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Abstract—Indoor hovering objects such as quadrotors need to
be controlled continuously to hold their position in space. In order
to support fully autonomous flights of these copters, the necessary
position control including all related information transfers have
to be provided in a fully decentralized and autonomous manner.
We discuss challenges related to flight control based on our
Autonomous Localization Framework (ALF), which provides
scalable and decentralized localization in GPS-denied areas.
Using a sensor network based on the IEEE 802.15.4 communi-
cation protocol, continuous position maintenance is feasible but,
unfortunately, in no way stable. Therefore, we introduce a low-
cost sensor array, which reduces the system dynamics and allows
a robust position control of the platform.

I. INTRODUCTION

Controlling Unmanned Aerial Vehicles (UAVs) such as
quadrotors using low-cost sensor nodes for indoor localization
is still one of the most challenging topics in the field of sensor
and actor networks [1]. Besides the necessary coordination
among all nodes in a certain communication range, real-time
collaboration is needed for identifying rather fast movements
of the quadrotors in space due to air circulations and other
disturbances. In general, six degrees of freedom need to be
controlled continuously for motion in the three-dimensional
(3D) space. The most simple fall back mechanism in case of
an uncertain position and/or orientation in the field of robotics
is to just stop – this, of course, can not be applied during
the flight of an UAV. In this paper, we focus on a specific
class of UAVs, the so called vertical take-off and landing
(VTOL) devices, which are particularly suited for our indoor
scenarios. Here, however, not much space for maneuvering
is available, which forces the platform to mostly remain in
its most unstable condition: hovering. Serious self-caused air
turbulences additionally affect the flight stability.

Indoor position controlling approaches for flying objects
based on localization systems [2] or Simultaneous Localization
and Mapping (SLAM) [3] already exist. However, they either
depend on a highly accurate and expensive localization system
that needs to be deployed manually; or they need a high amount
of (mostly off-board) computing power. In the scope of this
paper, we rely on our recently presented ALF framework [4],
which, to the best of our knowledge, is the first platform
fulfilling all the requirements for a real autonomous indoor
flying system, including the necessary sensor deployment and
information acquisition. The key idea – exemplarily depicted
in Figure 1 – is to rely on a number of low-cost sensor nodes

Fig. 1. Quadrotor hovering over mobile ground sensors (distances reduced)

(attached to mobile robots) that fully autonomously spread
in a given area to span a reference grid using Ultrasound
(US) distance measurements. The same technology is also
available for localizing flying quadrotors or other systems
with high precision. We present an architecture that allows the
UAV to perform a flight that is well controlled based on the
distributed sensors spanning the reference grid. We are not
only able to steer the system, but most importantly also to
handle turbulences and other random noise.

The key contributions can be summarized as follows:
• We present a fully self-organizing approach for indoor

flights of a quadrotor controlled by a set of ground sensors
spanning a localization grid. To the best of our knowledge,
this is the first approach to perform such autonomous
flights only based on simple US sensors.

• In addition, we supstantially increase the robustness of
the system by adding two different low-cost and light-
weighted sensors to the aircraft. The smart combination
of all those sensors allow a fault-tolerant and safe flight
of the robot.

II. RELATED WORK

Autonomous VTOL aircrafts – especially quadrotors –
created substantial research activities in the last years, especially
in GPS-denied environments. Our goal is to enable fully
autonomous flights of multiple low-cost copters. Even though,
expensive equipment like laser distance sensors [5] or an off-



board localization system [2], which need to be deployed
manually, have been proven to be suitable for this task, we
focused on simple low-cost sensors.

Most commonly, on-board vision based sensors are being
used. Stereo cameras can be used to generate a 3D model of the
environment surrounding the vehicle. In order to circumvent
the need of the considerable on-board computational power to
build the world model from the gathered data, two different
concepts exist: Huang et al. [6] use a RGB-D camera in order
not to generate but to measure the depth information; while
Bills et al. [7] are not building a 3D model. Instead, they rely
on perspective cues from a single image. Both light-weighted
approaches still require too much computational effort.

