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Abstract—A lot of algorithms and applications can benefit from
position information. GPS localization has become a standard
for outdoor usage. But if a higher accuracy is needed or
within GPS-denied areas providing this knowledge is still an
open and nontrivial topic. Especially for unknown or dynamic
environments. In this paper we propose a framework which is
capable of autonomously exploring unknown environments in
a fully decentralized way. It provides accurate and real-time
localization support for customers. The usual very time intensive
manual deployment and position assignment of reference nodes
is avoided. Additional we show that the algorithm can detect
and handle Non Line of Sight (NLOS) issues which is a very
important criteria for real world applications.

I. INTRODUCTION

Location awareness is an important topic for mobile systems.
In the field of personal computing, location-based services
enabled a hitherto unknown type of interacting with an
application. In other domains such as Sensor and Actor
Networks (SANET), it is at least equally important [1], [2].
The demands in terms of accuracy, cost, power consumption,
etc. change with different application scenarios. Typically, all
localization approaches have one common characteristic: a
reference is needed before a location can be determined. This
can be either a map (showing obstacles) or an active (or even
passive) reference grid consisting of landmarks.

GPS has become a de facto standard for outdoor localization.
In GPS-denied areas, like urban or indoor environments, or
when a higher accuracy is required, other techniques need to be
used. Due to of the high variance of the system parameters and
scenarios this is still a hot research topic. Besides of hardware
issues related to sensing and measurement capabilities, which
are not in the focus of this paper, the robust and autonomous
generation of a localization reference is one of the most
challenging tasks [3]. In this paper, we show how to set up
such a reference system in a fully self-organizing way and how
to use this reference system for accurate localization of highly
mobile systems such as flying quadcopters.

Our goal is to reduce the hardware requirements to a
minimum (due to cost and energy issues). Therefore, we
can not use Simultaneous Localization and Mapping (SLAM)
techniques, which usually use expensive laser distance sensors
and/or resource-intensive image evaluation [4]. We started with
developing a cheap mobile robot platforms [5] for providing
a reference grid to localization customers. These robots are

Fig. 1. Conceptual model of our Autonomous Localization Framework (ALF)

equipped with a short range radio for communication and with
an Ultrasound (US) ranging device for neighbor and customer
detection. Using a self-organizing approach, no global stages
or knowledge can be assumed or will be generated during
system runtime. Figure 1 depicts our Autonomous Localization
Framework (ALF). Only based on inter-node distance measure-
ments, mobile nodes are autonomously deploying themselves
on the ground and start forming a robust reference grid. A
customer, e.g. a quadcopter, can use this system to determine
its location. A fully distributed and self-organizing algorithm
creates and maintains the reference grid using an enhanced
Mass-Spring-Relaxation (MSR) technique (step 1 in Figure 1).
An initial localization of potential grid nodes helps to prevent
the system from oscillating (step 2). The same technique is
also used for customer localization (step 3) [6].

Flying systems such as quadcopters pose hard real-time
requirements on the localization system. Our autonomous
localization framework has been designed specially for this
application. We, however, believe that the same system is well
suitable for any self-localization approach that is based on
autonomous mobile systems forming a reference grid. The
contribution of this paper can be summarized as follows. We
developed a robust and decentralized framework for enabling
anchor-free localization support using low-cost robot systems
(Section III). In an experimental setup, we evaluated the
localization performance of our system (Section IV). We
specifically show that no global state is necessary. We further
show that the implementation of the framework is capable of
handling hard real-world problems like measurement errors or
Non Line of Sight (NLOS).

II. RELATED WORK

A. Localization Systems

The Cricket system [7] is probably the best known low-
cost localization system for indoor usage. It is a derivate



from the Active Bat localization system [8] and relies, like its
predecessor, on US-based Time of Flight (ToF) measurements
to compute positions. The reported resulting absolute position
error is less than 30 cm. Although its design is fully autonomous
and decentralized, a non-negligible effort is required for the
reference node deployment and the bootstrapping process of
the coordinate system.

Recently Chintalapudi et al. presented EZ [9], which is a
WiFi-based localization approach. Basically, EZ can be seen as
a follow-up to the RADAR system [10]. Both systems estimate
their positions using Received Signal Strength Indicator (RSSI)
measurements. Thus, the systems are at least one order of
magnitude less accurate compared to those relying on US and
ToF measurements. Depending on the scenario and a probability
threshold P , EZ has an accuracy of 2 m to 7 m (for P = 0.5).
The main advantage of both the EZ and the RADAR systems
is that no special deployment effort is needed to bootstrap the
system.

