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Abstract: We present and discuss the Autonomous Localization
Framework (ALF), a self-organizing indoor localization environment.
Location awareness is an important property for a growing number
of applications. GPS is frequently used to provide this information in
outdoor environments, but this is not applicable for indoor applications.
There have been many approaches to solve the localization problem
for those GPS-denied scenarios. However, many of them are limited to
certain hardware restrictions or do not provide robust self-localization
in dynamic real world application. ALF is a complete and modular
framework based on minimal hardware requirements. The system is not
only capable to deploying itself autonomously in unknown environments
and offering position information among the participants, but it also
supports accurate real-time localization to customers. The concepts
allows to remove or to add features (e.g., the heading of nodes or certain
real-time capabilities) as the scenario demands or the even the used
hardware changes. The awareness and handling of measurement errors,
especially in Non Line of Sight (NLOS) cases, is an essential criterion
for a real world application.
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1 Introduction

Location awareness is an important topic for mobile systems. In the field of personal
computing, location-based services enabled a hitherto unknown type of interacting
with an application. In other domains such as Sensor and Actor Networks (SANET),
it is at least equally important (Hu and Evans 2004, Lazos and Poovendran 2005).
Such intelligent distributed computing systems can, in general, be summarized
as Smarter Planet solutions. Position information are an essential key feature to
leverage new information technology and networks, to create new capabilities, and
to provide a more intelligent way to perform common functions.

Typically, all localization approaches have one common characteristic: a
reference is needed before a location can be determined. This can be either a
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Figure 1 Conceptual model of our Autonomous Localization Framework (ALF)

map (showing obstacles) or a pre-installed active (or even passive) reference grid
consisting of so called landmarks. GPS has become a de facto standard for outdoor
localization. In GPS-denied areas like indoor environments, or if a higher accuracy
is required, other techniques need to be used. Due to of the high variance of system
parameters and scenarios, this is still a hot research topic. Besides of hardware
issues related to sensing and measurement capabilities, the robust and autonomous
establishment of a localization reference grid is one of the most challenging tasks
(Eckert, Villanueva, German and Dressler 2011b, Le et al. 2008). In this paper, we
show how to set up such a reference system in a fully self-organizing way and how
to use this reference system for accurate localization of highly mobile systems such
as flying quadrocopters.

The demands in terms of accuracy, cost, power consumption, and others
change with the application scenario. Our key objective is to reduce the hardware
requirements to a minimum due to cost and energy issues. Therefore, we can
not use Simultaneous Localization and Mapping (SLAM) techniques, which are
usually based on expensive laser distance sensors and/or resource-intensive image
evaluation (Hochdorfer and Schlegel 2010). We started with developing a cheap
mobile robot platforms for providing a reference grid to localization customers.
These robots are equipped with a short range radio for communication and with
an Ultrasound (US) ranging device for neighbor and customer detection. Using a
self-organizing approach, no global stages or knowledge can be assumed or will be
generated during system runtime (Eckert, German and Dressler 2011b).

Figure 1 depicts our Autonomous Localization Framework (ALF). Only based
on inter-node distance measurements, mobile nodes are autonomously deploying
themselves on the ground and start forming a robust reference grid. A customer, e.g.
a quadrocopter, can use this system to determine its location. A fully distributed
and self-organizing algorithm creates and maintains the reference grid using an
enhanced Mass-Spring-Relaxation (MSR) technique (step 1 in Figure 1). An initial
localization of potential grid nodes helps to prevent the system from oscillating
(step 2). The same technique is also used for customer localization (step 3) (Eckert,
German and Dressler 2011b).

Flying systems such as quadrocopters pose hard real-time requirements on the
localization system. Our Autonomous Localization Framework has been designed
especially for this application. We believe that the same system is well suitable for
any self-localization approach that is based on autonomous mobile systems forming
a reference grid such as the system described by Reich et al. (2011). The modular
concept always it to replace, to add, or to remove individual components as the
requirements or hardware abilities change.
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The key contribution of this paper, which extends our earlier work in (Eckert,
German and Dressler 2011a) can be summarized as follows: We developed a
robust and decentralized framework for enabling anchor-free localization support
using low-cost robot systems (Section 3). In an experimental setup, we evaluated
the localization performance of our system in terms of accuracy and real-time
(Section 4). We specifically show that no global state is necessary. We further show
that the implementation of the framework is capable of handling challenging real-
world problems like measurement errors or Non Line of Sight (NLOS). In addition
to our preliminary work in (Eckert, German and Dressler 2011a), a more complete
overview of the individual core components as well as their interaction is given.
New measurements were conducted to explicitly show the real-time capability for
increasing network sizes.

2 Related Work

In this section, we briefly discuss related approaches to localization, the use of a
grid of mobile robots, and NLOS issues.

2.1 Localization Systems

The Cricket system (Priyantha 2005) is probably the best known low-cost
localization system for indoor usage. It is a derivate from the Active Bat localization
system (Harter et al. 2002) and relies, like its predecessor, on US-based Time of
Flight (ToF) measurements to compute positions. The reported resulting absolute
position error is less than 30 cm. Although its design is fully decentralized, a non-
negligible effort is required for the reference node deployment and the bootstrapping
process for the coordinate system.