Another common vision-based concept is called ‘optical flow’
using the pattern of apparent motion of objects in relation to
the sensor. Again, a standard camera in combination with
a fast computing unit can be used as reported by Conroy
et al. [8]. More important are specialized flow sensors as
typically installed in computer mice. The frequently used sensor
type (e.g., in [9]) is light-weighted and requires a minimum
of computational effort. In contrast to the previous sensing
approach, sampling rates of more than 1 kHz are achievable.
The only drawback is that VTOL devices tilt during flight,
which needs to be compensated.

For non-vision sensing, Roberts et al. [10] present the
minimal requirements for an autonomous indoor flight. Based
on US and infrared, the system can avoid collisions but can
not stay at a given position. However, a common knowledge
base (e.g., relative positions) is needed in case of a multi robot
application. The approach of Chintalapudi et al. [11] provides
such a knowledge base. A reference grid is autonomously
generated using Received Signal Strength Indicator (RSSI)
measurements (of WiFi-enabled devices). Besides of the too
low accuracy for indoor navigation, the system requires too
much computational power for an embedded device.

III. TOWARDS AUTONOMOUS INDOOR FLIGHTS

The key objective of this paper is to provide a position-hold
mechanisms for VTOL robots. If a flight on a trajectory or
obstacle avoidance is required, it can be done by dynamically
adjusting the desired hold position.

A. Physical Model of a Quadrotor

Besides of the actual 3D position pc = (~x, z)T ; ~x = (x, y)T

of the platform, the rotations of the three axes (pitch, roll ~Φ =
(Φx,Φy)T , and yaw Ψ) are highly important. The forward/back
x and right/left y translation is indirectly controlled by pitch
Φx and roll Φy , respectively. Figure 3(a) shows the craft system
of a single axis i ∈ [x, y], where Ft is the thrust of all rotors,
m is the total weight of the platform and g is the gravity.
(Simplifying assumption: Φj = 0 : i 6= j.) For flying without an
altitude variation the following equation must hold: Ft·cos Φi =
mg. Applying a constant angle Φi, different from zero, to an
axis i will cause the platform to constantly accelerate ẍi into
this direction. This reduces the amount of independent degrees
to four: pitch Φx, roll Φy , yaw Ψ, and the altitude z.
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Fig. 2. Quadrotor system model

B. System Model and its Minimal Sensor Requirements

For controlling the platform, it is essential to consider
the system behavior. Assuming the platform always hovers
(small angles) and by accepting small modeling errors, each
degree of freedom can be controlled independently. Thus, we
approximated the model of a quadrotor as depicted in Figure 2.

On-board rate integrating gyroscopes can measure the angu-
lar velocity ω but not the absolute heading Ψ =

∫ t

0
ω(τ)dτ+cΨ

(see Figure 2 middle row). We observed that compass sensors,
commonly used in outdoor scenarios, can not robustly deter-
mine the offset cΨ indoor. A different approach is required
that will be explained later in this section. For stabilization, a
simple proportional (P) controller can be utilized.

The position ~x is more complex as it needs to be indirectly
controlled by tilting ~Φ (see Figure 2 top row). Due to inertia, the
tilting takes some time (approx. 150 ms on our platform). We
approximated this using a first order lag element. As previously
introduced, the tilting angles ~Φ introduce an acceleration ~̈x.
Even if no acceleration ~̈x = 0 is affecting the platform, it might
still have a constant velocity ~̇x 6= 0 and thus a continuous
drift of the position ~x. A proportional and differential (PD)
controller is required to stabilize this unstable system. Standard
on-board avionics can not provide accurate position information.
Therefore, an external positioning system, our Autonomous
Localization Framework (ALF), is required. We mounted two
sensing devices onto a single platform. This not only increases
the accuracy and availability of the positioning but also the
yaw angle Ψ can be computed by evaluating the difference
of both positions. The control of the altitude z is similar (see
Figure 2 bottom row): it can be done indirectly by the thrust Ft.
In addition to the position controller, it also has to compensate
the gravity g. Again, a PD controller is required as well as an
external sensor. The necessary altitude information z can also
be provided by the same positioning system.