We are trying to combine the advantages of both approaches,
the accuracy of US-based systems and the ease of the
deployment of the WiFi systems.

B. Mobility Support / Mobile Robots

In general, mobility support has been identified as a source
for improving the localization accuracy [11], [12]. Thus, for a
accurate and low-effort localization, the individual platforms
need to be mobile. Furthermore, localization is one of the
key requirements to coordinate mobile robot systems. In
(multi-)robot localization applications, the individual units are
usually equipped with quite resource and energy expensive
components. Laser distance scanners and computer vision
are commonly used approaches [4], [13]. Frequently, both
sensing techniques are combined. On the positive side, this
enables the use of SLAM techniques. However, the resource
requirements are well above typical sensor network applications.
Furthermore, the advanced position sensors are actually only
needed during the construction of the reference grid, assuming
that customer localization should be performed using less
expensive technology.

Our approach is to rely on cheap mobile platforms for
deploying a minimal initial sensor array. Although all of our
sensors are mobile, this is not a major issue. For example,
Shell et al. developed a system where mobile platforms have
been used to deploy immobile human audible beacons [14].
The same technique can be used in our approach to further
reduce the system costs for the sensor deployment.

C. Non Line of Sight

Even if the reference nodes could be placed in an intelligent
way, measurement errors cannot be excluded. Depending on
the signal propagation characteristics, different sources for
erroneous measurements need to be considered. One of the
most critical issues is the NLOS case. The Cricket system [7]
circumvented this issue by placing the reference node on the
ceiling. Therefore, emitters and receivers always have Line of
Sight (LOS) and nearly no measurement errors due to NLOS

are to be expected. However, this restricts the scenario to
indoor applications and a manual deployment of the nodes, i.e.
mounting them to the ceiling.

Due to multi-path propagation of NLOS measurement
pairs, the localization errors can get very large. A common
approach to determine the LOS connections is to execute
multiple measurements and to statistically reduce the error.
Opposed to the traditional approach of a time history of
range measurements, Guvenc et al. [15] only require the
amplitude and delay statistics of a channel in order to perform
a NLOS detection. Another approach has been presented by
Chan et al. [16]. Based on probably incorrect measurements,
they identify NLOS conditions by evaluation the distribution
function of all possible positions.

Both approaches compute 2D positions. In the this paper, we
show that NLOS can be identified without additional statistics
if 3D positions are available together with some easy to collect
information.

III. AUTONOMOUS LOCALIZATION FRAMEWORK

In the following, we introduce our Autonomous Localization
Framework (ALF), which is based on a number of components
for setting up and updating the reference grid and determining
customer positions using US measurements. We stepwise
explain the different algorithms needed for an optimized
localization behavior. Some of the described techniques are
optional techniques, introduced to improve the accuracy or to
obtain additional system information. The entire framework
has been built in a modular way: individual components can be
replaced depending on the potentials of the used hardware. It
should be noted that two assumptions must be fulfilled: nodes
need to be capable of measuring to direct neighbors and they
need to be able to exchange information with those neighbors.

The key objectives of the localization framework are
• the initial fully self-organizing deployment of an irregular

reference grid, i.e. use of autonomous mobile robots
driving to appropriate places in the environment that span
a coordinate system by cooperatively assigning themselves
relative (anchor-free) positions,

• the accurate customer localization based on the positions
of reference grid, and

• the continuous update of the localization grid if the
environmental conditions change, e.g. due to new obstacles
or added / removed robot systems.

A. Advanced Mass-Spring-Relaxation

ALF is based on accurate localization as a basis technique.
In our previous work, we presented a distributed version of
the MSR algorithm, the Advanced Mass-Spring-Relaxation
(advMSR) [3]. Our localization algorithm is based on distance
measurements and also, if possible, takes Angle of Arrival
(AoA) measurements into account. The advMSR is inherently
self-organizing, thus, assuming no global knowledge about
the available nodes and topology. Basically, the localization
generates tuples (north, east)T for each node, which are used
by the ALF system.



The principles of the position estimation and the maintenance
process of the reference grid is reported in [3]. In the following,
we assume the availability of such localization techniques and
discuss system oriented aspects of how areas can be explored,
how the heading of a node can be determined, and we study
communication aspects of the framework. A key focus is on
the handling of measurement errors due to NLOS situations.