Chintalapudi et al. (2010) presented EZ, which is a WiFi-based localization
approach. Basically, EZ can be seen as a follow-up to the RADAR system by Bahl
and Padmanabhan (2000). Both systems estimate their positions using Received
Signal Strength Indicator (RSSI) measurements. Thus, the systems are at least
one order of magnitude less accurate compared to those relying on US and ToF
measurements. Depending on the scenario and a probability threshold P , EZ has
an accuracy of 2 m to 7 m (for P = 0.5). The main advantage is that no special
deployment effort is needed to bootstrap the system.

We are trying to combine the advantages of both approaches, the accuracy of
US-based systems and the ease of the deployment of the WiFi systems.

2.2 Mobility Support / Mobile Robots

In general, mobility support has been identified as a source for improving the
localization accuracy (Priyantha et al. 2005, Sichitiu and Ramadurai 2004). Thus,
for accurate and low-effort localization, the individual platforms need to be mobile.
At the same time, localization is one of the key requirements for robot coordination.
In (multi-)robot localization applications, the individual units are usually equipped
with quite resource and energy expensive components. Laser distance scanners and
computer vision are commonly used approaches (Hochdorfer and Schlegel 2010,
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Tasaki et al. 2010). On the positive side, this enables the use of SLAM techniques.
However, the resource requirements are extremely high and not feasible in many
scenarios, even though the advanced position sensors are actually only needed
during the construction of the reference grid, assuming that customer localization
should be performed using less expensive technology.

Casteigts et al. (2010) presented a novel approach for uniform robot deployment.
Based on spring and angular forces, regular hexagons are formed. This shape is
very robust in terms of measurement errors. However, the authors require stable
multi-hop communication and the robots may not converge to a fix physical position
if new nodes keep arriving or departing from the system. This is a critical condition
in terms of lifetime and the ability to serve as a reference for localization requests.

Most recently, Reich et al. (2011) presented a system of mobile robots spanning
an area based on connectivity between the systems. This grid could finally also be
used for localization approaches, even though the key objective here is to provide
connected coverage to optimize the overall system performance and the network
lifetime (Dietrich and Dressler 2009).

Our approach is to rely on cheap and simple mobile platforms for deploying
a minimal initial sensor array. Although all of our sensors are mobile, this is not
a major issue. For example, Shell and Matari (2004) developed a system where
mobile platforms have been used to deploy immobile human audible beacons. The
same technique can be used in our approach to further reduce the system costs for
the sensor deployment.

2.3 Non Line of Sight

Even if the reference nodes could be placed in an intelligent way, measurement
errors cannot be excluded. Depending on the signal propagation characteristics,
different sources for erroneous measurements need to be considered. One of the most
critical issues is the NLOS case. The Cricket system (Priyantha 2005) circumvented
this issue by placing the reference node on the ceiling. Therefore, emitters and
receivers are always in Line of Sight (LOS) and nearly no measurement errors
due to NLOS are to be expected. However, this restricts the scenario to indoor
applications and manual deployment of the nodes is needed.

Due to multi-path propagation of NLOS measurement pairs, the localization
errors can get very large. A common approach to determine the LOS connections is
to execute multiple measurements in order to statistically reduce the error. Opposed
to the traditional approach of a time history of range measurements, Güvenç et al.
(2008) only require the amplitude and delay statistics of a channel in order to
perform a NLOS detection. Another approach has been presented by Chan et al.
(2006). Based on probably incorrect measurements, they identify NLOS conditions
by evaluation the distribution function of all possible positions.

Both approaches compute 2D positions. In the this paper, we show that NLOS
can be identified without additional statistics if 3D positions are available together
with some easy to collect meta information.
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3 Autonomous Localization Framework

In the following, we introduce our Autonomous Localization Framework (ALF),
which is based on a number of components for setting up and updating the reference
grid and determining customer positions using US measurements. We stepwise
explain the different algorithms needed for an optimized localization behavior. Some
of the described techniques are optional techniques, introduced to improve the
accuracy or to obtain additional system information. The entire framework has
been built in a modular way: individual components can be replaced depending on
the potentials of the used hardware. It should be noted that two assumptions must
be fulfilled: nodes need to be capable of measuring to direct neighbors and they
need to be able to exchange information with those neighbors.

The key objectives of the localization framework are

• the initial, fully self-organizing deployment of an irregular reference grid,
i.e. use of autonomous mobile robots driving to appropriate places in the
environment that span a coordinate system by cooperatively assigning
themselves relative (anchor-free) positions,

• the accurate customer localization based on the reference grid, and

• the continuous update of the localization grid if the environmental conditions
change, e.g. due to new obstacles or added / removed robot systems.