C. Autonomous Localization Framework

Our Autonomous Localization Framework (ALF) has been
designed to fulfill the task of providing a zero-effort accurate
localization system for autonomously flying robots [4]. How-
ever, it is not exclusively restricted to this. The framework
provides highly accurate localization features using low-cost
sensors in indoor environments.

ALF has been designed as a decentralized system without
the need for synchronization or global knowledge and a finite
amount of energy. The typical operation scenario is depicted
in Figure 1. Sensor nodes need to be capable of detecting and



communicating with their direct neighbors; no special routing
information or topology is required. For localization, at least
the distance to the neighbors needs to be measurable. As we
desire an accurate localization system, we do not rely on rather
vague RSSI measurements (although it would be possible [11]).
Our ground platform [12] is equipped with an US based Time
of Flight (ToF) measuring hardware. It reports distances with
an observational error of less than ±2 cm. A byproduct is a
rough estimation of the angle to a neighbor (±45◦).

The self-localization grid is created fully autonomously
according to the following rules: First each node needs to find a
“convenient” place, which is a trade-off between area coverage,
accuracy, and cost. As no global knowledge exists, each node
needs to find this independently from the states of its neighbors.
A local decision table based approach is used. Subsequently, the
node localizes itself according to the reference grid spanned by
the already well placed nodes [13]. Using this initial position,
the node joins the grid and enters the maintenance process
based on our Advanced Mass-Spring-Relaxation (advMSR)
approach [14] to further refine its position estimation. Again,
only local information are used.

In this process, as typical for indoor scenarios, many Non
Line of Sight (NLOS) measurements may occur. In order not
to corrupt the system state, those need to be detected and
blacklisted [4]. The algorithm has been designed so that it
reaches convergence. At any point in time, nodes are allowed
to join or leave the network (e.g. due to a depleted battery).
Finally, the nodes and the generated position information are
used as a reference grid for providing a localization support
for customers [13], such as the autonomously flying copters.
The trilateration-based scheme was specially designed to fulfill
real-time requirements.

The used localization frequency is 5 Hz. As reported in the
literature, under optimal conditions a stabilization of a VTOL
device is possible at this frequency [2]. However, the position
values have a time lag of up to 195 ms (including measurement,
information transport and computation). This in combination
with measurement outliers of up to ±20 cm prevent a stable
position-hold function purely based on ALF.

D. Additional Sensors

In order to enable autonomous flights nonetheless, two pos-
sibilities exist: (a) reducing the time lag by tweaking/changing
the communication channel or (b) reducing the system dynamic
of the platform by additional sensors. Here, we focus on the
latter one. The problem we want to address here is that low-
cost sensors are typically not as accurate, precise, and/or fast
as required. To ensure a safe flight, measurement outliers need
to be detected and handled. Similar to the approach by Zug
and Kaiser [15], we use the construct of smart abstract sensors
to improve the readings of the sensors.

1) Smart Altitude Sensor: To provide quick altitude measure-
ments, we employ an additional US distance sensor (SRF02
made by Devantech) and synchronized it with ALF so that
multiple platforms do not interfere with each other. During
the flight of the quadrotor we observed five possible outcomes

for a measurement: (a) the correct distance, (b) temporary
overestimations, (c) clear distance overestimations, (d) 0, or
(e) no result at all. Exploiting this knowledge, we developed
a smart sensor based on Equation 1: The inputs are the
measurement d̂t of the physical sensor as well as the altitude
ẑpos of the positioning system (ẑpos is more accurate but not
available quickly enough).

ẑt =


ẑpos if d̂t /∈ [dmin, dmax]

(cases c, d or e),

p · d̂t + (1− p) · ẑt−1, if ˆ̇
dt > vd (case b),

d̂t. else (case a).