B. Area Exploration

In the initialization phase, we assume that all nodes start at
a similar location and need to be uniformly distributed over
a given but unknown area. In consequence, the nodes need
to be able to autonomously determine their initial coordinates
(relative to each other) to finally spread over the area.

In the following, first, the localization accuracy and the
probability for a successful setup are determined. Basically, the
more neighbors are allowed per node and the better they are
placed the more accurate the system will get. However, a higher
neighbor connectivity also means that the costs will increase
significantly. Secondly, the total system costs are defined. This
is obviously a trade-off between area coverage, accuracy, and
cost.

Similar to the MSR-based grid maintenance algorithm, we
again used a force vector approach. We define different zones
around each node to optimize the node distribution process.
Let rmin and rmax define two radii, which divide the area
Zi around the origin p(Ni) of each node Ni into three zones
(here, ‖ · ‖2 is the euclidean distance norm). Then, the zones
can be defined as:

Zrestricted,i := {~x ∈ <2 | 0 < ‖p(Ni)− ~x‖2 < rmin} (1)

Zdesired,i := {~x ∈ <2 | rmin ≤ ‖p(Ni)− ~x‖2 ≤ rmax} (2)

Zattractive,i := {~x ∈ <2 | rmax < ‖p(Ni)− ~x‖2 <∞} (3)

As the zone names indicate, neighboring nodes are not
allowed in within Zrestricted,i. Thus, rmin indirectly defines
the maximum density of nodes and the associated maximum
system costs per ground area. Zdesired,i is the desired belt
around a node Ni where neighbors should be located. Node
Ni will only connect to nodes within this region. The number
of neighboring nodes within this belt |Zdesired,i| is equal to
the edge degree d(Ni) of node Ni from a graph theory point of
view (|Zdesired,i| = d(Ni)). A threshold λ is used to control the
system costs. This threshold is basically limiting the maximum
connectivity degree: 3 ≤ d(Ni) < λ, where 3 is the minimum
number of required connections for calculating a 2D position.

Again, the higher the connectivity d(Ni) gets, the more
accurate localization results can be obtained, but at increasing
system costs. This problem has already been investigated in
the literature. A typical value reported in the literature is in the
range of 8 to 13 connections per node [17]. We experimented
with those values in the scope of the ALF framework. In
most experiments, already a connectivity degree of 6 led to
astonishingly good results. NB: λ should not get below the
error correction threshold of 4 (see Subsection III-E).

TABLE I
PLACEMENT DECISION CONSTRAINTS

Guard Action Use Nodes (Zc)

|Zrestricted,i| > 0 drive Zi \ Zdesired,i

3 ≤ |Zdesired,i| < λ place found -
λ ≤ |Zdesired,i| drive using 1

2
d̂i,j Zdesired,i

|Zattractive,i| > 0 drive Zattractive,i

else random drive -

Furthermore, the radii rmin and rmax must be chosen
according to the optimal detection range of the used distance
measurement hardware. The closer both radii get, the more
regular distributions of the nodes will be achieved. However,
the more difficult it becomes for the algorithm to find a valid
solution. Of course, rmax should also not be set close to
the maximum of the detection range in which the distance
measurement quality decreases in a non-linear way.

During the positioning phase of each node Ni, distances d̂i,j
to all detectable neighbors are measured and sorted into the
three introduced sets. The resulting actions to be taken depend
on four guards that are evaluated serially:

1) if neighbors are in the restricted zone, the node has to
find a more appropriate position;

2) if a sufficient number of nodes are in the desired zone
(3 ≤ |Zdesired,i| < λ), the node position can be fixed;

3) if too many nodes are in the desired zone, the node will
move away from those nodes;

4) if the node has to move and if there are nodes in the
attractive zone, the node will move towards those.

In any other case, the node will start searching randomly for
better locations. All the actions are summarized in Table I.

In the following, we briefly introduce the force vector
approach for repositioning nodes to form the reference grid. All
the calculations are performed locally at a node, only taking
the measurements to neighboring systems into account.

Node Ni is connected to each node from the selected set
with a spring of equilibrium length of l0 = rmin+rmax

2 . Based
on the chosen set Zc (|Zc| = j), the force vector ~Fi for the
movement is computed according the basic MSR as depicted
in Equation 4, where ki,j is the spring constant (usually set
to 1), ~ei,j characterizes the unit vector from node Ni to node
Nj ∈ Zc, and d̂i,j represents the corresponding measured
distance.

