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Abstract—Flying four-rotor robots (quadrocopters)
are on-board sensor controlled systems. In compari-
son to classical mono rotor objects (helicopters), the
quadocopters can be piloted with a much lower effort.
However, lateral drifts can not be compensated only
referring to the build-in sensors. Nonetheless, the de-
tection of such drifts is strongly necessary for indoor
operation – without any corrections the quadrocopter
would quickly cause a collision. In order to compensate
the dislocation, an indoor positioning system needs to
be used. In our work, we provide a framework for time-
of-flight based localization systems relying on ultrasonic
sensors. It is optimized for use in sensor nodes with low
computational power and limited memory. Nevertheless,
it offers scalability and high accuracy even with erro-
neous measurements. We implemented the system in
our lab using ultrasound sensor that are light enough
to be carried around by the flying object. Using this
real-time localization system, a position controller can
be implemented to maintain a given position or course.

Index Terms—Indoor localization, flying robot, sensor
network, ultrasonic

I. INTRODUCTION

Flying four-rotor robots are similar to helicopters.
In contrast to mono-rotor systems, these so-called
quadrocopters usually provide more sensors and more
robust controllers. Helicopters without any sensors or
controllers can be remotely controlled by a person.
However, due to their physical instability this is not
possible for quadrocopters: the system needs to be
continuously stabilized. A combination of gyrometers
and acceleration sensors is used to determine its cur-
rent state. Based on these measurements, a digital
controller continuously adjusts the orientation of the
platform. In such a way devices can easily be piloted by
other digital systems such as a sensor network. By only
controlling the pitch and the roll angles, the current
position cannot be obtained. The quadrocopter always
hovers on top of an air cushion. Thus, any minimal
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Figure 1. Four-rotor flying robot hovers over reference points

measurement error or any airflow may cause a drift
to a random direction. The system remains highly in-
stable w.r.t. position maintenance. Angle corrections
must be permanently applied and more than on board
instruments need to be used to keep the flying robot
in position.

Figure 1 shows the scenario. A quadrocopter is rely-
ing on an external positioning system to continuously
update its system parameters. In general, there are
many cases in which applications benefit from getting
more accurate positioning information. Examples are
the controlled physical movement of a robot [1] or
the efficient information transport via an ad-hoc net-
work [2]. A discussion of preferences for systems using
active or passive mobile devices can be found in [3].
If privacy is an issue, passive localization systems
should be preferred. For example, the infrastructure
of the Cricket system [4] has no knowledge about the
current position of any mobile device. However, this
system architecture also has several disadvantages.
The accuracy suffers if the mobile device moves during
a series of (at least three) measurements. In some
cases, e.g. using ultrasound, this is a strong limitation
because a set of measurements can take up to several
hundred milliseconds. In our scenario, the object to be
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localized is flying. That makes a complete stop during
a set of measurements impossible. The object will
always drift in a random direction. In active systems
the mobile device emits a signal and the infrastructure
receives it simultaneously. Thus, better accuracies and
higher velocities for the mobile devices are possible.

There are a number of localization systems de-
scribed in the literature, which are based on differ-
ent measurement and localization techniques. Each
of those systems has its benefits and problems. Un-
fortunately, no system (neither commercial nor aca-
demic) fulfills all the requirements for localizing flying
quadrocopters. Real-time localization is frequently an
issue, for example some systems rely on an iterative
position estimation. Furthermore, many other systems
are simply too heavy to be carried by the flying robot.
Therefore, we investigated appropriate real-time local-
ization techniques and came up with a new solution
that perfectly meets the needs in this application
domain. We implemented a system based on ultrasonic
distance measurements that is lightweight and can be
carried by our quardrocopter. In summary, we not only
provide a framework for our chosen scenario but also
for other cases of real-time indoor localization.

The rest of the paper is organized as follows.
Section II introduces a short taxonomy of possible
positioning techniques. Then, Section III surveys the
state of the art of localization systems. In Section IV,
we present the mathematical background of our local-
ization system. Then, Section V presents some insights
into the performance of the system. The test system
is finally described in Section VI. Finally, Section VII
concludes the paper.

II. POSITION SENSING TECHNIQUE

In the following, we briefly introduce the taxonomy
and basic principles of localization techniques. Please
refer to the report by Hightower and Borriello [5] for
more detailed information.