3.1 Advanced Mass-Spring-Relaxation

ALF is based on accurate localization as a basis technique. In our previous work,
we presented a distributed version of the MSR algorithm, the Advanced Mass-
Spring-Relaxation (advMSR) (Eckert, Villanueva, German and Dressler 2011b).
Our localization algorithm is based on distance measurements and also, if possible,
takes Angle of Arrival (AoA) measurements into account. The advMSR is inherently
self-organizing, thus, assuming no global knowledge about the available nodes and
topology. Basically, the localization generates tuples (north, east)T for each node,
which are used by the ALF system.

The strategy and motivation for cooperative self-localizing algorithms can be
summarized as follows: The network can be represented as a connected graph
G = (V,E) with a vertex set V and edge set E. A node i is represented as a vertex
Ni ∈ V and a connection between a node pair (i, j) is represented as an edge
(Ni, Nj) ∈ E in the graph G. A connection is usually interpreted as the capability to
sense a node (determine distance and / or angle). For generalization, we assume that
no node knows its position (i.e., the network is anchor-free). However, for evaluation,
a unique but unknown map representation pr : V → <2 must exist, which maps all
vertices Ni to their physical positions (north, east)T . This representation is usually
called ground truth. What the advMSR algorithm in a distributed manner basically
does is to construct a map representation pv (called virtual coordinate system)
based on local knowledge. This representation pv is not unique but (if successful)
fulfills all relative attributes of pr within the measurement accuracy (here, ‖ · ‖2 is
the euclidean distance norm):

‖pr(Na)− pr(Nb)‖2 = ‖pv(Na)− pv(Nb)‖2; ∀Na,∀Nb ∈ V (1)
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Due to the lack of anchors which usually correlate pr and pv, the systems may
be arbitrary shifted, mirrored, and rotated.

We already reported the principles of the nature-inspired position estimation
for the representation pv and the maintenance process of the reference grid (Eckert
et al. 2010, Eckert, Villanueva, German and Dressler 2011b). In the following, we
assume the availability of such localization techniques and discuss system oriented
aspects of how areas can be explored, how the heading of a node can be determined,
as well as communication aspects of the framework. A key focus is on the handling
of measurement errors due to NLOS situations.

3.2 Area Exploration

In the initialization phase, we assume that all nodes start at a similar location and
need to be uniformly distributed over a given but unknown area. In consequence,
the nodes need to be able to autonomously determine their initial coordinates
(relative to each other) to finally spread over the area.

In the following, first, the localization accuracy and the probability for a
successful setup are determined. Basically, the more neighbors are allowed per node
and the better they are placed the more accurate the system will get. However, a
higher neighbor connectivity also means that the costs will increase significantly.
Secondly, the total system costs are defined. This is obviously a trade-off between
area coverage, accuracy, and cost.

Similar to the MSR-based grid maintenance algorithm, we again used a force
vector approach. We define different zones around each node to optimize the node
distribution process. Let rmin and rmax define two radii, which divide the area
Zi around the origin pr(Ni) of each node Ni into three zones (here, ‖ · ‖2 is the
euclidean distance norm). Then, the zones can be defined as:

Zrestricted,i := {~x ∈ <2 | 0 < ‖pr(Ni)− ~x‖2 < rmin} (2)

Zdesired,i := {~x ∈ <2 | rmin ≤ ‖pr(Ni)− ~x‖2 ≤ rmax} (3)

Zattractive,i := {~x ∈ <2 | rmax < ‖pr(Ni)− ~x‖2 <∞} (4)

As the zone names indicate, neighboring nodes are not allowed within
Zrestricted,i. Thus, rmin indirectly defines the maximum density of nodes and the
associated maximum system costs per ground area. Zdesired,i is the desired belt
around a node Ni where neighbors should be located. Node Ni will only connect
to nodes within this region. The number of neighboring nodes within this belt
|Zdesired,i| is equal to the edge degree d(Ni) of node Ni from a graph theory point of
view (|Zdesired,i| = d(Ni)). A threshold λ is used to control the system costs. This
threshold is basically limiting the maximum connectivity degree: 3 ≤ d(Ni) < λ,
where 3 is the minimum number of required connections for calculating a 2D
position.

Again, the higher the connectivity d(Ni) gets, the more accurate localization
results can be obtained, but at increasing system costs. This problem has already
been investigated in the literature. A typical value reported in the literature is in
the range of 8 to 13 connections per node (Priyantha et al. 2003). We experimented
with those values in the scope of the ALF framework. In most experiments, already
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Table 1 Placement decision constraints

Guard Action Use Nodes (Zc)

|Zrestricted,i| > 0 drive Zi \ Zdesired,i

3 ≤ |Zdesired,i| < λ place found -

λ ≤ |Zdesired,i| drive using 1
2 d̂i,j Zdesired,i

|Zattractive,i| > 0 drive Zattractive,i

else random drive -

a connectivity degree of 6 led to astonishingly good results. N.B.: λ should not get
below the error correction threshold of 4 (see Subsection 3.6).

Furthermore, the radii rmin and rmax must be chosen according to the optimal
detection range of the used distance measurement hardware. The closer both radii
get, the more regular distributions of the nodes will be achieved. However, the
more difficult it becomes for the algorithm to find a valid solution. Of course, rmax

should also not be set close to the maximum of the detection range in which the
distance measurement quality decreases in a non-linear way.