~Fi =
∑

Nj∈Zc

~Fi,j =
∑

Nj∈Zc

−~ei,jki,j(d̂i,j − l0) (4)

The unit vector ~ei,j can be obtained using two different
approaches. All nodes in Zc know there positions, thus, node
Ni can localize itself according to these references and finally
apply simple geometrical calculations. The problem is that
parallel operation and bootstrapping become extremely difficult.
Another approach is to measure angle information. Most
distance ranging devices are based on multiple sensors; our
system uses four independent US sensors [5]. Thus, the AoA



can be estimated. Our system provides an accuracy of at least
±45◦, which is sufficient for the computations.

The final driving direction and distance are proportional to
the force vector ~Fi. Small measurement uncertainties and the
mobility of nodes helps to prevent oscillations in the system
to achieve fast convergence. NB: this scheme works well both
in 2D as well as in 3D.

C. Heading

The previously mentioned AoA estimation can also help
to estimate the heading of the platform, which is a necessary
measure in various scenarios. In theory, the heading Ψi of a
node Ni can be computed using one arbitrary neighbor Nj .
According to the positions p(Ni) and p(Nj), the absolute
heading Ψnorth

i,j = atan2(p(Nj) − p(Ni)) in relation to the
north pole (which is the commonly assumed as 0◦)) can be
determined. Subtracting the measured AoA Ψ̂i,j results in the
true heading Ψi,j = Ψnorth

i,j − Ψ̂i,j .
The described calculation becomes error prone in real

scenarios due to biased measurements and positioning errors.
Simple averaging over all j headings Ψi,j is not possible
because of two reasons. First, there is a non-linearity due to
the overflow of the co-domain (Ψi,j ∈ (−π,+π]), which might
lead to wrong average values. Secondly, p(Ni), p(Nj) or Ψ̂i,j

might be error prone and heavily affect the results.
The overflow of the domain can be compensated by moving

from angles to a vector-based representation:

~ψi,j = (sin(Ψi,j), cos(Ψi,j))
T (5)

However, the second issue is more challenging. Summing
up all heading vectors already allows to conclude to a fairly
good estimation. This can further be improved by adding a
weight indicating the confidence to each vector. For our distance
measurement hardware, we see that the shorter the measured
distance is, the more accurate the measured AoA gets [5]. Thus,
the weighting function κ(·) returns larger values for nodes in
close proximity.

The overall heading can be computed described in Equation 6.
The angle Ψi = atan2(~ψi) of the resulting vector ~ψi represents
the heading of node Ni. The length of the vector ‖~ψi‖2 allows
to conclude the confidence of this information. It is normalized
to κ(·).

~ψi =
1

j

∑
Nj

κ(Nj) · ~ψi,j (6)

D. Communication

For the ALF system, no specific communication topology
is required. A sufficient criterion is that each node Ni must
be able to communicate with all of its j neighboring nodes
Nj ∈ N̂ := {Nn ∈ V | ‖p(Ni) − p(Nn)‖2 ≤ rmax} (where
V represents the set of nodes). Multicast communication to all
neighbors would be the optimal solution for this application,
because most of the transfered information needs to be made
available to all neighbors simultaneously. In wireless networks,
broadcast is an appropriate alternative.

N1 N2

N3 N4

Nn

Fig. 2. NLOS scenario (top view)

In order to join an existing network, a node Ni registers to
all of its neighbors Nj after finding an adequate position. This
registration needs to be reliable. Thus, reliable unicast is needed
for this process. If new or updated information (e.g., position
p(Ni), neighbor Nj , measurement d̂i,j) becomes available at
node Ni, it pushes this data to all of its neighbors. These in
turn evaluate the data and perform the necessary actions. This
data will be transmitted more frequently. Therefore, no reliable
communication channel is required.

As a result, the amount of transmitted data packets is
reduced to a minimum and it also provides mechanisms
for autonomously entering energy saving standby states after
system convergence has been reached. Also, no network-wide
flooding is needed.

E. Measurement Errors

Usually, it is assumed that a measurement path is symmetric,
i.e. d̂i,j = d̂j,i. However, this only holds in approx. 90 % of
our measurements and, depending on the scenario, may be
even worse. A bad alignment between emitter and receiver of
the US distance measurements can falsify the result depending
on the direction, i.e. not a direct but a reflected signal triggers
the measurement. Those incorrect measurements cannot be
distinguished from correct measurements as the jitter is equal
(the worst case scenario is static without mobility).