A. Dimensions

Global Positioning Systems (GPS) span a world wide,
unique coordinate system. This is opposed to Local
Positioning Systems (LPS) where the coordinates are
valid only in a local context. Of course, both systems
have their own advantages and disadvantages. A com-
bination of both is often the most useful approach. As
long as an object is within the range of a LPS, these
results can be applied as LPS are usually more precise.
But switching to GPS, which is generally less accurate,

is the only possibility to continue receiving position
information beyond the borders of the LPS.

Secondly, relative and absolute positions need to be
distinguished. The former one describes a position
in relation a reference and the latter one a globally
valid position. For example, the NAVSTAR [6] system,
which is better known as GPS, always reports the
same coordinates for one physical position, regardless
of which satellites are used to compute this position.
Relative systems report different positions for different
reference points.

Finally, the interpretation of the location informa-
tion depends on some semantic context. A physical
position specifies a specific point in space (usually its
x , y, z coordinates). In a symbolic localization, only
abstract concepts of a position are provided (e.g., a
room). If a physical position is given, it is possible to
generate a symbolic location, typically by performing a
lookup in a database. The other way is generally not
applicable because the symbolic identifier is usually
associated to an area not to a specific physical position.

B. Localization techniques

Commonly, localization techniques can be classified
into three different categories. Each provides a set of
sub-categories.

1) Geometric techniques: Basic fundamentals of ge-
ometry can be used to compute the unknown position.
One possibility is to use the lateration technique based
on a set of distances. These distances are measured
between some reference points, which have known
positions, and the object to be localized. Besides the
rather impractical method of a direct measurement
(e.g., with a yard stick) there are two more suitable
methods. Attenuation relies on the fact that an emitted
signal decreases in strength during its way. The atten-
uation is proportional to the distance – in free space, a
factor of 1/r2 can be assumed. In theory, the range can
be computed very accurately. However, in practice it is
more difficult, due to interferences and cost-accuracy
trade-offs. A more accurate approach is the time-of-
fight (TOF) technique, or slight modifications such as
time difference of arrival (TDOA). Here, the time be-
tween emitting and receiving a signal is measured. Dis-
tances can be estimated by multiplying the measured
times with the velocity of propagation. Best results
with relatively low costs can be accomplished by using
a medium with a propagation speed far below the
speed of light such as ultrasound. A second technique
is angulation. For position calculation, angles are used
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instead of distances. Only two reference points are
required for 3-dimensional position detection. For the
lateration technique, at least three points are needed.

2) Scene analysis: Scene analysis is a technique
that is most comparable to the way human beings
localize themselves in the environment. Scene analysis
is a kind of pattern recognition. Observed forms are
compared with forms in a database (for absolute
positioning) or with forms from the last observation
(for relative positioning). These forms can be seen
as fingerprints for certain surroundings. The biggest
advantage for this technique is the passive observation.

3) Proximity: Finally, the proximity based localiza-
tion technique needs to be mentioned. In this case, it is
determined whether a known location is nearby or not.
By accumulating such decisions, relatively accurate
positions can be obtained. The detection of known
locations can be done in different ways, e.g. physical
contact or monitored wireless signals.

III. RELATED WORK

A number of different LPS have been proposed
during the last two decades. A system called the
Active Badge [7] is often claimed to be one of the
first developments – it has been published in 1992.
The AT&T research team placed single infra-red (IR)
receivers in different rooms and connected them to a
central server. The idea was to locate persons who are
equipped with active badges. Every 10 s, those badges
emit an IR pulse with a globally unique identification
number. Thus, it is possible to provide both absolute
and symbolic location information about the people.
However, the system does not know the exact position
of a person, but in which room she/he currently is.

Already three years earlier, a physical position sens-
ing system has been published [8]. The authors used
a combination of ultrasound (US) and IR sensors. The
system to be localized, in this case a mobile robot at an
unknown position, emits an active US chirp. Beacons
placed in the environment can detect this signal and,
after a pre-defined waiting time, the beacon replies
to the chirp with an IR burst containing its location.
The distance between the active beacon and the robot
is determined by the elapsed time interval. Using a
certain number of distance measurements and the
time-of-flight lateration technique, a position can be
calculated. The gradient or Newton-Gauss method can
be applied to the erroneous data in order to achieve
higher accuracy. In reported experiments, an accuracy
of less than 10 cm has been achieved. Similarly to

the active badge system, the IR localization is very
sensitive to the current light conditions. Also, both
systems do not scale very well.