(1)

Physical limitations such as the maximal climbing velocity
vd and the maximal and minimal altitude dmax, dmin are
observed as well. Based on a number of experiments, we set
the value p for the exponential smoothing to 0.1. This provides
additional inertia and should be omitted if the reported values
are plausible.

2) Smart Position and Yaw Sensor: This smart sensor is
based upon the customer localization of ALF and returns
verified 3D positions. As previously introduced, two sensing
arrays are mounted onto the platform (at maximum distance
in between). The platform acts like two separate sequential
customers and, therefore, has two instances of the customer
localization running. Based on the two resulting positions
p0 and p1 and the assumption that the platform moved
continuously during the time between the two measurements
(preferable did not move at all), a yaw angle of the platform can
be computed. The resulting abstract sensor uses the positions
p0 and p1 as an input. It further knows the time ∆t between
the individual US measurements, and it knows the last accepted
positions p0,db and p1,db.

The complete procedure is depicted in Algorithm 1, where
∠ : <3 → Ψ computes the horizontal angle (yaw) of a
3D vector. If one position estimation fails, the sensor tries
to reconstruct this information based on previous position
information and the movement of the other position, assuming
a previously stabilized constant movement and yaw angle. In
the very unlikely event that two positioning failures occur at
once, the sensor reports this to the system.

3) Smart Velocity Sensor: The key idea is not to increase the
position monitoring frequency of the platform but to observe

Algorithm 1 Smart Position and Yaw Sensor
if p0 is available and p1 is unavailable then
p1 = p1,db + ṗ0 · 2∆t # reconstruct p1

else if p0 is unavailable and p1 is available then
p0 = p0,db + ṗ1 · 2∆t # reconstruct p0

else if p0 is unavailable and p1 is unavailable then
return failure # problem

end if
(~̂xpos, ẑpos)

T = 1
2 (p0 + p1)

Ψ̂ = ∠(p0 + ṗ0∆t− p1)
return ~̂xpos, Ψ̂, ẑpos
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Fig. 3. Quadrotor movement

and control the velocity ~̇x as an important system state. This
reduces the chain length of the system model by one integrator,
thus, it becomes much easier to stabilize the system.

A common approach is to use a two dimensional optical flow
sensor [16]. These sensors are very low-cost, low-power, and
light-weight (e.g., ADNS-3080 by Agilent). They are typically
also installed in computer mice. Usually this sensor is facing
downwards to the floor and controls the velocity ~̇x on the
forward/back x and left/right y axes. The altitude ẑ, which is
already available from the smart altitude sensor, is needed to
calculate the velocity. Furthermore, the pitch and roll angle ~Φ
of the robot are needed, which are more difficult to estimate.
As the platform tilts to move and the sensor is rigidly mounted
to the frame, it detects a relatively high movement into the
inverse direction of the actual movement (see Figure 3(c)).
This needs to be compensated using knowledge of the current
slant. However, it is very time critical and the angles need to
be very accurate, especially for large altitudes.

As a novel concept, we exploit a unique feature of indoor
flights: Rooms not only have floors but also ceilings. Thus,
we use one down and one up facing sensor to circumvent the
need of the inclination information.

Figure 3(b) depicts one axis of a quadrotor hovering at time t.
The current tilt Φi,t usually needs to be known, but the absolute
value is not important. It additionally knows the distances to
the floor df = ẑ and to the ceiling dc. If the room height h is
known, dc = h− df needs not to be measured. In Figure 3(c),
the quadrotor has a different tilt Φi,t+1 and has also moved a
distance ∆xi. The up and the down facing sensors observe a
position change ∆χi,c and ∆χi,f , respectively.

The common approach is now just to use the down facing
sensor, which might report a movement into the negative
direction as depicted in Figure 3(c). The movement per step
(and therefore the velocity ~̇x) can be calculated as:

∆~x = (∆~χf + ∆~ΦCΦ) · df · Cx, (2)

where ∆~Φ = ~Φt+1 − ~Φt; CΦ and Cx are system constants.
Our primary motivation was that, first, accurate tilt informa-

tion in general is very hard to obtain on such dynamic systems.

