilience Challenges and Objectives

MEC environments are vulnerable to a wide range of operational errors,
communication bottlenecks, and other challenges arising from their
mobile, heterogeneous, and distributed nature with a multitude of actors
and components. These challenges are often interdependent, making it
difficult to isolate their impacts or rely on a single solution to ensure
resilience. For instance, to cope with application failures, traditional
primary/backup (PB) redundancy techniques have been effective in
cloud environments. However, their utilization in MEC context is not
straightforward [66], [97].

One key challenge is the resource limitations of MEC systems com-
pared to cloud servers in data centers. This constraint necessitates
installing application instances across geographically distributed MEC
systems. Additionally, dynamic and unpredictable networking condi-
tions can hinder mobile users from accessing such distributed PB in-
stances seamlessly. This connectivity variability adds another layer
of complexity of ensuring reliable service continuity in MEC environ-
ments. Consequently, developing effective resilience measures requires
addressing these unique challenges and inherent complexity of MEC
systems.
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This complexity also complicates the analysis of MEC ecosystem
in terms of traditional resilience objectives [70], [85]. For instance, to
ensure resource availability becomes insufficient unless paired with a
reliable computation and communication performance with minimal
errors or interruptions – especially for time-critical applications.

Consequently, in Section 4.1, we first present an analysis of the
unique challenges in MEC that require the development of resilience
measures. Then, we introduce the resilience objectives and techniques
that serve as the foundation for analyzing resilience measures in Sec-
tion 5.

4.1 Challenges

MEC faces a distinct set of challenges mainly stemming from its dis-
tributed and heterogeneous architecture, resource-constrained systems,
and dynamic operational conditions. Unlike traditional cloud systems,
MEC must support a wide range of applications with diverse criticality
and performance requirements, while operating under unpredictable
demand patterns and high mobility of both users and hosts. Fluctuating
connectivity, due to heterogeneous and unstable access technologies,
further complicates maintaining seamless service delivery. Resource con-
tention is a common issue due to the limited capacity of MEC systems,
making it difficult to accommodate over-provisioning for redundancy.

Additionally, the distributed nature of MEC introduces complexities
in management, monitoring, load balancing, and fault tolerance across
geographically dispersed nodes. MEC environments are also prone to
operational errors, hardware failures, and environmental vulnerabilities,
as many edge resources lack the physical protections of centralized
cloud data centers. Security and privacy concerns are exacerbated by
the presence of malicious users, unreliable hosts, and the absence of
robust trust mechanisms.

Accordingly, in the following, we present several challenges that
highlight the need for resilience measures tailored to the unique char-
acteristics of MEC systems. We also address them in our analysis and
discussions of the potential resilience measures for MEC in the next
section.
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We focus on the following challenges:

(C1) Unpredictable workloads and diverse user requirements

(C2) High mobility and churn rates

(C3) Unstable connectivity over heterogeneous technologies

(C4) Resource constraints, heterogeneity, and contention

(C5) Distributed resources and architecture

(C6) Operational risks and environmental challenges

(C7) Malicious users and untrustworthy MEC systems

(C1) Unpredictable workloads with diverse user requirements

MEC comes with a variety of applications, ranging from latency-sensitive
real-time systems (U3) to less critical, computation-intensive tasks (U1,
U2). This diversity creates significant challenges in resource allocation,
especially when critical applications such as autonomous driving or
drone swarms compete with other workloads for MEC resources. These
critical applications require uninterrupted service with stringent latency
requirements, meaning even brief disruptions can lead to severe conse-
quences, such as traffic accidents or entire system outages. Additionally,
demand surges are difficult to predict, especially in scenarios like public
events or emergencies, where the number of users and applications can
rapidly escalate.

(C2) High mobility and churn rates

MEC environments can experience high churn rates of users and servers
due to mobility. On the one hand, MEC users, such as vehicles, drones,
or other mobile devices (U3), frequently join and leave the network,
requiring constant reallocation of resources and re-establishment of
communication links. These users often operate in challenging wire-
less environments, where connectivity is intermittent and performance
fluctuates. On the other hand, mobile MEC systems, like vehicles or
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drones acting as resource providers, introduce additional complexity.
The transient nature of these servers leads to unpredictable resource
availability and requires sophisticated management strategies to ensure
continuous service delivery. High churn rates also hinder robust authen-
tication mechanisms, as frequently authenticating users and devices can
impose excessive overhead and delay.

(C3) Unstable connectivity over heterogeneous technologies

MEC systems depend on stable and efficient communication between
users, hosts, and controllers. However, the reliance on heterogeneous
and wireless technologies, such as 5G/6G and Wi-Fi, makes connectivity
inherently unreliable (I1) [78]. Factors like signal interference, physical
obstructions, and network congestion can cause frequent disruptions,
leading to packet loss, latency spikes, or even complete disconnections.
These issues are particularly problematic for latency-sensitive applica-
tions (U3), where consistent communication is vital. Seamless interop-
erability between different access technologies is necessary, but difficult
to achieve due to different standards and configurations. Without ro-
bust solutions for mitigating these connectivity issues, MEC remains
vulnerable to performance degradation and service disruptions.

(C4) Resource constraints, heterogeneity, and contention

Compared to cloud environments, MEC systems operate with signifi-
cantly more constrained resources, making over-provisioning costly and
impractical (especially for R2 and R3). These limitations result in re-
source contention among competing applications, where CPU, memory,
or bandwidth are insufficient to meet the demand. The challenge is
exacerbated by the diverse nature of MEC systems, which range from
powerful servers to lightweight edge devices with limited capacity. This
diversity creates disparities in resource availability across the MEC
environments, complicating resource orchestration. The unpredictabil-
ity of demand surges further amplifies the risk of resource contention,
requiring MEC systems to implement adaptive and efficient resource
management mechanisms.
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(C5) Distributed resources and architecture

Unlike centralized cloud data centers, MEC systems are spread across di-
verse locations, each with varying access latencies. As a result, migrating
services between MEC systems for handling failures or load imbalances
becomes more complex and time-consuming (I3). Additionally, tradi-
tional load-balancing techniques face inefficiencies in a decentralized
setting, leading to bottlenecks and under-utilized resources. From a
management perspective, coordination of these resources holistically is
also challenging due to multi-stakeholder nature. Proxy-based query and
orchestration systems, often used to centralize workload information,
can become single points of failure, undermining the inherent advantages
of the distributed architecture.

(C6) Operational risks and environmental challenges

MEC systems are susceptible to a variety of operational errors and
failures stemming from their hardware, software, and deployment en-
vironments. For instance, power outages, hardware malfunctions, or
environmental factors like extreme weather and other natural disas-
ters can disrupt the functionality of edge nodes. Hosts deployed in
unprotected or remote locations are particularly vulnerable to physi-
cal damage or tampering. Software-related issues, such as application
bugs, misconfigurations, or conflicts, can also lead to system crashes
or degraded performance. Furthermore, MEC environments often lack
the robust virtualization infrastructure seen in cloud platforms, making
them more prone to hypervisor faults and other virtualization failures.

(C7) Malicious users and untrustworthy hosts

The decentralized and heterogeneous nature of MEC environments
makes them an attractive target for malicious actors. Multi-tenancy
on MEC nodes allows users to share resources, but malicious users can
exploit this setup to launch attacks, such as overloading resources, eaves-
dropping on other tenants, or injecting malicious code. The transient
nature of mobile and temporary users makes robust authentication and
monitoring challenging. Furthermore, MEC systems, especially those
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that are mobile or opportunistically used (R3), may be unreliable or
compromised, posing risks to data integrity and system trust.

Privacy concerns also arise from the distributed architecture of
MEC, where data is processed closer to users, often bypassing centralized
security policies. While this proximity improves latency and performance,
it also means sensitive data is handled on nodes with varying levels of
trust and security. For example, personal data from IoT devices, such as
health trackers or smart home systems, may be processed on a nearby
MEC system with insufficient encryption or monitoring. This makes the
system vulnerable to unauthorized access, data theft, or even large-scale
privacy breaches if a MEC system is compromised.

4.2 Objectives and Techniques

Considering resilience as a system property, MEC systems aim at differ-
ent resilience objectives depending on their characteristics and opera-
tional environments. These include minimizing failure time, ensuring
service continuity with graceful degradation, prevention of resource
overload, etc., to guarantee resilience against the aforementioned chal-
lenges. Achieving these objectives further necessitate embracing different
resilience techniques. For instance, proactive techniques help MEC sys-
tems to tolerate failures and disruptions by design, and reactive ones
improve their adaptability to counteract when any incident happens.
Those techniques induce certain trade-offs in terms of cost, efficiency,
and latency, and thus should be used complementarily. In this sense,
while the resilience objectives specify what we want to achieve when
facing the challenges, the resilience techniques are embraced to reach
these objectives, considering their trade-offs.

Accordingly, in this section, we present the resilience objectives and
techniques relevant to our analysis. We selected these objectives based
on our observations from the literature and further categorize them
under two main resilience goals – dependability and trustworthiness –
to ease our analysis in Section 5. As mentioned, the techniques are also
grouped as proactive and reactive ones, highlighting challenge tolerance
and adaptability aspects, respectively.
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4.2.1 Objectives

We group the MEC resilience objectives under two overarching resilience
goals: dependability and trustworthiness. These goals serve as umbrella
terms, encapsulating the interdependencies between objectives such as
availability, reliability, security, and privacy. Of course, efficiency metrics
such as energy consumption, data rate, and latency remain important.
We integrate these in the scope of dependability and trustworthiness
assuming a certain degree of graceful degradation.