In 1991, Leonard and Durrant-Whyte [9] used cor-
ners, walls, and other distinctive objects as passive
beacons. The shape, and therefore the object itself, is
detected by the use of an US distance analyzer. A map
of the geometric beacon locations had to be known by
the robot a priori. The proximity technique allows the
vehicle to roughly estimate its location. In addition,
the robot uses odometry and an extended Kalman filter
for enhancing the accuracy of the location estimation.
This technique can only be applied if 2-dimensional
positioning is desired. Besides other effects, in 3-
dimensional space the number of required measure-
ments for beacon detection would be too huge.

Angulation techniques are frequently based on opti-
cal measurements such as using a digital CCD camera
and appropriate pattern recognition algorithms. Such
processes are extremely time and power consumptive.
Hence, Salomon et al. [10] used an analogue position-
sensitive device and equipped the object to be localized
with an infrared emitter. Using these tools, an angle
can be calculated. The power consumption on the
receiver side is less than 60 mW, however, the possible
detection angle of the system is very small.

RADAR [11] uses the signal strength and signal-to-
noise-ratio of wireless LAN for indoor position sensing.
Similarly, Bulusu et al. [12] provide a solution for
outdoor usage. Both approaches use the scene analysis
technique. The reference points are either broadcast-
ing their locations or they are stored in a database.
Depending on the beacons in range, the location is
computed (fingerprint). Reflected signal waves make
it very hard to provide an accurate position, especially
for indoor usage. Yet still an accuracy of about 4 m can
be achieved. Again, this technique works only well for
2-dimensional localization.

Beep [13] is another approach relying on sound-
based time-of-flight lateration. In contrast to other
implementations, audible sound is used instead of
ultrasound. This allows the usage of PDAs or cell
phones as a receiver. A slight disadvantage, besides
the hearable measurement, is that the used hardware
was not build for accurate time measurements. This
fact is also reflected in the position accuracy: errors
larger than 1 m have been observed.

In practice, clock synchronization of all involved
controllers is often not possible. In such cases, time-
difference-of-arrival techniques have to be used. The
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lack of knowing the time of departure of a signal can
be compensated by taking not only the position as a
variable but also the time. Only one more reference
point is needed to solve the resulting equations. Ma-
hajan and Walworth [14] give a closed form solution
for this kind of problem.

About seven years the active badge, the same
group proposed a new localization system called Active
Bat [15]. It relies on US based time-of-flight lateration.
A bat, which is carried around by a person, sends
an US chirp to a grid of ceiling mounted receivers.
Simultaneously, the receivers are synchronized and
reset by a radio packet that is also transmitted by the
bat. All measured distances are forwarded to a central
computer where the position calculations take place.
An accuracy of 9 cm has been achieved. The scalability
is limited by the central computer and wires to all
the US receivers. That weakness has been addressed
with the Cricket system [4]. All the wires have been
replaced by wireless communication and distributed
location calculation (on the node to be localized).
The localization is initiated with a localization re-
quest radio packet. As this packet does not include
any identifier and because the location computation
is performed on the object itself, location privacy
is provided. However, as the position sensing time
intervals can get too big, the solution is not suitable
for continuous real-time localization.

IV. MATHEMATICAL PROCEDURE

This section covers the procedure of computing
position information out of gathered distance mea-
surements. We rely on ultrasonic distance estimation
for time-of-flight based lateration. The technical details
are depicted in Section VI.

A. Preliminarities

We assume to start with a set of n tuples Ti, each
consisting of a distance di to a reference point with a
known position and the coordinates of this point −→x i :

Ti = (di,
−→x i ) :−→x i = (x i, yi, zi)

T , i ∈ [1, n] (1)

The trilateration problem can be solved for the
unknown position −→x = (x , y, z)T in different ways.
Theoretically, the problem can be solved by a closed
mathematical expression as shown in Equation 2.
However, in practice, it is impossible to solve those n
equations at once due to error-prone measurements.