During the positioning phase of each node Ni, distances d̂i,j to all detectable j
neighbors are measured and sorted into the three introduced sets. The resulting
actions to be taken depend on four guards that are evaluated serially:

1. if neighbors are in the restricted zone, the node has to find a more appropriate
position;

2. if a sufficient number of nodes are in the desired zone (3 ≤ |Zdesired,i| < λ),
the node position can be fixed;

3. if too many nodes are in the desired zone, the node will move away from
those nodes;

4. if the node has to move and if there are nodes in the attractive zone, the
node will move towards those.

In any other case, the node will start searching randomly for better locations. All
the actions are summarized in Table 1.

In the following, we briefly introduce the force vector approach for repositioning
nodes to form the reference grid. All the calculations are performed locally at a
node, only taking the measurements to neighboring systems into account.

Node Ni is connected to each node from the selected set with a spring of
equilibrium length of l0 = rmin+rmax

2 . Based on the chosen set Zc (|Zc| = j), the

force vector ~Fi for the movement is computed according the basic MSR as depicted
in Equation 5, where ki,j is the spring constant (usually set to 1), ~ei,j characterizes

the unit vector from node Ni to node Nj ∈ Zc, and d̂i,j represents the corresponding
measured distance.

~Fi =
∑

Nj∈Zc

~Fi,j =
∑

Nj∈Zc

−~ei,jki,j(d̂i,j − l0) (5)

The unit vector ~ei,j can be obtained using two different approaches. Assuming
all nodes in Zc know there positions, thus, node Ni can localize itself according
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to these references and finally apply simple geometrical calculations. The problem
is that parallel operation and bootstrapping become extremely difficult. Another
approach is to measure angle information. Most distance ranging devices are based
on multiple sensors; our system uses four independent US sensors (Eckert, German
and Dressler 2011b). Thus, the AoA can be estimated. Our system provides an
accuracy of at least ±45◦, which is sufficient for the computations.

The final driving direction and distance are proportional to the force vector
~Fi. Small measurement uncertainties and the mobility of nodes helps to prevent
oscillations in the system to achieve fast convergence. N.B.: this scheme works well
both in 2D as well as in 3D.

3.3 Heading

The previously mentioned AoA estimation can also help to estimate the heading
of the platform, which is a necessary measure in various scenarios. In theory,
the heading Ψi of a node Ni can be computed using one arbitrary neighbor Nj .
According to the positions pv(Ni) and pv(Nj), the absolute heading Ψnorth

i,j =
atan2(pv(Nj)− pv(Ni)) in relation to the north pole (which is the commonly

assumed as 0◦)) can be determined. Subtracting the measured AoA Ψ̂i,j results in

the true heading Ψi,j = Ψnorth
i,j − Ψ̂i,j .

The described calculation becomes error prone in real scenarios due to biased
measurements and positioning errors. Simple averaging over all j headings Ψi,j

is not possible because of two reasons. First, there is a non-linearity due to the
overflow of the co-domain (Ψi,j ∈ (−π,+π]), which might lead to wrong average

values. Secondly, pv(Ni), pv(Nj) or Ψ̂i,j might be error prone and heavily affect
the results.

The overflow of the domain can be compensated by moving from angles to a
vector-based representation:

~ψi,j = (sin(Ψi,j), cos(Ψi,j))
T

(6)

However, the second issue is more challenging. Summing up all heading vectors
already allows to conclude to a fairly good estimation. This can further be improved
by adding a weight indicating the confidence to each vector. For our distance
measurement hardware, we see that the shorter the measured distance is, the more
accurate the measured AoA gets (Eckert, German and Dressler 2011b). Thus, the
weighting function κ(·) returns larger values for nodes in close proximity.

The overall heading can be computed described in Equation 7. The angle Ψi =
atan2(~ψi) of the resulting vector ~ψi represents the heading of node Ni. The length

of the vector ‖~ψi‖2 allows to conclude the confidence of this information. It is
normalized to κ(·).

~ψi =
1

j

∑
Nj

κ(Nj) · ~ψi,j (7)

3.4 Communication

For the ALF system, no specific communication topology is required. A sufficient
criterion is that each node Ni must be able to communicate with all of its j
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neighboring nodes Nj ∈ N̂i := {Nn ∈ V | ‖pr(Ni)− pr(Nn)‖2 ≤ rmax} (where V
represents the set of nodes). Multicast communication to all neighbors would be the
optimal solution for this application, because most of the transfered information
needs to be made available to all neighbors simultaneously. In wireless networks,
broadcast is an appropriate alternative.

In order to join an existing network, a node Ni registers to all of its neighbors
Nj after finding an adequate position. This registration needs to be reliable. Thus,
reliable unicast is needed for this process. If new or updated information (e.g.,

position pv(Ni), neighbor Nj , measurement d̂i,j) becomes available at node Ni, it
pushes this data to all of its neighbors. These in turn evaluate the data and perform
the necessary actions. This data will be transmitted more frequently. Therefore, no
reliable communication channel is required.