We try to correct such errors using a rather simple error
model: Both directions need to be measured to identify
asymmetric measurements. As we use ToF, the shortest flight
time must be the most correct measurement (d̃i,j represents
the measurement from node Ni to node Nj):

d̂i,j = d̂j,i = min(d̃i,j , d̃j,i) (7)

If εi,j = |d̃i,j − d̃j,i| > θ, where θ represents the hardware
specific error range, then the node that measured the larger
distance can also not rely on its AoA estimation because it
received the reflected signal. Overall, this solution gave us
almost 100 % reliability for the LOS cases.

Detecting NLOS links is even more challenging. Consider
the example depicted in Figure 2. This network consists of
four initially perfectly distributed nodes N1, N2, N3, and N4

at positions (0, 0), (0, 1), (1, 0), and (1, 1). The newly arriving
node Nn starts the localization procedure to subsequently join
the network. Node Nn has a NLOS link to node N4, all other
links are LOS. None of the participating nodes can distinguish
between LOS and NLOS.



The distances will be determined as d̂n,i = 2−
1
2 ; i ∈

[1, 3]; d̂n,4 = 1. Thus, using basic trilateration techniques [6],
the node will be located at four equally weighted positions:
(0.5, 0.5), (0.25, 0.25), (0.25, 0.5), and (0.5, 0.25). From this
2D view it is neither possible to determine the correct position
nor to identify the outliers.

However, from a 3D point of view and by adding additional
knowledge about the height of a system (in our case, all the
robots are driving on the floor), the correct position can be
obtained by looking at the Z-coordinates: 0.0, NaN, 0.43, and
0.43. Obviously, the first coordinate (0.5, 0.5, 0.0) must be the
correct result. Measurements that result in wrong Z-coordinates
are considered NLOS links and need to be blacklisted in the
localization framework. Without any loss of generality, this
approach can be applied to almost any localization scheme.
Obviously, additional information is necessary to identify
NLOS cases. For best results, additional hardware components
are needed to minimize such failures. For obtaining height
information, for example simple pressure sensors could be
used providing a relative accuracy of a few centimeters.

In general, NLOS can be detected if three measurement
tuples are available together with additional height information.
If one or more additional tuples are available all NLOS links
can be identified as long as three correct LOS links are
available.

The third important source of error is the co-called flip
ambiguity problem, which is typical for almost any localization
technique [18]. Due to small measurement errors, nodes may
get wrong initial coordinates. This typically happens if the
reference nodes for the localization are nearly collinear placed.
In such situations, very small measurement errors significantly
falsify the Z-component. Thus, it is very likely that those get
always ignored. We counteract this issue exploiting the mobility
of our nodes, using short movements in random directions.

F. Network Bootstrapping

An initial network V ′ needs to be constructed before nodes
can regularly join. Three nodes (|V ′| = 3) are sufficient
to span up a plain. However, to avoid placement errors
at the very beginning, a fourth node is required. All four
nodes need to be fully connected and well placed to safely
bootstrap the grid: Three nodes generate the coordinate system
and the fourth node localizes itself according to this trio
to verify that there is no NLOS in the initial network (see
Section III-E). In order to speed up the initial bootstrapping,
we implemented the bootstrapping in a central manner, even
though the localization process is fully decentralized. A root
node requests all measurements from three nodes, performs all
the computations related to the initial localization step, and,
afterwards, assigns the initial positions. This central approach
with very small computational efforts clearly outperforms other
solutions that require clearly more time for the initialization
and a high number of transmissions to identify NLOS issues.
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Fig. 3. System behavior of the ALF localization framework

G. Overall System Behavior

The system behavior of ALF for each node Ni is summarized
in Figure 3. After starting the system, each node is searching for
an existing localization grid. If the particular node is immobile,
it is also feasible to sleep for a certain time and then retry to
establish a connection. As soon as the node finds a sparsely
covered part of the network, it starts the initial self-localization
according to [6] before it can become part of the grid by
registering with the neighbors in the grid.