(x i − x)2+ (yi − y)2+ (zi − z)2 = d2
i ; i ∈ [1, n] (2)

Several iterative optimization algorithms exist for
the problem. For example, Foy [16] uses a Taylor-
series estimation. At least for 2-dimensional problems,
the method converges to a good solution within a
few iterations. Another common approach is the use
of an extended Kalman filter [17]. Apart from high
computation costs, one of its biggest advantages is
that this technique can be performed with at least one
measurement. In general, all techniques perform an
iterative computation and finally present a result with
an (almost) negligible error. Closed, and therefore
exact and fast solutions, are rare. Abroy and co-
workers [18] present such a non-iterative solution,
however, with tremendous restrictions in terms of scal-
ability and variability. Exactly three reference points,
precisely oriented to each other are required: the
coordinates have to be −→x1 = (0, 0,0)T , −→x2 = (x2, 0, 0)T ,
and −→x3 = (x3, y3, 0)T . In order to apply this system to
a general case, a coordinate transformation (offset and
rotation) would be needed. Because this requires non-
negligible computational effort, this method cannot be
applied in many scenarios.

B. Position calculation

One common feature of all indoor location systems
attracted our attention. Given that all reference points
are mounted to the ceiling, the wall, or the floor, they
all have one coordinate in common. Let us denote this
as the z coordinate. We exploit this information for a
closed position calculation.

First, a distribution of all tuples Ti into m subsets
S j to pairs of three different points must be done. The
precise subset generation method will be explained
later in Section IV-C. For the moment, we assume
we have m subsets that fulfill the condition that all
z coordinates within a subset S j of all tuples T have
to be equal:

S j ⊆ T | ∀−→x i ∈ S j : zi = c j, c j ∈ R and ‖S j‖= 3 (3)

Furthermore, it must be defined a priori whether the
object to be localized is above the selected c j, i.e. z ≥
c j, or below, i.e. z ≤ c j.

Then, we can compute m possible coordinates for
the unknown object out of the m subsets. Using a
set of three single equations from (2) and taking the
characteristics of each subset S j into account, we can
form a linear equation system:

A−→x =
−→
b : A∈ R2×2,−→x ∈ R2,

−→
b ∈ R2 (4)
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x3− x1 y3− y1
x3− x2 y3− y2

�

−→x = (x , y)T

−→
b =

�

(d2
1 − d2

3 ) + (x
2
3 − x2

1) + (y
2
3 − y2

1 ) + (z
2
3 − z2

1)
(d2

2 − d2
3 ) + (x

2
3 − x2

2) + (y
2
3 − y2

2 ) + (z
2
3 − z2

2)

�

This 2-dimensional problem can be solved easily be
applying Gaussian elimination.

Before the computation can be performed, some
basic checking have to be performed in order to test
whether the system can be solved. This can easily
be done by checking that the matrix A has no rank
defect (linearly independent vectors), i.e. RgA

!
= 2.

For simplicity of computation, it is sufficient to test
whether the determinant of the matrix is unequal to
zero, i.e. detA 6= 0. Geometrically, this test can be
interpreted as three reference points spanning a plane.

For the computation of the x and y coordinates,
only simple arithmetic operations are needed such as
addition, subtraction, and multiplication. Those are
very basic (and fast) operations, available on low cost
micro-controllers. The z coordinate can be generated
in two ways. The easiest way is simply to measure it,
which is straightforward using an ultrasound system.
Alternatively, the already computed values can be
inserted in Equation 2, which, however, requires a
square root function for the used micro-controller.

Equation 3 restricts the z coordinate of each subset
to be equal. If this condition cannot be fulfilled, the
algorithm will not be applicable. This situation can be
avoided using a coordinate transformation (rotation).
After computing the position, a back-transformation
into the original coordinate system is required:
−→z =Θ(−→x ); position algorithm;−→x =Θ−1(−→z ) (5)

C. Subset generation

In theory, one subset S j, which contains three tuples
Ti, would be sufficient for position estimation. How-
ever, taking measurement errors into account, more
subsets are required. Let n be the number of collected
tuples Ti (of reference points −→x i and distances di),
then m =

�n
3

�

= n!
3!·(n−3)!

disjunct subsets of three
pairs can be computed. The number of possible subsets
increases significantly with the number of reference
points. In terms of scalability it is not feasible to
compute all m subsets and to evaluate them.

