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Abstract

When investigating complex communication protocols and a large number of stations using

discrete event simulation, it is of great interest to keep the number of necessary simulation

events low, since this number directly translates into simulation runtime. One important

target for optimizations is the packet or frame exchange over an underlying transmission

medium. The number of simulation events involved in transmitting packets should be as

low as possible. On the other hand, it is often of great importance to accurately model

the channel characteristics and the exact error process. A prominent example are wireless

channels. Unfortunately packet errors are very di�cult to model, since they depend on

channel and source characteristics (e.g. coding). Often the results of erroneous bits di�er

with the position of the bit hit by an error. Thus it may be necessary to simulate packet

transmission on a bit level to derive the packet error process. Simulation at bit level requires

at least one simulation event for every bit instead of a few simulation events per packet. In

this paper we show an approach for modeling packet error processes with the accuracy of bit

error processes, but having nearly the simulation performance of packet level simulation. In

order to show how our approach impacts simulation times of complex protocols, where the

packet transmission is only a small part of the model, we simulated the IEEE 802.11 MAC

on top of our improved channel model. It can be seen that the reductions in simulation times

are impressive.
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Chapter 1

Introduction

Simulation of communication protocols can be a very time consuming task. Therefore, a sim-

ulation model should be as abstract and simple as possible while giving su�ciently accurate

results. It is desirable to use only a few simulation events per single packet instead of one

simulation event per bit transmitted, and thus to use a packet level channel model instead of

a bit level channel model.

For simulation of communication protocols, e.g. Aloha, CSMA/CA, SNOOP-TCP, etc.,

channel modeling is an important task. In particular RF channels are very error prone (see

[2], [10])and the protocol behavior often depends strongly on the channel behavior, especially

when not all bits in a packet are equal w.r.t. the resulting consequences when hit by an error.

This is often a reason for using bit level channel models.

A second argument for using bit level models stems from the fact that it is often very

hard to obtain accurate packet level channel models, since these depend at least on three

factors: the bit error behaviour of the channel, coding and packet formats and the source

characteristics (e.g. packet length distribution). For this reason packet error processes are

often obtained via bitwise simulation of the packets. In �gure 1.1 one can see that the packet

error characteristics are di�erent for the same bit error pattern, when the packet arrival

patterns are di�erent. In particular packet source #1 generates longer packets which are

more likely to be hit by a bit error than the shorter packets of source #2. The channel

behaviour is in general assumed to be independent from the behaviour of the packet sources.

Using bit level channel models will degrade the performance of the protocol simulation,

since for processing of every bit at least one simulation event is necessary. Moreover, if we

assume di�erent channels between every pair of mobile stations, the simulation expenses

grow with N . In contrast, packet level channel models need only one simulation event for

Copyright at Technical University
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Figure 1.1: Packet error characteristics for the same bit error pattern

processing a packet, where a packet can consist of thousands of bits.

In this paper we demonstrate an approach for modeling packet error processes with the

accuracy of bit error processes, but having nearly the simulation performance of packet level

simulation. Since we are mainly interested in the behaviour of radio frequency (RF) wireless

channels, we focus on a well known class of of bit error models, namely the Gilbert-Elliot RF

channel model. Based on the Gilbert/Elliot bit level channel model we derive an equivalent

packet level channel model, which yields by construction the same packet error process, as if

every packet is simulated bit per bit. We show, that simulation times can be greatly reduced.

However, when simulating complex protocols, the transmission channel is only a small part

in the simulation. In order to assess the e�ects of our channel model to the simulation times

of complex protocols and scenarios, we have run a simulation of IEEE 802.11 on top of our

channel model. Still the savings in simulation times are impressive.

The paper is structured as follows. In the next section 2 we explain the Gilbert-Elliot chan-

nel model and how to parameterize it in order to match concrete channels. The Gilbert/Elliot

model is �rst used to derive a bit level channel model. This straightforward model is described

in section 3. In section 4 we describe two improved models and compare them to the prior

model w.r.t. simulation times. The savings for the second model are impressive. In section

5 we describe the e�ect of the straightforward and the improved bit error models using a

complex protocol simulation. For that purpose we have chosen the IEEE 802.11 MAC pro-

tocol using the Distributed Coordination Function. In the appendices we give a detailed

description and (pseudo-) code of all channel models.