The robot then continuously tries to improve its initial
position using our advMSR technique. As soon as the estimated
localization error falls below a certain threshold, the robot
is ready to serve customers’ localization requests. In theory,
the system can stay in this state for a very long time. No
additional measurements, computations, or transmissions need
to be performed. However, if errors can not be solved or if the
connectivity level falls below a predefined threshold, the robot
can re-enter the initial phase and move to another position. No
global knowledge or additional synchronization is involved to
establish the grid.

IV. EVALUATION

In order to evaluate the localization performance of the
Autonomous Localization Framework, we performed a number
of experiments, each focusing on specific characteristics of the
algorithm. First, we briefly show that the used experimental
setup, i.e. our localization hardware, performs the advMSR
algorithm with similar accuracy as previously estimated in
simulations [3]. We then carefully evaluated the behavior in
NLOS situations, before finally assessing the overall system
performance.

A. Advanced Mass-Spring-Relaxation Performance

The core of the ALF framework is based on the Advanced
Mass-Spring-Relaxation technique. It has been carefully exam-
ined in a custom build simulator for node sizes of up to 1000
nodes [3]. The algorithm only interacts with direct neighbors
and does not require any global knowledge. The advMSR
self-localization performed extremely well in simulation as
previously reported. In order to validate the algorithm before
starting to assess the overall performance of our framework, we
repeated those simulation experiments with lower node numbers
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and also executed similar experiments using our localization
hardware. Basically, up to 8 nodes were placed randomly in
the environment before starting the advMSR procedure.

Figure 4 shows that for real world experiments the con-
structed network representation accuracy is within the co-
domain of our simulator. The evaluation is based on relative
node distances between the calculated positions and the actual
ones. The Root Mean Square (RMS) of the normalized error
of both the simulation and the lab experiments are similar. The
RMS has been identified as an accurate measure to compare
self-localization solutions [19]. The figure depicts the RMS
for different network sizes in form of boxplots. The thick line
represents the median. The rectangular boxes contains 50 %
of the measurements indicating the 25 % and 75 % quantiles.
Finally, the whiskers show the 2.5 % and 97.5 % quantiles.

B. NLOS

Figure 5 (left) shows a typical NLOS situation. The edge
between nodes N6 and N2 cannot be measured correctly
due to an obstacle. Multipath propagation effects result in
the following measured distances: d̃6,2 = 1.8 m, d̃2,6 = 8 m,
whereas the true physical distance is d6,2 = 1.04 m.

The accumulated result as used internally by ALF of a
selected run is depicted in Figure 6. In this figure, all the
nodes, their headings, as well as the connecting links are
drawn. Green links are correct from the algorithm’s point of
view. Mangenta links indicate blacklisted ones, which are not
considered for further computations. As can be seen, ALF
reliable detected and ignored only the NLOS link. The distance
error was |‖p(N6) − p(N2)‖2 − d6,2| = 3 cm. Without this
blacklisting scheme, no correct solution could be found.

In total, we conducted two experiments (ten repetitions for
each) with the same setup. For the NLOS detection, a threshold
ξA is needed to decide whether to accept the computed position
or not. For the first experiment, we used ξA = 6θ, where θ
represents the hardware specific error range. In three out of ten
repetitions, it was not possible to correctly detect the NLOS
link during the first initialization. However, after some nodes
autonomously disconnected and reconnected (see Figure 3
parameters out of range), a valid solution could be found. For
the second set of experiments, we used a smaller threshold of
ξA = 4θ. In this configuration, the system detected the NLOS
link with 100 % accuracy.

Fig. 5. NLOS experiment (left) and customer localization (right)
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Fig. 6. Resulting network representation

C. Overall System Performance

ALF has primarily been designed to provide self-localization
services to mobile customers such as flying quadcopters.
Unfortunately, it is not easily possible to accurately steer a
quadcopter on a given trajectory to verify the localization
system’s accuracy. Thus, we used a toy train to simulate
the quadcopter by moving the localization unit on a well
defined trajectory. In our experiment, the sensing device was
mounted on a stick at an altitude of 64 cm. It is driving on
a rectangularly shaped trajectory through an autonomously
constructed reference grid consisting out of nine nodes. In this
setup, straightforward and curve movement can be investigated.
Figure 5 (right) shows a picture of the testbed. For NLOS
measurements, we placed an obstacle in the middle of the set.
This results in at least 30 % corrupted measurements. Similar
values have been reported in the literature [20].