Dependability

In the MEC context, dependability refers to the system’s ability to
deliver its intended services consistently and correctly, even under chal-
lenging conditions [85]. It encompasses two key objectives: availability
and reliability. Availability in MEC ensures that computational re-
sources, applications, and services remain accessible to users whenever
needed, despite dynamic factors such as mobility (C2), fluctuating
network conditions (C3), or variations in demand (C1) [58]. Unlike
traditional cloud systems, where resources are centralized and relatively
static, MEC environments are distributed (C5) and operate close to
mobile users, making the assurance of availability more complex. In
contrast, reliability focuses on ensuring that MEC services perform as
expected, with minimal disruptions or errors, even in case of failures
or environmental challenges [83]. Reliability is particularly important
for time-sensitive and safety-critical applications, such as collaborative
driving [59] or drone orchestration [60]. Disruptive events such as MEC
system failures (C6) or abrupt connectivity loss must not compromise
the continuity of these applications. Instead, MEC systems should em-
ploy mechanisms like seamless failover, adaptive resource allocation,
and proactive fault recovery to sustain reliable service delivery, under
significant resource limitations and high demands (C4). Together, avail-
ability and reliability form the core of dependability in MEC, ensuring
that resources are not only present but also capable of maintaining the
expected level of service under diverse conditions.
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Trustworthiness

In MEC systems, trustworthiness encompasses the ability to ensure
security, trust, and privacy throughout the system’s operations. This is
especially critical in environments characterized by distributed archi-
tectures (C5), multi-tenancy, and coexistence of trusted and untrusted
entities (C7). Security in MEC involves protecting the system from
malicious activities, such as unauthorized access, data breaches, and
DoS attacks [73]. MEC systems face unique security challenges due
to their proximity to end users, the physical exposure of hosts, and
diverse connectivity interfaces. For instance, edge servers deployed on
communication infrastructure are more vulnerable to physical tamper-
ing or cyber attacks than well-guarded cloud data centers. Trust in
MEC refers to the confidence that stakeholders, such as users, providers,
and application developers, place in the system to function as expected
without malicious intent [99]. Establishing trust is complex in MEC’s
multi-stakeholder environment (C5), where resources may be shared
among entities with varying levels of trustworthiness. For example, ad
hoc MEC systems (R3), such as a vehicle acting as a computational
provider, must be validated to ensure they are neither compromised nor
providing faulty computations. Lastly, privacy focuses on protecting
sensitive user data processed within MEC environments [93]. MEC
systems frequently handle personal and real-time data, such as location
information or video feeds, necessitating privacy-preserving mechanisms.
Ensuring secure data processing while minimizing exposure to unautho-
rized parties is particularly challenging, especially when data must be
offloaded to other MEC systems or cloud resources for further computa-
tion. Collectively, security, trust, and privacy define the trustworthiness
of MEC systems, ensuring that users and providers can rely on the
system without fearing malicious exploitation, misuse, or the loss of
sensitive information.

In Section 5, we analyze various resilience measures through the
lenses of dependability and trustworthiness. It is worth noting that,
although security is one of the key resilience objectives, it is not the
primary focus of this work, as it has been extensively studied in the
literature compared to trust and privacy aspects [75], [107], [110].
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4.2.2 Techniques

Proactive and reactive resilience techniques play distinct yet comple-
mentary roles in achieving resilience goals in MEC. Highlighting these
techniques separately is important because they address different MEC
challenges, pertain to different MEC components, and introduce specific
trade-offs, that are explained in the following sections. Both proactive
and reactive resilience techniques can be designed to handle graceful
degradation of service quality. In terms of compute capabilities, this is
often handled inherently as other MEC systems will be chosen if insuffi-
cient capacity remains at currently used ones. Similarly, communication
paths will be selected according to minimum needs of applications in
order to fulfill the overall application latency requirements.

Proactive

Proactive techniques aim to prevent failures, data breaches, and ma-
licious attempts before they occur by taking preparatory actions. For
dependability, this includes pre-allocating and scheduling backup re-
sources, as well as replicating applications, particularly for critical or
latency-sensitive applications (U3). Therefore, they encompass fault
and disruption tolerance approaches that ensure the availability of MEC
systems when facing challenges. Other proactive mechanisms include
enforcing secure access control policies on MEC systems, deploying
continuous authentication mechanisms (especially for the I1 interface),
and verifying the integrity of MEC applications through attestation
methods to ensure trustworthiness. Similarly, minimizing data expo-
sure by applying encryption and anonymization techniques, particularly
in MEC environments involving multiple stakeholders, serves as an
effective privacy-preserving concept.

Reactive

Reactive techniques address incidents after they occur by relying on
real-time monitoring (mostly within I2 interface), anomaly detection,
and rapid recovery actions, such as restarting applications, migrating
tasks, or reallocating resources to maintain availability. Therefore, these
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techniques improve the adaptability of MEC systems, when proactive
measures are absent or insufficient in case of unexpected or large-scale
failures. For trustworthiness, reactive measures may involve runtime
anomaly detection mechanisms to identify untrusted or compromised
hosts (especially for ad-hoc R3 resources) and isolate them to prevent
further harm. For instance, if a MEC system exhibits abnormal behavior,
an attestation process can be triggered to verify its integrity and isolate
the host to contain the threat. Similarly, anomaly detection algorithms
can identify unusual data access patterns, such as an application at-
tempting to access user data without proper permissions, and respond
in real time by blocking the process or revoking its privileges.

The trade-off between proactive and reactive methods lies in their
resource consumption, response time, and operational complexity. Proac-
tive methods often consume more resources due to pre-allocation and
ongoing computations, such as maintaining redundant application in-
stances or continuously encrypting data. In contrast, reactive methods
are activated only when anomalies or breaches occur, making them
more resource-efficient. However, their response time may be slower,
which can adversely affect time-sensitive applications.



5
Resilience Concepts and Measures

In this section, we present eight main resilience measures that address
the challenges outlined in Section 4.1 to achieve dependability and
trustworthiness in MEC environments. We discuss these measures as
overarching resilience concepts that are identified as a result of the
review and categorization of various works in the literature. We also
briefly analyze the most representative works for each resilience concept
regarding the primary resilience goals – dependability or trustworthiness
– and the resilience techniques they employ, whether proactive or reactive.
Our analysis is summarized in Table 5.1.

Note that we do not provide extensive details on each paper; rather,
we highlight their relevant parts and design artifacts to demonstrate
their correspondence to the respective resilience concepts. We associate
them with specific types of MEC resources, users, and interfaces (Sec-
tion 3) as well as the relevant challenges they address (Section 4.1) only
when such associations are clearly emphasized in the studies. In the
following discussion, these associations are often indicated symbolically.
For example, if a resilience concept is particularly effective in protecting
a specific type of MEC resource, say R3, we mark it as (R3) to highlight
its relevance after a short description. A brief overview of these concepts
is provided as follows:
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1. Adaptive redundancy and fault tolerance: These measures efficiently
leverage virtualization and containerization technologies to ensure
maximum uptime in case of failures, addressing dynamic user
demands and resource constraints by selectively deploying and
migrating application replicas.

2. Real-time monitoring and anomaly detection: These mechanisms
are crucial for reactive approaches, as they continuously track
specific system variables to identify unexpected changes in MEC
environments and trigger measures, posing unique engineering
challenges for seamless integration.

3. Joint computation and connectivity optimization: Performance of
MEC systems depends on reliable user connectivity and adequate
computational resources, requiring joint optimization of communi-
cation links and MEC resources, especially in dynamic scenarios
with mobile users and MEC systems.

4. Multi-level resource allocation and coordination: Utilizing diverse
resource types (R1, R2, and R3) across multiple levels enhance re-
liability and efficiency but introduce complexity in task allocation
and scheduling, necessitating intelligent coordination to balance
latency and dependability.

5. Middlewares for computation and communication: Middlewares
provide an abstraction layer that simplifies the deployment of
resilience mechanisms across diverse MEC resources. This en-
ables interoperability and dynamic adaptation to failures and
uncertainties while ensuring high availability and reliability.

6. Bilateral reputation assessment: Reputation models in MEC envi-
ronments ensure mutual trust by evaluating the trustworthiness
of both users and MEC systems, enabling secure collaboration
and dependable service delivery.

7. Cross-domain federation and access control: These mechanisms
are critical for enabling secure and efficient task handovers across
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geographically distributed MEC systems, ensuring mutual authen-
tication between mobile users and MEC resources to maintain
trustworthy service delivery during mobility.

8. Privacy-preserving task offloading and management: These ap-
proaches are necessary to safeguard users’ mobility and task
offloading patterns that can be exploited by untrustworthy MEC
hosts to infer sensitive information.

5.1 Adaptive Redundancy and Fault Tolerance

State-of-the-art virtualization and containerization technologies enable
edge computing to implement flexible redundancy and fault tolerance
techniques. Similar to the traditional PB approach, replicas of virtual
applications can be initiated to serve as hot or cold backups and migrated
across MEC systems in the event of operational errors or failures.
However, given the diverse and dynamic characteristics of user demands,
as well as the high competition for limited resources, it is not always
feasible to generously deploy redundant instances on MEC systems for
every application. This requires adaptive redundancy and fault tolerance
techniques that efficiently utilize available resources under dynamic
conditions, ensuring maximum operational uptime in the face of failures.
Some of the most prominent approaches are summarized in Figure 5.1.
Here, the simplest PB model (top-left in Figure 5.1) ensures seamless
redundancy, which is particularly crucial for critical applications, albeit
at the cost of doubling resource consumption. Alternatively, redundancy
can be managed reactively (top-right) by migrating and reexecuting
tasks after a failure, though this approach introduces additional latency.
For stateful tasks, it is necessary to track execution progress—such
as through checkpointing (bottom-left)—to enable resumption on a
different edge resource if the primary host fails. The details of such
approaches are further described below.