As a result, the amount of transmitted data packets is reduced to a minimum
and it also provides mechanisms for autonomously entering energy saving standby
states after system convergence has been reached. Also, no network-wide flooding
is needed.

3.5 Customer Localization

ALF is capable of cooperatively assigning positions pv(Ni) and headings Ψi to
network participants Ni. The used advMSR algorithm is quite accurate but may
take a relatively long time to reach convergence. The network gets stabilized as long
as involved nodes can stay within a given area, waiting for advMSR completion,
and will stay there for a long time. In contrast to this, there may exist nodes Nc,
which are not able to remain at a position (e.g., flying objects) or which should
not participate in the network V (e.g., due to lifetime issues). However, even these
nodes can benefit from the localization service in the network. We call this customer
localization.

The following properties need to be satisfied:

• customers Nc can be localized according to the reference grid,

• the resulting position pv(Nc) ∈ <3 is provided in time, and

• the reference grid V is not influenced by customers Nc /∈ V .

In our previous work, we presented a framework, which is specifically designed
for this purpose (Eckert, German and Dressler 2011b). The strategy can be
summarized as follows. A mobile node Nc /∈ V triggers a distance measurement. The
resulting data is distributed over the reference nodes Ni ∈ V in range. Subsequently
node Nc emits an agent (radio package), which collects the distance measurements

d̂c,i. Within a hard deadline the broadcast-based application layer protocol returns

as many measurement tuples µ(Ni) := (d̂c,i, pv(Ni))
T as possible to the initiator,

which, in turn, evaluates these tuples according to time and entropy concerns.
Exploiting this gathered information the position pv(Nc) ∈ <3 of the customer Nc

can be computed.

3.6 Measurement Errors

Usually, it is assumed that a measurement path is symmetric, i.e. d̂i,j = d̂j,i.
However, this only holds in approx. 90 % of our measurements and, depending on
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N1 N2

N3 N4

Nn

Figure 2 NLOS scenario (top view)

the scenario, may be even worse. A bad alignment between emitter and receiver
of the US distance measurements can falsify the result depending on the direction,
i.e. not a direct but a reflected signal triggers the measurement. Those incorrect
measurements cannot be distinguished from correct measurements as the jitter is
equal (the worst case scenario is static without mobility).

We try to correct such errors using a rather simple error model: Both directions
need to be measured to identify asymmetric measurements. As we use ToF, the
shortest flight time must be the most correct measurement (d̃i,j represents the
measurement from node Ni to node Nj):

d̂i,j = d̂j,i = min(d̃i,j , d̃j,i) (8)

If εi,j = |d̃i,j − d̃j,i| > θ, where θ represents the hardware specific error range,
then the node that measured the larger distance can also not rely on its AoA
estimation because it received the reflected signal. Overall, this solution gave us
almost 100 % reliability for the LOS cases.

Detecting NLOS links is even more challenging. Consider the example depicted
in Figure 2. This network consists of four initially perfectly distributed nodes N1,
N2, N3, and N4 at positions (0, 0), (0, 1), (1, 0), and (1, 1). The newly arriving node
Nn starts the localization procedure to subsequently join the network. Node Nn

has a NLOS link to node N4, all other links are LOS. None of the participating
nodes can distinguish between LOS and NLOS.

The distances will be determined as d̂n,i = 2−
1
2 ; i ∈ [1, 3]; d̂n,4 = 1. Thus, using

basic trilateration techniques (Eckert, German and Dressler 2011b), the node will
be located at four equally weighted positions: (0.5, 0.5), (0.25, 0.25), (0.25, 0.5), and
(0.5, 0.25). From this 2D view it is neither possible to determine the correct position
nor to identify the outliers.

However, from a 3D point of view and by adding additional knowledge about
the height of a system (in our case, all the robots are driving on the floor),
the correct position can be obtained by looking at the Z-coordinates: 0.0, NaN,
0.43, and 0.43. Obviously, the first coordinate (0.5, 0.5, 0.0) must be the correct
result. Measurements that result in wrong Z-coordinates are considered NLOS
links and need to be blacklisted in the localization framework. Without any loss
of generality, this approach can be applied to almost any localization scheme.
Obviously, additional information is necessary to identify NLOS cases. For best
results, additional hardware components are needed to minimize such failures. For
obtaining height information, for example simple pressure sensors could be used
providing a relative accuracy of a few centimeters.
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Figure 3 System behavior of the ALF localization framework

In general, NLOS can be detected if three measurement tuples are available
together with additional height information. If one or more additional tuples are
available all NLOS links can be identified as long as three correct LOS links are
available.

The third important source of error is the co-called flip ambiguity problem,
which is typical for almost any localization technique (Kannan et al. 2010). Due to
small measurement errors, nodes may get wrong initial coordinates. This typically
happens if the reference nodes for the localization are nearly collinear placed. In
such situations, very small measurement errors significantly falsify the Z-component.
Thus, it is very likely that those get always ignored. We counteract this issue
exploiting the mobility of our nodes, using short movements in random directions.