1) LOS: In a first experiment and as an reference, we
removed the obstacle in the middle of the set. Figure 7 depicts
the resulting coordinates for the client in form of a scatter plot
for the top view. The train was driving 10 times around the
railroad line with a speed of approx. 1 m s−1. The darker an
area gets the more often the sensor was detected in this area.
The rectangle of the railroad can clearly be identified.

As the mechanical construction on the train was slightly
instable, the sensing hardware can swing a few centimeters on
the top of the stick. These oscillations distort the integrated
prediction filter, resulting in accepted incorrect positions.
In contrast to our initial approach [6], we used a linear
multistep method (the Adams-Bashforth-Method) to improve
the predication in the curves. Measuring the actual position
of the train on the ground is unfortunately too inaccurate,
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because we had no odometry available with an accumulated
error smaller than a few centimeter. Therefore, we evaluated
the measured altitude. The altitude of the sensing device
was exactly constant (64 cm; the altitude change due to the
oscillations is negligible). A histogram for the altitude error is
shown in Figure 8. As can be seen, the accuracy is very high.
Numerical values presented in Table II indicate that 50 % of
the measurements are within ±2.2 cm of the correct altitude.
The maximum measurement error was 19.1 cm.

Figure 9 shows individual measurements for a small part
of the railroad. The upper plot depicts the altitude measures
and estimations for different East-coordinates. The lower plots
shows North-East-coordinates. In our experiment, the train
drove counterclockwise. The original railroad as well as the
fixed altitude are drawn in dashed green lines. In our plots,
the big red dots depict accepted sampling points for the client
localization.

TABLE II
ALTITUDE ERROR IN METER

Exp. Min 1st Qu. Median Mean 3rd Qu. Max

LOS -0.191 -0.022 -0.005 -0.008 0.011 0.111
NLOS -0.377 -0.025 -0.002 -0.009 0.020 0.348
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Fig. 9. Trajectory of the localization experiment

We collected all the measurement information approx. every
260 ms. Between these intervals, the train moves continuously.
As soon as the latest sampling position is known to the system,
the current position is estimated (represented in form of small
red dots in Figure 9) based on the last sampling points and the
elapsed time. This process works as follows: Before a sampling
point is accepted, it is compared to the predicted position using
the last sampling points (small blue dots in Figure 9). The best
matching position out of all current measurements (small grey
dots in Figure 9) is chosen as the new sampling point. More
details on the estimation can be found in [6].

In the plot, it can easily be seen that both the prediction and
the estimation process have certain inertia as they rely on the
same sampling points. Therefore, as the train moves acound
the corner, the outer measurements get chosen as sampling
points (Figure 9, lower plot). This represents the worst case
scenario in our experiment. We picked this example to show the
following problem: In this situation, the altitude of the possible
positions (grey) drops with the distance to the center of the
railroad due to the probe reaches the border of the network
as well as due to measurement errors (Figure 9, upper plot).
We furthermore see that more suitable positions are available
but never chosen according to the prediction model. Using
clients such as typical quadcopter that provide internal sensors
(e.g., gyroscopes and accelerometers), this information can be
used to improve the prediction and to avoid those measurement
errors.

2) NLOS: Figure 10 depicts the resulting coordinates of the
NLOS scenario. We used the same conditions as described for
the LOS measurements, except that we used an obstacle in
the middle of the system. In contrast to the LOS case, more
noise can be observed but the rectangle can still clearly be
identified. However, four positions can be perceived outside
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of the trajectory, which represent outliers in the localization
experiment. In 2 out of 10 rounds, the position information got
corrupted (actually, always in the same curve) due to significant
oscillations (±8 cm) in combination with NLOS.

A histogram showing the altitude error (Figure 11) allows
to assess the localization accuracy. The numerical values in
Table II indicate that 50 % of the measurements have an error
of less than ±2.5 cm. The significant outliers of nearly ±40 cm
are significant but happen statistically very infrequently.

V. CONCLUSION

We presented a fully decentralized and stateless localization
framework, which is capable of autonomously spanning up a
reference grid in unknown environments. Based on this grid,
customers such as quadcopters can be accurately localized in
real-time. Using the MSR theory, which is based on rather
simple equations, we were able to design a system that does not
need any a priori knowledge or a global database. Therefore,
it can easily be used for embedded systems with limited
energy and memory resources. In summary, it can be said that
our Autonomous Localization Framework is providing very
accurate localization accuracy. This also holds for handling
NLOS situations, which is a strong requirement for real world
applications.
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