One of the most important challenges is deciding which applications
require higher reliability than others, so redundancy and fault-tolerance
strategies can be adapted accordingly. This is relevant in two key aspects.
First, some applications are safety-critical by nature and may explicitly
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Figure 5.1: Illustration of different adaptive redundancy techniques, depending on
diverse application and host characteristics.

request dependability guarantees, e.g., regarding mean failure time or
predictable timing behavior. Second, other applications, while not highly
critical, could be too costly for re-execution after a failure, potentially
leading to additional operational errors and resource inefficiencies. Peng
et al. [69] address the second challenge by dynamically categorizing
diverse MEC applications according to the probability of experiencing
an anomaly (C1). For instance, applications with a large number of
predecessor or successor tasks (U1 and U2) are recognized as critical
since their recomputation after a failure (C6). Similarly, applications
requiring large amounts of data transmission in mobile environments
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(U2) can benefit from redundant instances distributed across multiple
MEC systems. This distribution helps to avoid additional latency due
to retransmissions in case of impaired link quality (C3) between the
MEC user and the host running the primary application instance (I1).
The authors also propose that primary and backup instances for these
selected applications perform computations in parallel, allowing the
results to (i) be merged if one of the instances fails or (ii) take the
earliest result otherwise. While this approach enhances MEC depend-
ability proactively, i.e., with always-active backup instances, it also
increases resource efficiency (C4) by adapting redundant resources to
the characteristics of the applications.

The previous approach helps filter non-critical yet important appli-
cations for a resource-efficient PB scheme. In other scenarios, numerous
latency-sensitive applications with explicit reliability requirements (U3)
must be allocated and scheduled. This requires further adaptations to
ensure the availability of primary and backup resources (C4). Wang et
al. [97] propose a dynamic QoS-aware task scheduling mechanism that
adapts the QoS levels of primary and backup instances dynamically
during scheduling. The primary instances are scheduled to complete as
early as possible within their time constraints, while the QoS levels of
the backup instances are gradually relaxed to ensure the schedulability
of the primary instances. Additionally, the resources allocated to the
backups are released as soon as the primary instances are completed,
improving resource efficiency. Such an approach combines both proac-
tive and reactive redundancy measures. That is, the backup instance is
activated by default if primary and backup instances are scheduled in
parallel, providing proactive fault tolerance in case of a failure. Other-
wise, the backup is computed later only if the primary instance fails,
e.g., by migrating the remaining part of the primary instance at the
scheduled time of the backup.

Such reactive fault tolerance approaches, where a failing application
is executed partially after a migration, require effective checkpointing
techniques. The MEC system must decide how often to record the oper-
ational state of an active application instance, i.e., defining checkpoints,
to track remaining computations. This not only improves resource uti-
lization but also ensures consistency for stateful tasks. Long et al. [57],
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for example, adapt checkpoint intervals based on the failure probability
of MEC systems with heterogeneous characteristics (C4). For example,
less reliable systems, such as mobile ones (R3), should have shorter
checkpoint intervals to enable precise migration of remaining parts of
lengthy and data-intensive applications, thereby avoiding recomputa-
tions. This is illustrated in Figure 5.1, in which an unreliable host (host
2) has more frequent checkpoints than a reliable host (host 1), and only
the remaining portion of the failing task migrated to another host (host
3). Another approach, described by Dong et al. [19], involves mobile
MEC systems (e.g., vehicular hosts corresponding to R3) associating
their availability with the duration they remain in a particular service
area (C2). Each (main) host pairs with a shadow follower that executes
the same applications as the main host at a reduced rate. The main host
notifies the shadow follower in advance when it is about to leave the
area, enabling faster computation of the backup tasks. By combining
proactive (lazy computation) and reactive (early notification) methods,
this approach eliminates the need for checkpointing.

The characterization of MEC systems is also important for assessing
their run-time reliability, not only due to potential failures but also
their non-deterministic behavior under high loads (C6). For instance,
Ghanavati et al. [25] consider the uncertainty and dynamic nature of
task execution runtimes (especially related to R2 and R3) to adapt their
redundancy technique. Their stochastic model predicts task execution
times for applications with diverse requirements (C1) and associate them
with the likelihood of failure. Based on this model, they propose a hybrid
proactive and reactive fault tolerance approach. Applications running
on relatively unreliable hosts are protected proactively using traditional
PB approaches, while those on more reliable hosts are re-executed only
if the main instance fails, which is less likely. Similarly, Cheng et al. [11]
formulate the uncertainties and diversity in application demands (C1)
and the reliability of MEC systems (C6) and their connectivity (C3) to
determine the best candidate hosts with different characteristics (e.g.,
more powerful R1 hosts and closer R2 hosts) for the given applications.
They distinguish between the installation and activation of application
instances. Specifically, application containers are kept ready on all
candidate hosts but are dynamically activated only if the respective
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hosts are operating reliably at a given time. This approach improves
both resource efficiency (C4) and reliability.

5.2 Real-time Monitoring and Anomaly Detection

Every reactive approach described in the previous section relies on
an effective monitoring and anomaly detection mechanism to identify
unexpected changes and trigger the necessary actions. Unlike statistical
models, which use predefined failure probabilities as abstract values [11],
[25], these mechanisms continuously monitor specific system variables
and make real-time decisions.

As illustrated in Figure 3.2, the MEC system consists of several
modules responsible for task execution, orchestration, and management.
Accordingly, an effective monitoring and anomaly detection module
must be capable of overseeing these modules and their complex interde-
pendencies. For instance, Park et al. [67] propose FATRIOT, a smart
network interface card (NIC) for MEC systems, to deploy comprehen-
sive fault and error detection features (C6), beginning from the data
plane (e.g., as part of the VI module in Figure 3.2). Upon detecting
packet processing failures, FATRIOT activates a fail-safe mode that
seamlessly redirects affected traffic to a backup host as a reactive coun-
termeasure. Moreover, it continuously heartbeats internal MEC system
modules, services, and application instances (closely related to the I2
interface in Figure 3.1) to detect host and service unavailability as well
as service-specific processing delays. However, this approach requires
specific FATRIOT hardware, which may be feasible for R1 resources
but less suitable for R2 and R3 resources due to their tight coupling
with other systems, such as communication infrastructure and vehicles,
respectively.

While FATRIOT and similar solutions such as [45] offer practical and
powerful tools for monitoring, developing advanced anomaly detection
models in complex MEC environments remains a significant challenge.
Here, AI/ML techniques are particularly well-suited to capture long-term
behavioral patterns of MEC systems and identify potential disparities.
For instance, Wang et al. [96] propose a deep learning-based run-time
anomaly detection method that observes the historical performance of
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MEC resources based on service completion time. They associate the
dependability of an MEC system with its ability to deliver results on
time, which may degrade over time due to faults or volatile environ-
mental conditions (C6). This is especially relevant to MEC resources in
non-isolated environments (e.g., R2, R3). Such an approach not only
aids in detecting faulty MEC systems, but also avoids assigning critical
applications to hosts with occasional performance degradations – an
important consideration for critical and time-sensitive MEC applications
(U3). This is also related to the concept of trust in MEC environments,
which will be discussed in Section 5.6.

Since MEC environments are highly dynamic, it is challenging to
distinguish between the root causes of performance volatility, potentially
caused by (i) anticipated challenges stemming from the nature of the
MEC environment (C1, C2), and (ii) faulty or malicious scenarios (C6,
C7). This necessitates more comprehensive models that consider multiple
variables, unlike the previous approach in FATRIOT. A promising
solution is presented by Tuli et al. [90]. The authors employ a generative
adversarial network (GAN) leveraging several system metrics such as
CPU over-utilization, abnormal disk utilization, memory leaks, and
abnormal memory allocation. These metrics serve as stronger indicators
for predicting potential faults in VMs and containers. This approach is
also valuable for identifying checkpoints for virtual instances in real-time
(see Section 5.1), thereby avoiding unnecessary task migrations that
could strain the overall MEC system.

Despite their effectiveness, AI/ML models can suffer from high
computational overhead when making real-time decisions. Moreover,
out-of-the-box models may fail to achieve optimal accuracy under non-
stationary user applications (U2, U3) and diverse host characteristics
(C4) for anomaly detection. One potential solution is to design evolving
models that continuously learn. For instance, Tuli et al. [91] combine
backpropagation-based online learning with digital twins. On the one
hand, the former constitutes an evolving model addressing dynamic
MEC conditions (C1, C2). On the other hand, the digital twin improves
application scheduling and resource allocation decisions of the AI model,
by emulating them in advance and adapting the model parameters
according to their optimality.
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In addition to monitoring and anomaly detection mechanisms, vari-
ous studies propose intrusion detection systems (IDS) tailored to the
distributed nature of MEC resources (C5). For example, Li et al. [49]
introduce an attack linkage mechanism that aggregates alerts and logs
from multiple MEC systems to identify complex, distributed, and col-
laborative attacks. Similarly, Sharma et al. [82] develop hybrid and
collaborative IDS solutions, combining rule-based, signature-based, and
ML-based anomaly detection methods across distributed MEC servers
to detect diverse attacks with minimal latency.