Casas and co-workers [19] investigated all kinds of
ultrasonic measurement errors. They came up with an
average rate of measurement failure of Pmf = 30 %. A
position estimation can only be successful if at least

one correct subset S j is used for evaluation, where a
correct subset corresponds to one that contains only
accurate measurements. Pm denotes the probability
that none of the chosen subsets is correct. The required
number of subsets can be calculated as follows [19]:

m=
log(Pm)

log(1− (1− Pmf )3)
(6)

Thus, for example, 11 subsets are required if we ac-
cept a failure probability of Pm = 1%. Furthermore, the
authors suggest that Monte Carlo techniques should
be applied to randomly pick m subsets. However,
more information about the subsets could help to im-
prove the selection. In general, subsets with geometric
shapes that minimize the error rate of the position
calculation should be preferred (e.g., regular or well-
formed triangles). Thus, the basic idea is to generate
and, subsequently, to qualify a subset. Afterwards, it
can be placed in a sorted list. This process continues
until a certain threshold is reached at the m-th element
of the list. Finally, the first m elements in this list are
then used for the position calculations.

We decided to use a weighted combination of the
average measured distances and the covered ground
of the three points would be suitable. Both values are
important for a well-formed but (mostly) non-regular
tetrahedron (3 reference points plus the unknown
point). The base area of the figure is a triangle. Usually,
this can not be computed very fast because square
root or trigonometric functions would be needed.
Therefore, we used the cross product −̂→n = −→a ×

−→
b

(with −→a = −→x2 −
−→x1 and

−→
b = −→x3 −

−→x1). Its length
directly corresponds to the covered area, in particular,
it represents not the area of the spanned triangle but of
the corresponding parallelogram. Thus, a division by 2
results in the correct area. According to (3), the base
area is parallel to the x–y plane, so the cross product
only contains a z component (Equation 7). This length
can therefore be computed very fast, only summation,
subtraction, and multiplication methods are needed.

−→a ×
−→
b =







a2 b3− a3 b2
a3 b1− a1 b3
a1 b2− a2 b1






=







0
0

a1 b2− a2 b1






(7)

D. Position estimation

Finally, the m possible positions (stored in X (k+1) :
X ∈ R3×m) have to be merged to one position −→x (k+1).
The trivial approach would be the calculation the
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mean of all positions. However, outliers would sig-
nificantly influence the result. Casas et al. [19] used
an approach where a squared residual vector between
all measured and all theoretical distances for each
subset is computed. By taking the minimum median
of the individual elements the influence of the outliers
vanishes. Unfortunately, the computational effort for
this method increases with the number of reference
points and, therefore, is not very scalable.

Thus, in a first step, we experimented with a re-
finement of the trivial concept. We implemented a
recursive algorithm, which generated the mean of all
positions and removed the position that is most distant
to the mean. This is repeated until a unique position
is found. Unfortunately, we did not get satisfactory
results due to the high rate of measurement errors
of about 25 %.

In a second step, we incorporated prior knowledge
into the position estimator. Casas method [19] pro-
vides localization without any state information. How-
ever, already collected information could be exploited
to gain better localization results. Thus, we split the
estimation process into two steps in a similar way like
an extended Kalman filter. In the first step, we predict
the current position −→xp(k+ 1) using a state vector:
−→xp(k+ 1) =−→x (k) +∆−→x (k, k− 1) · r ·κ(r) (8)

r =
∆t(k+ 1, k)
∆t(k, k− 1)

(9)

For this vector, in each step we store the position
and the localization time. The second step is slightly
different from the original design of the filter. We
generate the new position −→x (k + 1) by selecting the
nearest computed position to the predicted position
out of the set X (k+ 1):
−→x (k+ 1) = f (−→xp(k+ 1), X (k+ 1),∆t(k+ 1, k)) (10)

If none of the computed positions are within a
certain radius from the predicted position, all com-
puted positions are considered erroneous and will be
rejected. The radius grows with the elapsed time and,
therefore, the probability of acceptance increases even
if only false positions are obtained.