3.7 Network Bootstrapping

An initial network V ′ needs to be constructed before nodes can regularly join. Three
nodes (|V ′| = 3) are sufficient to span up a plain. However, to avoid placement
errors at the very beginning, a fourth node is required. All four nodes need to be
fully connected and well placed to safely bootstrap the grid: Three nodes generate
the coordinate system and the fourth node localizes itself according to this trio to
verify that there is no NLOS in the initial network (see Section 3.6). In order to
speed up the initial bootstrapping, we implemented the bootstrapping in a central
manner, even though the localization process is fully decentralized. A root node
requests all measurements from three nodes, performs all the computations related
to the initial localization step, and, afterwards, assigns the initial positions. This
central approach with very small computational efforts clearly outperforms other
solutions that require clearly more time for the initialization and a high number of
transmissions to identify NLOS issues.
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Figure 4 Validation of simulation and experimental results

3.8 Overall System Behavior

The system behavior of ALF for each node Ni is summarized in Figure 3. After
starting the system, each node is searching for an existing localization grid. If the
particular node is immobile, it is also feasible to sleep for a certain time and then
retry to establish a connection. As soon as the node finds a sparsely covered part
of the network, it starts the initial self-localization (Eckert, German and Dressler
2011b) before it can become part of the grid by registering with the neighbors in
the grid. The robot then continuously tries to improve its initial position using our
advMSR technique. As soon as the estimated localization error falls below a certain
threshold, the robot is ready to serve customers’ localization requests. In theory,
the system can stay in this state for a very long time. No additional measurements,
computations, or transmissions need to be performed. However, if errors can not
be solved or if the connectivity level falls below a predefined threshold, the robot
can re-enter the initial phase and move to another position. No global knowledge
or additional synchronization is involved to establish the grid.

4 Evaluation

In order to evaluate the localization performance of the Autonomous Localization
Framework, we performed a number of experiments, each focusing on specific
characteristics of the algorithm. First, we briefly show that the used experimental
setup, i.e. our localization hardware, performs the advMSR algorithm with similar
accuracy as previously estimated in simulations (Eckert, Villanueva, German and
Dressler 2011b). We then carefully evaluated the behavior in NLOS situations,
before finally assessing the overall system performance.

4.1 Advanced Mass-Spring-Relaxation Performance

The core of the ALF framework is based on the Advanced Mass-Spring-Relaxation
technique. It has been carefully examined in a custom build simulator for network
sizes of up to 1000 nodes (Eckert, Villanueva, German and Dressler 2011b). The
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(a) Non Line of Sight experiment (b) Customer localization

Figure 5 Real world experimental setup

algorithm only interacts with direct neighbors and does not require any global
knowledge. The advMSR self-localization performed extremely well in simulation
as previously reported. In order to validate the algorithm before starting to
assess the overall performance of our framework, we repeated those simulation
experiments with lower node numbers and also executed similar experiments using
our localization hardware. Basically, up to 8 nodes were placed randomly in the
environment before starting the advMSR procedure. Figure 4 shows that for real
world experiments the constructed network representation accuracy is within the co-
domain of our simulator. The evaluation is based on relative node distances between
the calculated positions and the actual ones. The Root Mean Square (RMS) of
the normalized error of both the simulation and the lab experiments are similar.
The RMS has been identified as an accurate measure to compare self-localization
solutions (Eckert, Villanueva, German and Dressler 2011a). The figure depicts the
RMS for different network sizes in form of boxplots. The thick line represents the
median. The rectangular boxes contains 50 % of the measurements indicating the
25 % and 75 % quantiles. Finally, the whiskers show the 2.5 % and 97.5 % quantiles.

4.2 NLOS

Figure 5(a) shows a typical NLOS situation. The edge between nodes N6 and N2

cannot be measured correctly due to an obstacle. Multipath propagation effects
result in the following measured distances: d̃6,2 = 1.8 m, d̃2,6 = 8 m, whereas the
true physical distance is d6,2 = 1.04 m. The accumulated results as used internally
by ALF of a selected run are depicted in Figure 6. In this figure, all the nodes, their
headings, as well as the connecting links are drawn. Green links are correct from the
algorithm’s point of view. Mangenta links indicate blacklisted ones, which are not
considered for further computations. As can be seen, ALF reliable detected and
ignored only the NLOS link. The distance error was |‖pv(N6)− pv(N2)‖2 − d6,2| =
3 cm. Without this blacklisting scheme, no correct solution could be found.

In total, we conducted two experiments (ten repetitions for each) with the
same setup. For the NLOS detection, a threshold ξA is needed to decide whether
to accept the computed position or not. For the first experiment, we used ξA =
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6θ, where θ represents the hardware specific error range. In three out of ten
repetitions, it was not possible to correctly detect the NLOS link during the
first initialization. However, after some nodes autonomously disconnected and
reconnected (see Figure 3 parameters out of range), a valid solution could be found.
For the second set of experiments, we used a smaller threshold of ξA = 4θ. In this
configuration, the system detected the NLOS link with 100 % accuracy.