5.3 Joint Computation and Connectivity Optimization

The performance of a MEC system is often constrained by the reliability
of user connectivity. This issue becomes even more complex when MEC
resources themselves are mobile, as the quality of wireless links fluctuates
rapidly based on the mobility patterns of both resources and users.
Furthermore, even when users establish stable and reliable links with
specific MEC systems, there is no guarantee that these systems will have
sufficient computational resources available. As a result, ensuring service
dependability must account for the provision of reliable communication
links and the availability of adequate computational resources jointly.

Optimizing communication links between MEC systems and users
is particularly critical for time-sensitive and critical applications (U3).
Dong et al. [18], for instance, address ultra-reliability and low-latency
communication (URLLC) requirements in 5G-based MEC environments
(R2) to facilitate the offloading of user applications to available MEC
systems. Specifically, they aim to minimize energy consumption and
transmission errors within a non-orthogonal multiple access (NOMA)1

scheme, while meeting the latency requirements of MEC users (focusing
on their direct connection to MEC systems over the I1 interface). Under
this scheme, their approach involves optimizing power allocation in
NOMA to ensure tasks are offloaded to MEC systems inducing min-
imal latency. Similarly, Yang et al. [108] aim to minimize the error

1NOMA is a wireless communication technique that allows multiple users to share
the same time, frequency, or code resources simultaneously by leveraging differences
in their power levels or channel conditions.
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probability for accessing and offloading tasks to integrated MEC sys-
tems (R2), assuming the use of finite blocklength (FBL) codes2 for
URLLC communication. They propose a reinforcement learning model
to jointly optimize transmission time allocation and MEC computational
resource allocation. It is worth noting that many previously discussed
works emphasize the intricacies of MEC resource allocation while of-
ten considering communication link conditions in an abstract manner.
In contrast, these two studies highlight varying aspects of networking
technologies (C3) while employing relatively simpler resource allocation
models. However, comprehensively modeling both MEC resource allo-
cation and communication link optimization can significantly increase
model complexity.

Initial task offloading to the optimal MEC systems with the best
connectivity is a proactive approach to ensure reliable communication
for MEC applications. Additionally, any task relocation equally re-
quires establishing stable links to ensure seamless migrations between
distributed MEC systems. Satria et al. [80] propose a reactive scheme to
relocate applications from failed (C6) or overloaded MEC systems (C1)
considering their connectivity with other hosts. Their approach assumes
that MEC systems are integrated with the cellular communication in-
frastructure (R2). In this scheme, an overloaded MEC system offloads
applications to neighboring MEC systems within its communication
range, provided that certain link quality conditions are met. If there
is no such neighbor, the overloaded system employs users as ad-hoc
relay nodes to forward some applications to another suitable system
via multi-hop connections. This scheme is also illustrated in Figure 5.2,
in which the applications on System 1 is migrated to System 2 over
a MEC user. Here, a logical inter-MEC connection (I3) is established
over multiple host-to-user connections (I1); thus, requires a combined
implementation of control and user interfaces.

The static deployment of MEC systems (e.g., R1 and R2) restricts
resource allocation decisions to the given MEC topology and often faces
connectivity challenges due to user mobility (C2). Mobile MEC systems

2FBL codes refer to coding schemes designed for communication scenarios with
short codeword lengths, suitable for achieving low-latency communication under
limited resources.
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System 1 System 2

Migration

I1 I1

I3

Figure 5.2: Multi-hop service migration after system 1 experiences an operational
error. As system 2 is not its communication range, system 1 employs a user as a
communication proxy. The selection of this node depends on connectivity to the
MEC systems (I1) to form the most reliable multi-hop control channel for migration
(I3).

can mitigate these issues by relocating dynamically based on changing
user demands (C1) and mobility patterns. Ahmad et al. [1] develop
a placement and mobility model for UAV-based MEC systems (R3),
taking into account factors such as density, acceleration, trajectories,
and speed to optimize mobile user connectivity in terms of transmis-
sion delays under bandwidth constraints (I1). Their model employs
UAV-specific parameters in a federated learning-based collaborative re-
source allocation scheme, enabling real-time UAV deployment decisions.
Complementarily, Falcão et al. [22] incorporate additional virtualization-
related overhead (I2), VM setup times, energy consumption, and failure
rates, for optimizing resource allocation on UAV-based MEC nodes.
This approach provides a more fine-grained estimation of latency for
URLLC applications (U3).

5.4 Multi-level Resource Allocation and Coordination

Different types of resources (R1, R2, and R3) impose trade-offs between
latency and dependability, particularly in terms of their susceptibility
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to failures and sensitivity to changing environmental conditions, as pre-
sented in Section 3. For instance, R1 resources represent well-established
cloud and edge resources with greater processing power, whereas R3
resources are more dynamic (thus not as stable) but offer lower latency.
Although different service providers often manage distinct resource
types, leveraging all these resources jointly at different levels (e.g.,
based on proximity to users) can enhance resource efficiency, improve
availability, and increase overall reliability. While utilizing a larger and
more distributed pool of diverse resources offers greater flexibility, it
also expands the solution space for task (re)allocation and scheduling
problems, necessitating intelligent multi-layer resource coordination
approaches.

Liu et al. [55] model the diverse characteristics of distributed re-
sources (C5) at different levels (e.g., R1 and R2) based on their failure
tendencies, expressed as failure rates. By considering these rates and
the required availability levels demanded by MEC users (C1), they
determine the minimum number of redundant application instances
needed across different resource layers. In contrast, Sun et al. [86] adopt
a more explicit distinction between resource levels. They deploy pri-
mary application instances on edge resources closer to users (e.g., R2
and R3) while performing backup computations on remote resources
(i.e., stationary R1). Both approaches highlight a critical trade-off in
performance: leveraging remote, resourceful MEC systems introduces
additional delays due to inter-MEC coordination (I3) and increased
distance from users (I1) as applications are transferred between hosts.

Multi-level resource allocation is particularly beneficial in high-
mobility scenarios (C2). For example, in the Internet of Vehicles (IoV)
environment, vehicles typically offload their computational tasks to
roadside units (RSUs) or nearby vehicular MEC systems, depending
on their connectivity. In worst-case scenarios, such as high-speed travel
requiring multiple handovers between MEC systems, performing local
computation directly on the MEC user can be a more reliable option,
avoiding networking overheads and ensuring dependable task execution.
For such scenarios, Wang et al. [95] propose a task offloading strat-
egy that determines whether to rely on local computation, offload to
dedicated R2 resources, or utilize temporary R3 resources, based on



5.5. Middlewares for Computation and Communication 299

vehicle mobility patterns. Their strategy leverages a software-defined
networking (SDN) controller to coordinate multi-level MEC resources
(I3). Guo et al. [27] adopt a similar approach in industrial systems, where
local computation instead of MEC offloading can rapidly deplete the
limited energy resources of users, such as mobile robots. They redefine
the dependability objective in terms of the residual energy on an UE
after completing a computation task, ensuring user availability. Their
task offloading strategy balances computational energy costs (e.g., CPU
cycles required to complete a task) with communication-related energy
costs (e.g., transmission power) (I1) to maximize user operational time
and, consequently, availability.

Despite their benefits, utilizing multi-level MEC resources introduces
challenges related to their management and accessibility. As illustrated
in the reference architecture in Figure 3.2, users and MEC systems must
interact with a centralized proxy or orchestrator to register, offload,
and maintain MEC applications. Although this approach is relatively
straightforward within a single MEC system managed by one service
provider, a multi-level and distributed MEC architecture (C5) that
aggregates diverse resources may face scalability issues due to user
query overload. To address these challenges, Tang et al. [87] propose a
fully peer-to-peer (P2P) MEC architecture, where MEC systems com-
municate directly with one another to reduce configuration overhead
(I3) and autonomously back up computational results on neighboring
hosts, provided that sufficient resources are available within the P2P
network. This decentralized approach, also shown in Figure 5.3, mini-
mizes reliance on a central orchestrator, enabling faster responses to
dynamic conditions, particularly in mobile scenarios (C2). However,
a P2P MEC architecture also introduces additional challenges, such
as host discovery and routing mechanisms, which must be addressed
efficiently.

5.5 Middlewares for Computation and Communication

Distributed, heterogeneous, and multi-stakeholder nature of MEC re-
sources (C5) make deployment of unified and collaborative resilience
mechanisms significantly challenging. Middlewares serve as an abstrac-
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Figure 5.3: Multi-level coordination in MEC environments can be achieved either (a)
through a logically centralized control plane, where multiple controllers collaborate
to manage task offloading and system operations, or (b) through P2P coordination,
enabling MEC resources to directly communicate and autonomously respond more
quickly to dynamic conditions.

tion layer to decouple resilience mechanisms from the underlying in-
frastructure. Acting as a unifying framework, middlewares enable the
implementation of redundancy, retransmission, and migration techniques
in a way that is agnostic to the specific hardware, software, or man-
agement policies of the MEC resources. They provide general-purpose
software modules that can be seamlessly deployed across diverse MEC
systems, controllers, and user devices, facilitating interoperability and
coordination.