Either it is simply not available, as on low-cost coaxial-copters
(requires additional hardware), or the accuracy/sampling rate
is too low. Secondly, the inclination compensation ∆~ΦCΦ is
independent of the altitude.

Exploiting the down and up facing sensors (combining
Equation 2 for each sensor) gives us the angle free estimation
for the platform movement:

∆~x = (∆~χf + ∆~χc) ·
dfdc
df + dc

· Cx. (3)

This allows control frequencies far beyond of 1 kHz. In case
of an undetectable surface (no contrasts) on one sensor, the
fall back to the others in combination with the standard angle
based approach (Equation 2) provides a secondary safety stage.

E. Overall Control System

A system overview including the information and control
flow is depicted in Figure 4. The reference position pr =
(~xr, zr)T and the yaw angle Ψr are required input parameters.
The smart sensors (depicted in red blocks) are physically
connected to the frame of the platform. The blue blocks indicate
the individual controllers. As the platform can instantaneously
move in any direction, it is essential to know and to stabilize
the rotation Ψ̂, whereas to satisfy the desired heading Ψr is less
important for a stable flight of the quadrotor. For the altitude
correction, a PD controller has been used. To minimize the
stationary error limt→∞(zr − ẑ), we added a constant value
Fg ≈ mg (force required for hovering). Nota bene: Due to the
high phase shift of the system model an integral part in the
controller instead of Fg results in an instable system.

For the position control, we cascaded a PID and a P controller.
At first, the position error (~xr − ~̂x) needs to be rotated by
Θ into the platform coordinate system (so that x and y
separately affect pitch and roll). This error is subsequently
transformed into a reference velocity ~̇xr using a very limited
P controller. The following PID controller for the velocity has
a very slow integral part. This eliminates the velocity error
limt→∞(~̇xr − ˆ̇

~x) = 0. Thus, systematic tilting errors (due
to measurement errors) can be compensated. We observed a
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significant improvement in terms of position stability compared
to a system without the integral part. The actual parameters for
all controller are hardware dependent and have been determined
empirically.

For the whole system, we used a SunSpot sensor node
running a Java virtual machine without any real-time extensions.
Still, the system turned out to be stable at a control frequency
of 10 Hz (and 5 Hz for position information).

IV. EVALUATION

The platform we extended in this study is a standard
“MikroKopter M2” system (depicted in Figure 1). It can easily
be controlled using a serial interface and can carry more than
200 g of additional weight. For safety and stability reasons, we
added a styrofoam protector.

A. Velocity Estimation

In order to assess the performance of the optical tilting
compensation for the velocity sensor, we conducted the
following experiment. The platform is mounted to a fixed
position (~̇x = 0) at an altitude of df = 1 m, dc = 2 m. Different
artificial rotation noises were introduced and the results of the
various sensors were captured.

Figure 5(a) depicts an exemplary test run of a low frequency
followed by a higher one. For improved visualization a single
axis is plotted. The upper half of the graph depicts the angular
velocity ˆ̇Φ measured by the platform. The lower half depicts
the resulting tilt compensated velocity ˆ̇x of the two separate
units as well as of the combined sensor. For comparison, the
sampling rate of the combined sensor is significantly reduced to
the rate of the individual units, which additionally require the
relatively slowly provided tilting information Φ̂. It can be seen
that because of the altitude difference 2df = dc the ceiling
sensor has a larger amplitude than the floor sensor. Obviously,
the accuracy of the sensor also depends on the altitude. The
signs of the curves differ, too. This is because the two sensors
report movements into opposite directions. The oscillations
of the platform can, slightly time shifted, also be seen in the
outcome of the separate sensors. This time lag between the
platform on-board gyroscope and the optical sensor is very hard
to compensate on our system. The tilting information has a

different kind of noise (due to vibrations), which consequently
adds additional noise to the outcome. However, the combined
sensor does not need to deal with those problems and always
outperforms the separate ones.