The more time has elapsed since the last computa-
tion in relation to the last interval, the less reliable
the prediction gets. The correction function κ() in
Equation 8 has been designed for compensating this
effect. Usually, if an algorithm detects such a situation
then the state vector is reset and an initial filter
stage is re-entered. Appropriate time intervals have

Figure 2. Position prediction

to be configured for this purpose. By using the ratio
between the localization attempts, this mechanism can
be automated. Furthermore the absolute computation
frequency is not relevant. κ() is a function of r
(Equation 9), which denotes the ratio of two time
intervals: the current time and the time at which
the last position has been accepted. κ() is a simple
function that returns 1 for values between 0 and 1. For
greater values, the output slowly decreases 0. Figure 2
illustrates the prediction vector and the growing space
of the position acceptance. As shown on the left side,
the prediction vector grows uninfluenced over time if
the ratio r is smaller than 1 and, therefore, κ() is
1. Thus, κ() does not influence the prediction. The
right side shows the situation if the ratio r increases
beyond 1. This means that the last localization interval
(i.e., the time between two accepted positions) was
shorter than the elapsed time since the last position
was accepted. Now, κ() is being decreased because at
this time a proper prediction based on the movement
during the last interval can not be guaranteed.

We achieved very good and fast results using this
estimation technique. However, it can happen that a
wrong position is accepted. For example, if all taken
measurements are wrong and, therefore, all possible
positions are as well incorrect. In this case, the position
estimator takes the nearest of these wrong position
if it is within the accepted area. So, invalid state
and positions are stored. Fortunately, the localization
technique is self-correcting. As soon as the object
moves (erroneous measurements are fluctuating) and
at least one correct possible position is calculated, the
state will become accurate again within a few cycles.

E. Complete algorithm

The complete procedure to obtain a position is
summarized in Algorithm 1. As long as position infor-
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mation are needed, the algorithm stays in the outer
loop. After the measurement for the current time slot
is completed and the results are locally transfered to
the sensor node, the master starts to collect the data
from the slave nodes by sending out an agent frame.
After a certain time has passed and if enough tuples
T could be collected from the participating sensor
nodes, the actual computation takes place. At first, m
subsets S are generated (Section IV-C). Out of those
m possible positions X are calculated (Section IV-B).
The position −→x is finally estimated by applying the
position estimator to all positions in X (Section IV-D).

Algorithm 1 Localisation Algorithm
while running do

do measurements
collect i tuples T
if i ≥ 3 then

generate m subsets S from T
generate m possible positions X from S
estimate the current position from X

end if
end while

V. LOCALIZATION PERFORMANCE

Scalability is one of the biggest issues in the context
of sensor networks. In order to proof our localiza-
tion algorithm works even on resource constricted
embedded systems, we implemented the system and
evaluated it in a lab scenario. In particular, we used the
SunSpot sensor node platform [20] running JavaME
as the host operating system. We first estimated the
computational performance of the localization algo-
rithm. In the next section, we discuss the applicability
for real-time localization of our flying quadrocopter.

One of the key issues is the creation of the subsets.
Figure 3 shows the required time of the grouping
for different numbers of reference points and subsets.
For reasons explained in Section IV-C, we limited
the number of subsets to 11. Independent of the
number of reference points, an upper boundary for
the classification (depicted in red in Figure 3) can be
given. The limitation of subsets implicitly restricts the
position vector calculation time to an upper boundary,
too. Thus, not every possible position needs to be
calculated: Only positions from subsets that meet a
certain threshold in the qualification are being con-
sidered. Furthermore, those calculations benefit from
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Figure 3. Subset calculation

3(1) 4(4) 5(10) 6(11) 7(11) 8(11) 9(11) 10(11)

Reference Points (Subsets)

T
im

e 
in

 µ
s

0
20

00
40

00
60

00
80

00

Residuums Based
Only Point Based
Simple Kalman Based

Figure 4. Position estimation

the grouping algorithm as no further test whether
Equation 4 can be solved has to be performed.

In Figure 4, all the tested timings of the position
estimation algorithms are depicted. As mentioned be-
fore, the residuum based method [19] (blue) scales
approximately linearly with the number of reference
points. Similarly, the “only point” based recursive algo-
rithm (red) does not scale well, the computation costs
are too high, and the demands for accuracy cannot
be met. The Kalman based predictive method (green)
gives accurate and quick results.

Finally, Figure 5 shows the total computation time.
The worst case scenario (blue) is a combination of
the techniques that are not bounded in computational
time. All subsets are computed and the residual based
position estimation was applied to the best 11 subsets.
In the best case scenario (red), only techniques with
a bounded computational time are used. So an upper
boundary for the localization algorithm can be given
independent of the number of used reference points.
This is important to fulfill the real-time specification.