Several works that we reviewed so far adopt service migration ap-
proaches to tolerate failures at MEC systems. This usually requires
additional and time-consuming mechanisms to maintain message back-
ups and perform system rollbacks. To address this, Wang et al. [92]
propose a fault-tolerant real-time messaging middleware based on pub-
lish/subscribe model. They categorize different types of data traffic for
MEC applications (C1) in terms of their loss-tolerance level (accept-
able number of consecutive message losses), and end-to-end latency
deadline. Their middleware handle scheduling of messages with data
traffic (I1), forwarding them to the migrated service instances in case
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of host failures (I3), and compensate for message losses. Similarly,
Javed et al. [35] developed an fault-tolerant framework for vehicular
edge systems to cope with hardware failures (C6) and connectivity
disruptions (C3). They define an intermediate communication layer
as a publish/subscribe data communication pipeline based on Open
Messaging Interface (O-MI) and Open Data Format (O-DF) standards3

to decouple their messaging framework from the underlying networking
technologies and protocols. This pipeline helps distributing the results
of MEC applications to the multiple users reliably (I1). Besides, they
implement a Kubernetes-based4 management layer to orchestrate the
modules of this framework so that if the user temporarily fails, their
message proxy can be reinitiated in a stateful and reactive manner.

Maintaining the state information of MEC applications is crucial not
only for recovery after failures but also for enabling seamless handovers
in high-mobility scenarios (C2). Harchol et al. [29] introduce a messaging
middleware designed to track the messaging order and computational
state of data-intensive video analytics applications in MEC environments.
This middleware deploys its modules on MEC systems, facilitating the
migration of application instances across successive hosts by leveraging
user movement projections over inter-MEC control channels (I3). By
doing so, the system ensures uninterrupted computations in mobile
scenarios and enables the rapid migration of stateful services reactively
in case of failures (C6).

Samanta et al. [77] take an alternative approach for task offloading
by avoiding the assumption of a centralized orchestrator making optimal
decisions and involve all MEC actors in the offloading process through a
middleware. They define an MEC proxy as a middleware to implement
an auction-based task offlading strategy. In their framework, MEC users
submit their bids to the middleware proxy to declare the amount they
can pay for the computation of their tasks. They consider potential
failure conditions in their bidding: more risky task offloads, e.g., due to
unstable connectivity (C3), have higher price. Similarly, MEC systems
submit their bids to execute the demanded applications. Their bids are

3The Open Group, Open Messaging Interface Technical Standard, https://www2.
opengroup.org/ogsys/catalog/C14B.

4Kubernetes: Production-grade container orchestration, https://kubernetes.io/.

https://www2.opengroup.org/ogsys/catalog/C14B
https://www2.opengroup.org/ogsys/catalog/C14B
https://kubernetes.io/


302 Resilience Concepts and Measures

also proportional to their availability and reliability, e.g., if they are
overloaded (C1) or faulty (C6). In this way, they are incentivized to
perform dependable computations. In the end, the proxy assigns tasks
according to these bids and executes payments from users to hosts only
for successful services.

5.6 Bilateral Reputation Assessment

Reputation-based trust models in MEC environments address the critical
challenge of ensuring mutual trust between users and MEC systems
by evaluating the reliability and behavior of both parties. On the
one hand, these models assist users in identifying trustworthy MEC
systems by aggregating reputation scores based on past performance,
thereby ensuring reliable task execution and resource management. For
example, users can prioritize MEC systems with high reputation scores
for consistent service quality and minimal failure rates (C6). On the
other hand, MEC systems leverage reputation scores to evaluate users,
identifying those with a history of legitimate and efficient task requests
(C7). This bilateral reputation mechanism protects MEC systems from
malicious or resource-draining user activities, such as excessive task
requests or tampering attempts. By fostering trust in both directions,
reputation-based models enable secure collaboration, secure resource
allocation, and dependable service delivery, creating a resilient MEC
ecosystem.

One approach to assess the reputation of MEC systems is by eval-
uating their compliance with service level agreements (SLA). Monir
et al. [64] propose measuring user dissatisfaction rates based on four
SLA elements: cost, maintenance, storage capacity, and execution time.
Each MEC resource is categorized according to its commitment to these
elements. For instance, while an expensive service provider might result
in user dissatisfaction, its execution time and maintenance commitments
could still be satisfactory. This feedback mechanism discourages MEC
providers from overloading their resources and risking service quality,
which is particularly relevant for R2 and R3 resources, given their signifi-
cant resource constraints. However, relying solely on user feedback intro-
duces vulnerabilities, as it can be exploited by bad-mouthing attacks [72].
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Assessing the reputation and trustworthiness of MEC users requires
different considerations compared to MEC systems. Heydari et al. [31]
formulate this in terms of a risk factor for users, based on practical
aspects such as their service request time and location, and authen-
tication success. In this simple reputation scheme, user requests are
classified as risky if they are made (i) at unusual times of the day or
(ii) from atypical locations. Additionally, unsuccessful authorization
attempts with incorrect credentials are penalized more severely, marking
the respective users as untrustworthy. While this approach adds a layer
of trust management, it risks a high false-positive rate, denying services
to legitimate users merely due to changing or atypical service patterns
(C1). Such methods based on direct trust assessments fall into direct
trust evaluation approaches illustrated in Figure 5.4.

System 1 System 2

User 1

User 1?

a) Direct Trust

b) Indirect Trust

User 2

User 3

Figure 5.4: Direct and indirect trust zones. Direct trust is established based on
historical interactions between two MEC nodes, while indirect trust is derived from
feedback provided by other nodes. In the figure, MEC systems (systems 1 and 2)
and users (e.g., user 1) request reputation scores from neighboring nodes to inform
task offloading decisions. Meanwhile, user 3 leverages an end-to-end path of trust to
establish a connection with system 2.
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To address these limitations, bilateral reputation and trust manage-
ment mechanism is more effective, as it evaluates both MEC systems
and users symmetrically based on similar metrics. This is particularly
important in scenarios where users can also act as service providers
(R3). Wang et al. [94] propose a unified reputation scheme with metrics
such as feedback satisfaction, service willingness (associated with their
varying capacity and capabilities (C4)), and community relations to
assess the trustworthiness of all MEC nodes based on their successful
interactions. For instance, in Figure 5.4, while User 1 asks other users
for the reputation of Systems 1 and 2, the systems also investigate the
reputation score of User 1. While these metrics have slightly different
implications for MEC systems and users, they help evaluate the over-
all credibility of each node. Notably, the community relations metric
incorporates the role and popularity of a node within a social network,
inspired by human behavior that tends to trust individuals within the
same community.

Building on a similar community-based approach, Alioua et al. [3]
introduce a reputation scheme where MEC systems calculate a trust
score for MEC users based on feedback from nearby users when receiving
an application request. This score, derived from subjective logic [41],
considers the user’s previous successful interactions and communication
quality (C3); thus, also an indicator for its dependability. In a subsequent
step, MEC systems also request for an indirect reputation score of the
respective user from a set of other hosts and users that participate in a
blockchain-based trust management mechanism. Specifically, auditors
and verifiers in the blockchain environment lead to calculate a secondary
reputation score of the respective node in consensus. The whole process
is recorded in a shared blockchain, and thus integrity of the score is
ensured. While this approach allows for broader participation of the
selected (or trusted) nodes in reputation assessments, it also introduces
additional roles and components, such as auditors and a trust authority,
making the trust scheme more complex.

Establishing trust through direct and indirect reputation assessments
is typically feasible when a MEC node (resource or user) can interact
directly with the respective node or its immediate community. However,
in highly mobile and dynamic environments (C2), such as vehicular
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MEC resources and users (R3, U3), this approach is often impractical.
This is because nearby MEC nodes frequently change and connections
are disrupted, yet end-to-end trustworthy connections still need to be
established. Zhang et al. [112] introduce the concept of a path of trust,
enabling a MEC user to maintain a connection with a MEC resource
even as they move further apart. The approach relies on a multi-hop path
(between user 3 and system 2 in Figure 5.4) composed of trustworthy
intermediate nodes, where the end-to-end trust score is calculated by
multiplying the reputation scores of all nodes along the path. The trust
score is based on previous interactions and current connection quality
between nodes, which can also be associated with link reliability. The
multiplicative calculation has the reasoning that, longer paths are more
prone to disruption (C3) and are more likely to include a malicious
node, leading to lower overall trust scores. To mitigate these risks, users
can select paths with the highest (accumulated) trust scores to maintain
their connections with specific MEC systems. Alternatively, they may
dynamically choose to offload tasks to a new host with a better path of
trust, if available, ensuring reliable and secure service delivery.

5.7 Cross-domain Federation and Access Control

As discussed in the previous sections, highly mobile MEC users (U3)
can easily lose connection with MEC systems or experience untolerable
delays due to increasing distances. This requires handing over their
tasks across multiple geographically adjacent MEC systems (e.g., RSUs
or base station-integrated hosts) according to their moving trajectory.
These hosts can be managed by different service providers, or distributed
units of the same provider that are control semi-autonomously within
different MEC domains, i.e., geographical regions or control areas.
Accordingly, handovers necessitate proper mutual authentication and
access control mechanisms to ensure that services are provided only to
(benign) authorized users, and the users needs to authenticate MEC
resources to make sure that they are real and not compromised [106].