B. Positioning Sensing Time Lag

The accuracy of the self-localization framework ALF and its
real-time capabilities have already been reported in [4], [13]. In
this paper, we aim to address the time lag between triggering a
measurement and receiving enough measurements to be able to
conclude to a position p̂pos. The minimization of this time lag
is of utmost importance for an unstable system like a hovering
quadrotor. When a customer wants to get a position, it triggers
an active US measurement. The sound pulse is received by the
ground nodes. This duration (ToF measurement; in our case up
to 25 ms) needs to be reported back to compute the position
(the computational time is limited to 20 ms).

The used SunSpots use an IEEE 802.15.4 compatible
Chipcon CC2420 interface for wireless communication. This
protocol has not been designed for low-latency transmissions.
Even though real-time extension have been presented in the
literature [17], we intended to stay to the default setup to show
the general applicability of ALF. Recently, we demonstrated
that a custom agent based application layer protocol can
collect the information in time [13]. This protocol performs
significantly better than a simple broadcast based approach. In
order not to reduce the localization frequency for the UAV by
acting as two disjoint customers, we made two adjustments:
First, an agent is able to carry two different slots at once.
Secondly, the US sampling rate has been doubled. Thus, US
measurements take place every 100 ms and an agent is sent
out every 200 ms to collect the past two measurements.

In a second experiment, we placed three to twelve ground
nodes around one localization customer, i.e., our quadrotor. We
measured the required time for collecting enough measurement
tuples to robustly determine the customer’s position. The results
are shown in Figure 5(b) in form of boxplots indicating the
median and the 25% and 75% quartiles. Three is the minimum
number of reference nodes required for trilateration. The red
rhombi are showing the mean values. The red dashed line
shows the upper threshold of a time slot, which must not be
exceeded by all means. It can be seen that the slot threshold
of 200 ms is never crossed and that the duration significantly
decreases for five and more nodes. This is because we stop the
collection process prematurely, because five tuples are enough
to robustly compute a position [13]. On the average, it takes
100 ms to 160 ms to complete the data collection.

C. Position-Hold

In the final experiment, we evaluated the position-hold ability
of the overall system. We measured the ground truth using a
fast optical positioning system. Figure 5(c) depicts the drift over
a 2 min hovering flight (12 000 samples) of the four controlled
degrees of freedom. The precision of the setup is better than
±2 cm. However, due to the very limited sensing range of the
additional system, we cannot come up with an accuracy in
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relation to the ground nodes. Thus, the depicted boxplots have
been normalized to the mean value of the corresponding axis.

In this experiment, it can be seen that the translation of the
position ~x is below ±10 cm. This value strongly depends on the
altitude (here approx. 80 cm) and on the environmental surface
contrast. The experiment was conducted in an office building.
The floor is a monochrome gray carpet with a few wires on top.
The ceiling is plain white with attached fluorescent tubes. Both
surfaces are of low contrast. Better results can be obtained
using tiles and/or wooden ceilings.

The reason for the drift in the altitude z (beside of
measurement uncertainties) lays within the system model and
its simplifications (see Figure 2): First, a double integrator
chain is very difficult to control. For a more precise behavior,
a higher sampling rate (or more accurate sensors) would be
required. Secondly, the four degrees of freedom are not fully
independent. As the platform compensates the drift, the thrust
of the rotors is slightly redirected into a non-vertical direction
(see Figure 3(a)). This reduces the vertical thrust component
– the platform is descending. To counteract this, a systematic
thrust compensation (based on ∆~Φ) can be implemented.

V. CONCLUSION

In this paper, we presented a low-cost sensor extension
to enable indoor flights of VTOL devices. Based on noisy
measurements of the raw sensor values, we show how the
necessary information that allows a safe maneuvering can be
derived.

For optical flow sensors, which are usually the core sensor for
autonomous indoor flights, it is essential to have an environment
of high contrast. By adding a second up facing flow sensor,
the failure probability is not only significantly reduced but the
approach also makes the inclination knowledge unnecessary
(for the velocity sensor).

The combined system performance is robust in terms of
error and failure. It is still fully functional, for a short period
of time, if one of the three smart sensors fails.
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