Juergen Eckert, Falko Dressler and Reinhard German, "Real-time Indoor Localization Support for Four-rotor Flying Robots using Sensor Nodes," 
Proceedings of IEEE International Workshop on Robotic and Sensors Environments (ROSE 2009), Lecco, Italy, November 2009, pp. 23-28.  

doi: 10.1109/ROSE.2009.5355994



su
pe

rse
de

d b
y 

co
nfe

ren
ce

 ve
rsi

on

3(1) 4(4) 5(10) 6(11) 7(11) 8(11) 9(11) 10(11)

Reference Points (Subsets)

T
im

e 
in

 µ
s

0
20

00
0

40
00

0
60

00
0

Worst Case
Best Case
Best Case Decentral

Figure 5. Total localization time

The best case decentral scenario (green) describes the
absolute minimal computational time consumption for
the initiator of the localization, if subset grouping
and position vector calculations are distributed on the
entire sensor network. Unfortunately, the overhead of
the communication latency is far too big to benefit
from it, at least using our available hardware.

VI. TEST SYSTEM

In this section, we describe our localization system
for real-time control of a quadrocopter. We also dis-
cuss the practical implementation the developed algo-
rithms. Figure 6 shows the latest version of our ultra-
sonic measurement system including the sensor node.
Despite the classical master-slave topology, we decided
for a hybrid measurement architecture. Whether a
device is master (transmitter) or slave (receiver) is
completely hardware independent and can be con-
trolled on application level. The detection field of the
system is designed to be a hemisphere. Thus, the
reference points on the floor can not only detect the
flying object but also each other (this architecture is
depicted in Figure 1). This way, it is possible to span
up the grid automatically by attaching the reference
points on top of mobile robots. Another advantage of
a flying active beacon, as mentioned before, is that by
sensing the TOF of its own active chirp the altitude of
the object can be computed without the help of the
localization infrastructure.

In order to measure the localization accuracy, we
arranged one reference point in each corner of a
square, so a total of four reference points are used.
The length of the edges was 2 m. The object hovers
randomly in a square of about 3 m of edge length
and at an altitude of 0.5–2.5 m over the reference

Figure 6. Ultrasonic measurement system with SunSpot node
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Figure 7. Localization accuracy: the quadrocopter hovers over
the ground, the height error is plotted

square. Figure 7 shows the measurement results. The
histogram shows the difference between the measured
(using the ultrasonic device) and the computed alti-
tude (using the localization system). An accuracy of
±10 cm can be achieved with a confidence of 98 %.

For the measurements shown in Figure 8, we placed
the four-rotor robot at an arbitrary but fixed position
over the detection field. It can be seen that there are
four centers of gravity. Each subspace is the region
for the computed position of one of the four possible
subsets. Within this space, the maximum variance is
about ±2 cm. The estimated position is normally con-
fined to one of those regions. But as soon as the used
subset is missing, the estimated point jumps to another
subspace. The temporary vanishing of a subset can
have two main reasons. First, one of the measurements
was wrong and, therefore, the position was too far
away. Secondly, the wireless communication may be
disrupted. The generation of the regions is based on
systematic errors of the reference points’ positions. In
our tests, we ensured an accuracy of about ±3 cm.
With increasing deployment accuracy of the reference
points, the resulting regions merge into a single one.
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Figure 8. Localization accuracy: the quadrocopter is fixed in a
position, the measured x , y, z coordinates are plotted

VII. CONCLUSION

We investigated the problem of continuous indoor
localization for flying autonomous robots. In contrast
to ground-based robots, any waiting until position
measurements have been completed or taking advan-
tage of additional support systems such as odometry
are not possible in this case. Thus, a real-time localiza-
tion is needed that must also take weight constraints
into account.

Considering these requirements, we developed an
algorithmic procedure that advances the state of the
art in indoor localization by being able to perform
real-time localization based on possibly error-prone
distance measurements. The basic assumption is that
one coordinate of the reference points needs to be
equal. Without loss of generality, we set the z co-
ordinates to a constant value. This allows a closed
mathematical calculation that is even possible to be
performed by low resource sensor nodes. If, however,
a coordinate transformation needs to be executed, the
localization algorithm suffers from the computational
complexity of this transformation. We implemented
and evaluated the algorithm in our lab. The results
demonstrate the feasibility of the solution. We consider
our ultrasound lateration technique a necessary step
for completely autonomous operation of flying robots
in indoor environments. Further research is needed to
compensate the drift of the ultrasound path caused by
the air flow of the rotors [21].
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