While existing authentication and access control approaches could
be embraced in MEC environments, they should still be adapted to the
distinct user characteristics. For instance, an authentication scheme
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must be sufficiently lightweight for deployment resource-constrained
devices (U1, U2). Besides, it should be performed quickly to minimize
time and messaging overhead (I1) for mobile users (U3). To address
those aspects, Jia et al. [37] propose modifying anonymous authenticated
key agreement (AAKA) protocol, which prevents the disclosure of user
private information while ensuring the authenticity of their identities,
as well as producing a common session key to facilitate subsequent
interactions. It has only one round message exchange overhead, thus
suitable for high mobility MEC users, as long as they are registered
with a trusted registration center before. Although such a trusted entity
is sufficient for access control within a standalone MEC system (I2), a
similar scheme across multiple MEC domains necessitates additional
components to evaluate the legitimacy, e.g., reputation, trust, and access
rights, of mobile users and perform handovers to the respective MEC
systems in different domains. This is especially important when these
domains have different access requirements and security levels.

Therefore, He et al. [30] introduce a cross-domain access control
protocol, including additional components such as the reputation man-
agement server (RPM), the cross-domain request server (CRQ), and
gateway nodes for each MEC domain. The RPM manages the reputation
of users in a particular domain, i.e., a regional reputation, and also
calculates a more extensive cross-domain reputation based on previous
cross-domain access attempts of the respective user. The CRQ handles
user requests for cross-domain access, e.g., for handovers or simply fetch-
ing information from a different MEC system. Additionally, a centralized
cross-domain relay server coordinates these requests between different
domains over the gateway nodes in each domain (I3). Here, a user with
sufficient reputation or access rights for a domain can be rejected by
another domain. That is, while such a comprehensive scheme helps build
a large-scale access control scheme, it still preserves domain-specific
access control policies that are enforced by different MEC systems.

Introducing additional cross-domain orchestration components into
MEC systems increases the complexity of an already highly heteroge-
neous and distributed MEC environment (C5). Moreover, components
such as centralized registration centers and RPMs, as proposed in the
aforementioned works, introduce additional trust anchors, which require
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continuous verification and protection to ensure their legitimacy (C7).
To address the reliance on such entities, Liu et al. [56] propose a domain-
committee architecture. Here, a domain does not necessarily represent
an independent MEC system but rather a collection of MEC servers
that are, for example, geographically proximate. In their proposal, a
committee of MEC servers within each domain run a Byzantine fault
tolerance protocol5 to make collective decisions for cross-domain access
and data sharing (I3). They also maintain their intra-domain blockchain
instance to process data sharing requests. This approach is further
enhanced with the integration of a public blockchain between domains
to guarantee secure cross-domain operations. The overall architecture
is illustrated in Figure 5.5. In this setup, a mobile user initially authen-
ticated in domain 1 can push its data to domain 2 using the proposed
inter-domain data-sharing mechanism. Likewise, the user can offload
tasks to domain 2 without needing to re-authenticate.

An efficient access control and authentication scheme should also
address scalability issues, which are particularly relevant to vehicular
edge computing scenarios (R3). That is, numerous moving vehicles
can strain a single authentication server, i.e., deployed on an RSU or
an external remote entity as proposed in the aforementioned studies.
Besides, the proposed handover techniques can still be latent due to
far distances between distributed MEC systems (C5). To tackle these
challenges, Liu et al. [53] propose a cooperative and decentralized low-
latency authentication scheme, tailored for vehicular users (U3). In this
scheme, multiple delegated proxy vehicles cooperate to authenticate
vehicular users on the road. Different sets of proxy vehicles constitute
authentication groups via secret sharing, and each group is associ-
ated with a distinct MEC system, e.g., RSUs or base stations (R2).
Their trustworthiness is also ensured by a tamper-proof blockchain
scheme, which manages the trust values of the proxy vehicles based
on their previous authentication records. Moreover, these vehicles can
be re-delegated reactively depending on their availability and changing
network conditions; thus, ensures adaptability of this scheme.

5Byzantine fault tolerance indicates that a distributed system can reach consensus
and operate correctly even if some nodes fail or act maliciously by relying on majority
agreement.
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Figure 5.5: A distributed cross-domain access control and authentication mechanism
proposed in [56]. In this approach, multiple MEC systems within domains 1 and 2
collectively reach a consensus to grant access permissions to users. The integrity and
security of this process are ensured through their distributed committee blockchain.
To facilitate cross-domain authentication and data sharing, interconnected domains
utilize a public blockchain to record and track their decisions.

5.8 Privacy-preserving Task Offloading and Management

Untrustworthy MEC hosts can exploit the mobile nature of MEC users
to breach privacy in several ways. For instance, location of mobile users
can be inferred by analyzing the size and frequency of offloaded tasks,
as closer proximity results in larger data transfers with lower latency.
This leakage also enables malicious entities to derive more sensitive
information, such as movement patterns potentially leading to extract
personal and social habits [111]. Furthermore, providing high-quality ser-
vices, e.g., for video streaming and gaming (U2), in MEC often requires
analyzing user histories for accurate QoS predictions to provide the
desired service quality seamlessly. While this enhances user experience,
it can also expose users to profiling and surveillance. Addressing these
challenges requires privacy-preserving task allocation and management
mechanisms that can protect user data from untrusted entities, without
compromising their QoS experience in MEC environments.
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The first challenge in privacy-preserving task offloading is selecting a
trustworthy MEC host that minimizes data leakage risks (C7). However,
the high contention for limited resources (C4) in MEC environments
may prevent all users from utilizing a single MEC host with the best
reputation, as this could overload that particular system. To address
this issue, Wu et al. [105] associate the privacy requirements of different
user tasks with the reputation of MEC hosts, thereby developing a
privacy-aware offloading strategy. They introduce task sensitivity to
quantify the threat to user privacy if sensitive task-related information
is leaked. Furthermore, they model an MEC social network to map
trust relationships between MEC users and hosts based on identity
and behavioral trust evaluations. A task is offloaded to a host when
its sensitivity level (categorized into three levels) aligns with the host’s
associated trust value. To achieve optimal matching, the authors consider
various offloading modes, including local computations (see Section 5.4)
and P2P offloading (R3).

The integration of task sensitivity and trust relationships facilitates
offloading critical tasks to reputable MEC hosts. However, from a privacy
perspective, exposing users’ private information to MEC systems, even
those with high reputations, is still a concern. For instance, due to
the mobile nature of MEC users (C2), their changing locations must
be known to ensure service availability but can also be exploited to
infer unintended user information [111]. To address this, Wang et al.
[103] propose a location perturbation approach, where users perturb
their location information based on their privacy requirements while
remaining within the service coverage of MEC hosts (e.g., R2 resources
integrated into base stations). The primary challenge is determining
the perturbation region adaptively, such as the range within which a
user perturbs their location, so tasks can still be offloaded to MEC
hosts with the highest utility while minimizing information leakage. The
authors employ a differential privacy6 approach to measure privacy loss
and evaluate trade-offs between this loss and utility gains. To address a
similar issue, Cui et al. [13] introduce the concept of a privacy area.

6Differential privacy is a mathematical framework and guarantees that an indi-
vidual’s data cannot be inferred from a data collection. Thus, it ensures the privacy
of individuals, while still allowing analysis of the overall data.
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As illustrated in Figure 5.6, User 1 can connect to MEC systems 1,
2, and 3 (denoted by their coverage areas) to access their services and
thus have a large utility area that equals to the total service coverage of
all MEC systems. However, this could allow them to infer that the user
is located within a small privacy area (area 1, blue dashes). In contrast,
user 2 can only connect to system 3 and could be located anywhere
in its service range, i.e., a large privacy area (area 2, purple) but a
small utility area limited with the range of system 2. Consequently, the
user’s goal is to select the optimal set of MEC hosts that maximize
the retrievable information or available services while minimizing the
risk of localization. The authors then propose an optimization problem
that (geometrically) balances the size of privacy area and utility area,
ensuring the user can still use all necessary services provided by the
minimum number of MEC hosts.

Apart from the general location-privacy challenges addressed in the
aforementioned studies, other MEC applications may require sharing
specific metrics and data, which can also lead to privacy concerns. For
instance, in [113], MEC users require QoS-related metrics to forecast
the service quality of different MEC hosts for a video streaming appli-
cation (U2), enabling them to connect to the best resources within a
specific region. To achieve this, they request the historical QoS values
of similar users who were served by MEC hosts in the same region.
The assumption is that users in similar regions experience comparable
latency and video quality, as these metrics mainly depend on the lo-
cal communication infrastructure. However, users are often reluctant
to share such information, as it could expose their application usage
patterns and preferences. To address this issue, the authors propose
a differential privacy method, where users disguise their QoS metrics
by adding Laplace noise7 while still allowing accurate forecasting for
other users. This noise is dynamically adapted (i.e., reactive) to ac-
count for the changing conditions resulting from user mobility (C2) and
dynamic connectivity issues (C3), ensuring that the disguised value
remains representative of the respective MEC region. This approach

7Laplace noise is a form of random noise derived from the Laplace distribution. It
is added to data in the context of differential privacy to ensure privacy preservation
while still allowing for meaningful analysis.
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System 1 System 2
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Privacy area 1

User 2

Privacy area 2

Figure 5.6: The concept of privacy area. When user 1 interacts with the system
1, 2 and 3, inferring its location is easy since it should be somewhere within the
intersection of service coverage areas of these systems. Therefore, it has a small
privacy area (blue dashed). In contrast, user 2 is connected only to system 3 and
thus could be located anywhere in a larger area (pink). The concept is overall useful
to register a user to the minimum number of MEC systems to maximize its privacy
area, ensuring service quality and availability.

balances privacy preservation with the need for reliable service quality
predictions in dynamic MEC environments.