4.3 Overall System Performance

ALF has primarily been designed to provide self-localization services to mobile
customers such as flying quadrocopters. Unfortunately, it is not easily possible to
accurately steer a quadrocopter on a given trajectory to verify the localization
system’s accuracy. Thus, we used a toy train to simulate the quadrocopter by
moving the localization unit on a well defined trajectory. In our experiment, the
sensing device was mounted on a stick at an altitude of 64 cm. It is driving on a
rectangularly shaped trajectory through an autonomously constructed reference grid
consisting of nine nodes. In this setup, straightforward and curve movement can be
investigated. Figure 5(b) shows a picture of the testbed. For NLOS measurements,
we placed an obstacle in the middle of the set. This results in at least Pmf = 30 %
corrupted measurements. Similar values have been reported in the literature, e.g.
by Casas et al. (2006).

4.3.1 LOS

In a first experiment and as an reference, we removed the obstacle in the middle
of the set. Figure 7(a) depicts the resulting coordinates for the client in form of a
scatter plot for the top view. The train was driving 10 times around the railroad line
with a speed of approx. 1 m s−1. The darker an area gets the more often the sensor
was detected in this area. The rectangle of the railroad can clearly be identified. As
the mechanical construction on the train was slightly instable, the sensing hardware
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Figure 7 Line of Sight experiment

Table 2 Altitude error in meter

Exp. Min 1st Qu. Median Mean 3rd Qu. Max

LOS -0.191 -0.022 -0.005 -0.008 0.011 0.111
NLOS -0.377 -0.025 -0.002 -0.009 0.020 0.348

can swing a few centimeters on the top of the stick. These oscillations distort the
integrated prediction filter, resulting in incorrect positions. In contrast to our initial
approach (Eckert, German and Dressler 2011b), we used a linear multistep method
(Adams-Bashforth-Method) to improve the predication in the curves.

Measuring the actual position of the train on the ground is unfortunately too
inaccurate, because we had no odometry available with an accumulated error smaller
than a few centimeter. Therefore, we evaluated the measured altitude. The altitude
of the sensing device was exactly constant (64 cm; the altitude change due to the
oscillations is negligible). A histogram for the altitude error is shown in Figure 7(b).
As can be seen, the accuracy is very high. Numerical values presented in Table 2
indicate that 50 % of the measurements are within ±2.2 cm of the correct altitude.
The maximum measurement error was 19.1 cm.

Figure 8 shows individual measurements for a small part of the railroad.
The upper plot depicts the altitude measures and estimations for different East-
coordinates. The lower plots shows North-East-coordinates. In our experiment, the
train drove counterclockwise. The original railroad as well as the fixed altitude are
drawn in dashed green lines. In our plots, the big red dots depict accepted sampling
points for the client localization.

We collected all the measurement information every 200 ms. Between these
intervals, the train moves continuously. As soon as the latest sampling position is
known to the system, the current position is estimated (represented in form of small
red dots in Figure 8) based on the last sampling points and the elapsed time. This
process works as follows: Before a sampling point is accepted, it is compared to
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Figure 8 Trajectory of the localization experiment

the predicted position using the last sampling points (small blue dots in Figure 8).
The best matching position out of all current measurements (small gray dots in
Figure 8) is chosen as the new sampling point. More details on the estimation can
be found in (Eckert, German and Dressler 2011b).

In the plot, it can easily be seen that both the prediction and the estimation
process have certain inertia as they rely on the same sampling points. Therefore,
as the train moves around the corner, the outer measurements get chosen as
sampling points (Figure 8, lower plot). This represents the worst case scenario in
our experiment. We picked this example to show the following problem: In this
situation, the altitude of the possible positions (grey) drops with the distance to
the center of the railroad due to the probe reaches the border of the network as
well as due to measurement errors (Figure 8, upper plot). We furthermore see that
more suitable positions are available but never chosen according to the prediction
model. Using clients such as typical quadrocopter that provide internal sensors
(e.g., gyroscopes and accelerometers), this information can be used to improve the
prediction and to avoid those measurement errors.
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Figure 9 Non Line of Sight experiment

4.3.2 NLOS

Figure 9(a) depicts the resulting coordinates of the NLOS scenario. We used the
same conditions as described for the LOS measurements, except that we used an
obstacle in the middle of the system. In contrast to the LOS case, more noise can be
observed but the rectangle can still clearly be identified. However, four positions can
be perceived outside of the trajectory, which represent outliers in the localization
experiment. In 2 out of 10 rounds, the position information got corrupted (actually,
always in the same curve) due to significant oscillations (±8 cm) in combination
with NLOS.

A histogram showing the altitude error (Figure 9(b)) allows to assess the
localization accuracy. The numerical values in Table 2 indicate that 50 % of the
measurements have an error of less than ±2.5 cm. The significant outliers of nearly
±40 cm are significant but happen statistically very infrequently.