6
Discussion and Future Directions

As a result of analyzing MEC challenges, reviewing several related
works, and deriving overarching resilience measures and concepts, we
have identified several key insights and future directions to enhance the
resilience of MEC systems. This section highlights these takeaways and
potential areas for future research.

Joint vertical and horizontal MEC orchestration

In Figure 3.1, we illustrate a highly heterogeneous and distributed MEC
ecosystem, identifying these as two critical challenges in Section 4.1.
These challenges are also reflected in the resilience concepts we discussed
within the context of multi-level and cross-domain measures, particu-
larly in Sections 5.4 and 5.7. The former addresses resource allocation,
connectivity, and resilience issues vertically across different types of
MEC resources (R1, R2, and R3), while the latter focuses on similar
issues horizontally across diverse MEC systems (e.g., those belonging to
either R1, R2, or R3). In essence, multi-level coordination emphasizes
resource characteristics such as capacity, proximity, and dependability,
whereas cross-domain problems stem from the multi-stakeholder and
distributed nature of various MEC systems. A truly holistic MEC per-
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spective requires integrating these vertical and horizontal optimization
approaches to tackle distinct challenges related to C4 and C5. This
holistic view is also illustrated in Figure 6.1.

R1 Level

R2 Level

R3 Level

Horizontal

Horizontal (I3)

Domain

Domain

Figure 6.1: Vertical and horizontal inter-MEC optimization requires interaction
between several distributed MEC systems and domains with different characteristics.
Here, a domain can include multiple MEC systems, orchestrated by a single controller.

Such holistic approaches have several implications. For instance,
the cross-domain access control mechanisms discussed in Section 5.7
involve handovers between geographically adjacent MEC systems. In
these schemes, assuming a proxy MEC entity (or controller) to manage
interactions with subsequent MEC systems is relatively straightforward.
However, extending this to multi-level coordination between remote and
heterogeneous MEC resources demands a more comprehensive controller
architecture capable of accessing all MEC resources within acceptable
latency constraints. Here, blockchain-based approaches (as also un-
derlined in Section 5) can help evolve rather centralized management
and orchestration functions of MEC environments to distributed and
collaborative decision mechanisms with tamper-proof data structures
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and processes. Another issue is that multi-level coordination models,
as outlined in Section 5.4, often simplify the task by selecting among
R1, R2, or R3 resources for offloading. This abstraction reduces dis-
tributed and cross-domain MEC systems of the same resource type to a
single MEC entity, failing to capture the complexity of task offloading
across distributed systems and missing the potential benefits of (hori-
zontal) resource scalability. Joint vertical and horizontal coordination
for large-scale MEC systems may also require topological optimizations
to strategically place MEC resources, ensuring efficient and seamless
operation even in the event of failures or attacks.

The final issue pertains to the standardization of cooperative MEC
systems. The leading standardization effort, ETSI (see Section 3.2),
does not address interactions between MEC systems owned by different
service providers. It remains unclear how their orchestrators should
cooperate to holistically utilize diverse MEC systems. This necessitates
defining inter-MEC coordination standards and requirements, such
as configuration models, data types, security constraints, and privacy
policies. Another important challenge is harmonizing and adapting the
different, potentially competing resilience priorities of distinct MEC
providers.

Artificial intelligence and federated learning

MEC is regarded as the front layer for processing big data using algo-
rithms based on AI and ML in various technological domains, including
video content analysis, autonomous vehicles, and large-scale IoT systems
[34]. From a resilience perspective, these algorithms are particularly
valuable for capturing behavioral patterns in complex and dynamic
MEC environments, detecting anomalies, and developing adaptive re-
silience strategies [84]. In Section 5, we have already presented some
application scenarios of AI/ML, and here we briefly discuss their benefits
and related challenges.

First of all, in distributed MEC environments (e.g., those employing
multi-level and cross-domain orchestration), centralized AI models can
correlate logs and telemetry data across multiple MEC systems to
identify faults and attacks in large-scale interconnected incidents. AI-
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based anomaly detection models extend beyond traditional solutions,
addressing dynamic, complex, and interconnected failure and attacker
models that are often overlooked in existing studies. Moreover, they can
be leveraged for forecasting anomalies as part of predictive analytics
methods.

From a model development perspective, federated learning (FL)
is a promising approach, which aligns well with the distributed and
interdependent nature of MEC systems. It enables the development of
local and global models for anomaly detection, user behavior analysis,
and task management [51]. For example, a standalone MEC system can
allocate resources and schedule task handovers to neighboring MEC
systems by predicting user mobility patterns using a global FL model
collaboratively trained by multiple MEC systems serving those users.
This approach ensures seamless availability and high reliability for criti-
cal tasks. FL also inherently preserves the privacy of individual MEC
systems, reducing concerns about inter-MEC data sharing (I3). Addi-
tionally, FL alleviates the training burden on resource-constrained MEC
systems (R2, R3) by enabling distributed and collaborative learning
[16].

Despite these advantages, implementing AI/ML models in mobile,
heterogeneous, and distributed MEC environments comes with chal-
lenges. Dressler et al. [20] emphasize the critical considerations for
designing ML-based orchestration models tailored to MEC, particu-
larly in ad-hoc resource environments (R3). These models must address
diverse service requirements (C1) and the heterogeneity of network
and infrastructure (C3, C4). They should also be continuously trained
and updated in response to the changing demand dynamics caused by
user mobility (C2). Finally, trust remains a significant challenge for
federated learning approaches in heterogeneous and multi-stakeholder
MEC environments [79]. That is, it should be ensured that no untrust-
worthy MEC system can poison the global model. For this case, bilateral
trust assessment mechanisms has an additional importance to prevent
compromised MEC system and users contributing to the development
of FL schemes.
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System and network hardening

Although we do not specifically focus on these aspects, system and
network hardening are fundamental to the resilience of MEC environ-
ments. First, strict hardware security and isolation mechanisms are
essential, as MEC services increasingly depend on secure cryptographic
operations. Hardware Security Modules (HSMs) have long served as a
trusted foundation, but they face scalability challenges in multi-tenant
and shared execution environments—especially with the rise of microser-
vices requiring frequent cryptographic operations. This underscores the
need for scalable and efficient hardware security platforms that maintain
strong isolation in dynamic MEC systems [28].

Second, virtualization-level vulnerabilities pose significant threats,
not only enabling malicious attacks but also causing potential con-
tamination in shared resources due to inadequate isolation at the OS,
hypervisor, or container layers [10]. Additionally, software vulnerabili-
ties in MEC services can serve as entry points for attackers to exploit
other MEC components, leading to unauthorized access and privilege
escalation. Here, with suitable hardware support, Trusted Execution
Environments (TEEs) can ensure the confidentiality and integrity of
computations within virtual instances. For instance, confidential virtual
machines (CVMs) enable encryption of the (virtual) OS and application-
specific data, remote attestation, and verifiable isolation for critical
services within TEEs [81]. Trusted containers with integrity protection
can also be a lightweight alternative to heavier VM solutions for multi-
tenant and dynamic MEC systems (R2, R3) hosting mixed-criticality
services [50]. Note that the networking and computational overhead
of remote and continuous attestation for such solutions must be care-
fully considered, as they necessitate additional cryptographic operations
and data exchange between MEC systems, controllers, and third-party
verifiers [14], [89].

Third, robust network hardening measures—such as network segmen-
tation, traffic monitoring, and separation—are crucial [36], particularly
in heterogeneous MEC environments with multiple providers (C4) and
mixed-criticality applications (C1). Finally, ensuring the physical re-
silience of MEC infrastructure is challenging due to its geographically
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distributed nature (C5). Without proper isolation, protection, and mon-
itoring, MEC systems remain vulnerable to physical threats. Especially
in remote areas, additional safeguards such as earthquake-proofing, fire
detection and control, breach monitoring, and physically secure perime-
ters are critical [75]. To address these challenges, hardening measures
must ensure that all hardware, software, and network configurations as
well as the deployment of physical infrastructure are properly set, con-
tinuously monitored, and regularly tested for compliance with certain
MEC resilience standards, which have not been formally defined so far.

Zero-trust architecture

In heterogeneous MEC environments with numerous stakeholders, au-
thentication mechanisms verify the identities of MEC systems and users
(see Section 5.7). However, trust extends beyond authentication by in-
corporating confidence in an entity’s behavior, reliability, and intentions
over time. This is essential in scenarios requiring repeated interactions,
data integrity, fairness, or secure collaboration between stakeholders
with varying motivations.

In Section 5.6, we reviewed several reputation assessment mecha-
nisms for involving trust in MEC environments. Beyond these standalone
mechanisms, a proper architecture with standardized facilities is needed
to enable secure interactions between diverse MEC systems and users.
The National Institute of Standards and Technology (NIST) defines a
reference model for zero trust architecture (ZTA) [74], which assumes
no implicit trust between users and systems. It manages trust through
components like the policy engine, administrator, enforcement mech-
anisms, and identity and access management. Integrating these ZTA
components into existing reference models, such as ETSI in Figure 3.2
or into a more comprehensive system model in Figure 3.1, remains an
active research area. For instance, Dhanapala et al. [17] implement a
policy engine, incorporating reputation assessment methods like those
reviewed in Section 5.6. In [2], ZTA is integrated with the 5G network
stack, leveraging R2 resources deployed at base stations for trust assess-
ment functions. Similarly, open networking paradigms such as Open
Radio Access Networks (O-RAN) facilitate synergies between network



318 Discussion and Future Directions

infrastructure, ZTA, and MEC to implement tightly coupled access
control mechanisms [39].

The implementation of policy engine and enforcement components
should also be aligned with the unique MEC characteristics. For example,
MEC users with diverse and dynamically changing service requirements
(C1) cannot be evaluated solely through static behavioral trust assess-
ments. This necessitates secure authentication methods integrated with
trust-based access control policies to ensure that highly mobile users
with critical tasks (U3) are not unfairly penalized by potential false neg-
atives in trust evaluations. AI/ML models could provide more accurate
assessments of these changing behavioral patterns, as briefly discussed
in the previous section.

Multi-dimensional space-air-ground MEC environments

In Section 3.1, we described R3 resources as mobile and ad-hoc MEC
systems and provided examples of UAV-based flying MEC servers that
collaborate with ground-based MEC systems [33]. The integration of
air-ground MEC systems creates a comprehensive MEC environment,
where users can leverage the robust capabilities of ground-based MEC
systems (R1, R2) alongside the flexibility of dynamic air systems (R3),
which can serve various locations on-demand. Here, it is also possible to
imagine UAV-based base stations with integrated MEC systems (e.g.,
a combination of R2 and R3) [12]. However, such integrated systems
and the combination of air-ground MEC environments bring several
research challenges.

One key challenge is determining the mobility trajectories and op-
timal placement of flying MEC systems. These must align with the
mobility patterns of users and adapt dynamically to changing demands.
Additionally, placement strategies should ensure efficient load balancing
between air and ground MEC systems. For instance, mobile MEC sys-
tems can act as a last resort when ground-based systems cannot meet
user demands, to moderate their utilization and frequent relocation,
and eventually avoid their energy depletion [104]. Reliable networking
is another critical issue. Communication and channel modeling, along
with network coverage in three-dimensional space, differ significantly
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from terrestrial networking [32], adding complexity to joint computa-
tion (e.g., task offloading) and communication optimization problems
(see Section 5.3). These challenges are further amplified in inter-MEC
collaboration scenarios, requiring consideration of UAV-to-UAV, UAV-
to-ground MEC, and UAV-to-user interfaces simultaneously. Addressing
these complexities necessitates advanced AI/ML models or effective
heuristics rather than traditional constrained optimization approaches.

Air-ground MEC environments can also extend into space by in-
corporating satellite systems to enhance connectivity [71]. Space-air-
ground MEC systems align with emerging 6G networks, which aim to
seamlessly integrate satellite systems, high- and low-altitude platforms
(HAPS/LAPS), and terrestrial base stations to maximize network cov-
erage [5]. A comprehensive picture covering all potential components of
space-air-ground MEC is shown in Figure 6.2. Initially, integrating MEC
with satellite systems might appear counterintuitive, as the primary goal
of MEC is to bring computational resources closer to users. However,
satellite-based MEC nodes can directly process computational tasks
for users in areas with limited or no terrestrial coverage. This reduces
the need to transmit large data volumes to distant cloud data centers.
Satellites can also serve as a last resort during disasters, adding another
level of MEC resources, as discussed in Section 5.4, and thus enhancing
the resilience of the system. Despite these advantages, space-based
MEC systems face distinct challenges, such as connectivity constraints,
computational resource limitations, and issues related to security and
synchronization [26], [52]. Finally, viewing space-based MEC systems
as a multi-layered resource, with nodes placed at different altitudes,
such as low earth, medium earth, and geostationary orbits (LEO, MEO,
and GEO), introduces additional modeling opportunities. While these
setups increase complexity, they also offer greater flexibility for task
offloading and data sharing in orbital MEC environments [109].

Energy efficiency and sustainability

Sustainability in MEC has been an ongoing trend, with its relevance
spanning various aspects of MEC, from the hardware design of MEC
hosts to energy-efficient resource allocation and load balancing [6],
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Figure 6.2: Multiple layers of the integrated space-air-ground MEC environments
in terms of different altitudes.

[62]. Although not extensively discussed among our resilience measures,
energy efficiency and sustainability have direct and indirect implications
for building resilient MEC systems. This is particularly crucial for
ensuring the dependability of mobile MEC resources (R3) with limited
energy sources, such as batteries in UAVs or electric vehicles, as well
as for low-power MEC users who cannot afford the energy costs of
transmitting large volumes of data or performing local computations.

By optimizing energy consumption, MEC systems reduce the likeli-
hood of resource depletion, which could otherwise lead to service outages.
For instance, energy-aware task offloading algorithms can distribute
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workloads across MEC systems based on their energy availability, ensur-
ing continuous service delivery [22]. This principle can be extended to
task scheduling, where energy constraints impose additional time-critical
requirements, where the battery life of MEC resources and users must
be considered to complete tasks with high reliability. This is particularly
important for UAV-based MEC systems (R3) as they require frequent
recharging and redeployment after completing their allocated tasks.
Some approaches also utilize energy harvesting and wireless charging
for such systems, which is an additional dimension for planning their
mobility trajectory [106].

Incorporating energy efficiency adds further complexity to the al-
ready challenging problems of task allocation and scheduling. Estimating
task completion time, including computation and communication time,
has always been crucial to accommodate diverse service requirements
(C1). However, energy consumption must also be considered. Here, en-
ergy cost of a task depends not only on its computation time but also
on its computational intensity and the specifications of the MEC system
executing it, such as the capabilities of its I/O devices and proces-
sors. AI/ML models can play a pivotal role in modeling these complex
relationships between different application types and heterogeneous
MEC systems, enabling energy-efficient task allocation and scheduling.
Eventually, this can prolong resource availability and improve system
resilience.

From an MEC user’s perspective, energy consumption is a compro-
mise between communication and computation [65]. Specifically, the
energy cost of data transmission for task offloading can outweigh the
energy-saving benefits of remote computation when the tasks require
heavy data transmissions or the links are unreliable with high packet
loss. Energy-aware offloading strategies that balance the amount of local
and remote computations, based on the energy cost of data transmis-
sion, could help reduce the energy footprint of individual users [114].
Dependability and trustworthiness of MEC systems also interact with
energy efficiency. For instance, regardless of its proximity, an unreliable
(e.g., due to frequent faults) or untrustworthy MEC system can force a
user to re-offload their task to another MEC server or revert to local
computation. This introduces additional energy overhead. In this sense,
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exploring the interplay between resilience goals (e.g., dependability and
trustworthiness) and energy efficiency presents an intriguing research
direction.



7
Conclusion

Cloud and edge computing paradigms have significantly transformed
the scope of modern applications, enabling resource-constrained devices
to perform powerful and computationally intensive tasks by offloading
them to virtualized, remote servers. The multi-access (or mobile) edge
computing (MEC) paradigm takes this a step further by allowing highly
mobile and wirelessly connected users to execute applications in a time-
sensitive manner. However, the heterogeneous nature of computational
resources, the dynamic demands of users, and the overall unpredictabil-
ity of the MEC environment due to mobility and the stochastic nature
of wireless communication make it challenging to ensure ubiquitous
resource availability and deliver high-reliability services. Additionally,
the presence of multiple stakeholders who can dynamically join or leave
the MEC environment creates a potentially hostile setting, where issues
of security, trust, and privacy become paramount. As such, resilience
emerges as one of the most pressing concerns in the design and mainte-
nance of MEC systems. In this work, we explored challenges, concepts,
and measures necessary for establishing resilient MEC systems.

The first key contribution is the analysis of structure, components,
and actors within the MEC ecosystem to better understand their general
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requirements. This effort resulted in a comprehensive system model that
illustrates the various types of MEC resources, users, and interfaces,
as well as their interdependencies. From this foundation, we identified
seven key challenges that reflect the heterogeneous, dynamic, and dis-
tributed nature of MEC environments. These challenges underscore both
the necessity of resilience measures and the difficulties associated with
developing them. The proposed system model and challenges allowed us
to present a holistic view of the MEC landscape and to define essential
resilience goals and techniques. We introduced two primary resilience
goals: dependability and trustworthiness. These goals encompass multi-
ple objectives, such as reliability and availability within dependability,
and security, trust, and privacy within trustworthiness, but also reflect
more classic performance measures like energy efficiency, data rate, and
latency. While these objectives helped highlight specific resilience issues,
the overarching goals provided a framework to highlight the interde-
pendencies among them. For instance, resource availability and service
reliability should be guaranteed together to have a fully functioning
and dependable MEC system; they cannot be addressed in isolation.
These goals and objectives were carefully selected not only to address
general resilience concerns in MEC but also to address gaps in the
literature. Additionally, we emphasized the importance of employing
both proactive and reactive techniques to achieve these goals effectively.

The second key contribution of this work is the presentation of
eight resilience measures. We defined these measures conceptually and
provided several examples for each, derived from our extensive literature
analysis. These examples are further associated to (i) the challenges
they address, (ii) the MEC components and actors they target, (iii)
the resilience goals they aim at, and (iv) the techniques they employ.
Through these examples, we discussed potential trade-offs and alterna-
tive approaches to implementing the proposed measures.

Finally, we outlined directions for designing more comprehensive,
intelligent, sustainable, and seamlessly connected resilient MEC systems.
We are certain that this work provides researchers with a comprehensive
understanding of resilience in MEC, highlighting its challenges and
potential solutions based on latest research and technological advance-
ments.
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