4.3.3 Real-time Capabilities

Besides accuracy, timeliness is a mandatory requirement for our chosen scenario.
Late localization messages may result in a crash of the flying robot. In our previous
work, we introduced a mathematical procedure capable of handling this issue
(Eckert, German and Dressler 2011b). An upper bound can be specified for the
latest possible time at which a position pv(Nc) can robustly be computed out of
an arbitrary amount of available measurement tuples µc := {µ(Ni)|∀Ni ∈ N̂c}. In
this work, we also introduced an application layer protocol, which is responsible for
collecting the distributed tuples µc. However, this was only experimentally evaluated
with a very limited number of nodes. In the following experiment, we now show
that the duration of the localization procedure does not increase with the number
of neighboring reference nodes in range |N̂c|. N.B.: |N̂c| is not the total network size
|V | but the connectivity degree d(Nc) of the customer Nc (|N̂c| = d(Nc) ≤ |V |).

The participating grid nodes ∀Ni ∈ N̂c have no reliable knowledge on how many
tuples have been received already by customer Nc and on how many other nodes
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Figure 10 Real-time experiment

try to send their information to the customer. In general, it holds that the wireless
channel must not be overloaded; otherwise the information will be received to late.

For this experiment, we arranged |N̂c| ∈ [3, 12] reference nodes around one
customer Nc in close proximity to stepwise increase the network load. Figure 10(a)
shows the total time (tuple collection and subsequent computation) for the position
estimation for different reference grid sizes |N̂c|. Again, we used boxplots to depict
the results. The hard deadline is marked with the red dashed line (as stated before,
200 ms is our measurement rate). Each localization attempt must be completed
within this time. Additionally, the red rhombi represent the average duration
and the black circles indicate statistical outliers. The plot summarizes 13 500
measurements. It can be seen that not a single attempt passed the threshold even
for increasing connectivity degrees.

The measurement time declines for neighbor counts larger than five. The
collection of tuples µc has to be well balanced between the number of collected
tuples |µc| and, therefore, the consumed time. In general, the faster a reliable
amount of tuples can be collected the better. After triggering a ToF measurement, a
customer Nc requests the corresponding tuples from the reference grid and waits. It
continuous working if a certain amount of tuples |µc| ≥ ω is available or a deadline
has expired. A group of 3 different tuples µ(·) builds a subset. It is the minimal
requirement for defining the position pv(Nc) ∈ <3 of customer Nc. If we assume
that we have 5 tuples and we again use the typical value reported in the literature
of an undetectable (possibly NLOS) measurement failure of Pmf = 30 %, we can
conclude that at least one correct subset, which consists of 3 correct tuples, can be
generated from this set with probability Pg > 98.5 % (Eckert, German and Dressler
2011b). Therefore, the algorithm waits until at least ω = 5 tuples have arrived.

Figure 10(b) depicts the number of received tuples |µc| for different node sizes
in range |N̂c|. The median is saturated (P (|µc| ≥ 5) ≥ 50 %) if at least 6 reference
nodes are available. This supports the decrease of the estimation duration. We
further colorized three areas of the graph. If 0 to 2 tuples have been received,
no position estimation is possible. 3 tuples allow to conclude to exactly one
position pv(Nc) ∈ <3, which might be corrupted. If at least 4 tuples are available, a
redundant localization is possible. A very high accuracy even for 3 or 4 tuples can
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Table 3 Probability distribution (in percent) of received measurement tuples

|N̂c| 3 4 5 6 7 8 9 10 11 12

P (|µc| ≤ 2) 18.3 16.3 6.7 5.7 3.5 0.7 0.5 0.3 0.3 0.0
P (|µc| = 3) 81.7 30.9 22.2 16.2 8.7 5.3 2.5 1.3 0.8 0.6
P (|µc| ≥ 4) 0.0 5.2 71.1 78.1 87.8 94.1 97.1 98.3 98.9 99.4

be achieved using an internal movement model at the customer. If only incorrect
measurements are presented by the grid (for a short amount of time), they all will
be dropped. Table 3 depicts the percentage of how many reference tuples |µc| were
received for different numbers of grid nodes in range.

According to this experiment, an average connectivity of 8 reference nodes is
optimal in terms of cost, duration, and availability. If availability becomes less
important (e.g., a customer can wait for a position), then this number can be
further decreased.

5 Conclusion

We presented a self-organizing, fully decentralized and stateless localization
framework, which is capable of autonomously deploying and spanning up a reference
grid in unknown environments. Based on this grid, customers such as quadrocopters
can be accurately localized in real-time. The modular approach makes it easy to
adopt the framework for different abilities and requirements. Additional information
such as anchor nodes Na (pv(Na) ≡ pr(Na)), which know their physical position
can easily be incorporated. Using the MSR theory, we were able to design a system
that does not need any a priori knowledge or a global database. Therefore, it can
easily be used for embedded systems with limited energy and memory resources. In
summary, it can be said that our Autonomous Localization Framework is providing
very accurate real-time localization. This also holds for handling NLOS situations,
which is a strong requirement for real world applications.
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