Copyright at Technical University
Berlin. All Rights reserved.
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Chapter 2

Gilbert-Elliot RF Channel Model

In this work we consider radio transmission, e.g. using the license free 2.4 GHz ISM band

(Industrial, Scienti�c and Medical band). It is widely accepted that the radio channel is

a error prone channel with non-stationary error characteristics. Bit error rates as bad as

� 10�2:::�3 are reported (for measurements see [2], [4], [3]). The error process in general is

constituted by di�erent phenomena:

� Path Loss: the signal power between transmitter and receiver degrades degrades ac-

cording to Pr = Pt � � � d�� where Pr is the signal power at the receiver, Pt is the signal

power at the transmitter, d is the distance, � is some technology dependent constant

and � typically varies between � = 2 (best case) and � = 5 (bad case). However, the

relationship between distance and bit error rate (BER) is typically not linear. Instead,

often the mean bit error rate remains almost constant up to a given distance threshold

and then degrades rapidly (see e.g. [2]. This is due to receiver behavior, where all

signals below a given threshold are discarded.

� Fast Fading due to movement and multi-path propagation.

� Slow Fading due to moving beyond large obstacles.

� Noise and Interference from other networks or devices like microwave ovens.

2.1 Modeling Approach

For modeling the error characteristics of a wireless channel between two stations a simple and

widely used model is the \Gilbert-Elliot model" [13], [9], [5]: consider a two state Markov

chain with the states named Good and Bad (there is no Ugly state), see �g. 2.1. Every state

Copyright at Technical University
Berlin. All Rights reserved.

TKN-99-002 Page 4



TU Berlin

BadGood1-P1

P1

P2

1-P2

Figure 2.1: A two state Markov channel

is assigned a speci�c constant bit error rate (BER), eG in the good state, eB in the bad

state (eG � eB). Within one state bit errors are assumed to occur independently from each

other. The bit error rates in general depend on the frequency and coding scheme used and

on environmental conditions (e.g. number of paths between source and destination). In the

literature often a discrete time Markov chain is used, with state transitions after every channel

symbol. Thus the state sojourn time is geometrically distributed. It can be shown, that for

a high probability of staying within a state and a large number of symbols the state sojourn

time can be approximated by an exponential distribution1. For complete speci�cation of the

discrete model the two bit error probabilities and the 2� 2 stochastic state transition matrix

are su�cient. The state transition matrix is completely determined by the values pGG (for

the probability that the next state is the good state, given that the current state is also the

good state) and pBB . The mean state sojourn time (duration of being in a state) measured

in number of steps in this state is given by:

TG =
1

1� pGG

TB =
1

1� pBB

Some examples from the literature:

� From [6] (a more theoretical study on Polling and ARQ over Wireless channels):

{ eG = 10�4, eB = 10�3, pGG = 0:995 and pBB = 0:96,

{ state changes occur only at slot boundaries,the slot length is 1 msec,

{ thus the mean duration of good state is 200 msec and the mean duration of bad

state is 25 msec

� From Diploma thesis of Jie Volckart (based on [13]):

1For this case we assume that the Poisson Distribution is an approximation to the binomial distribution

counting the number of state changes within a �xed interval of time (see [7, p.153]). However, for Poisson

distributed random variables the inter-arrival times are exponentially distributed.

Copyright at Technical University
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{ eG = 10�5, eB = 10�2, pGG = 0:9999918 and pBB = 0:999184

{ The transmission rate is 8 Mbps, the slot size is 8 bytes. It is not known whether

state transitions occur at slot boundaries or at symbol (bit) boundaries

� From [1] (a simulation study): mean duration of good period: 1 to 10 sec, mean duration

of bad period: 50 to 500 msec (both exponentially distributed), packet loss probability

in bad state: 0.8 (with packet size of 512 bytes, link speed = 10 Mbps), packet loss

probability in good state = 0.0;

However, the Gilbert/Elliot model is only a special case of the more general model de-

scribed in the next section, which will allow for derivation of the Gilbert-Elliot channel model

parameters based on some fundamental physical properties.

2.2 The N-State Markov Chain Model

This section explains the assumptions and methods necessary for calculation of Markov Chain

parameters from physical channel properties. The following is based on [13].

The focus of the model in [13] is on the special case of BPSK coding over a Rayleigh

fading channel. The Rayleigh fading process is used for characterization of wireless channels,

where

� the receiver and transmitter are not �xed, but move with a moderate speed, with the

Doppler frequency being substantially smaller than the symbol rate2.

� There is a not too small number of signal paths between transmitter and receiver, and

the signal strengths are approximately the same3. There is no predominant path (e.g.

no Line-Of-Sight path).

It seems to be reasonable to assume Rayleigh Fading also in the case where the distance

between transmitter and receiver is small (e.g. in Wireless LANs), and there exists multiple

other paths in addition to the line-of-sight path, with small absorption coe�cients, e.g. due

to reections. This may be the case in o�ce and industrial environments. In contrast to

2Between two fading holes the channel is assumed to be in a stationary state. If the time di�erence between

fading holes is large enough, a lot of symbols can be transmitted within the same channel state and the channel

obeys bursty characteristics. If the fading frequency is in the range of the symbol frequency, this is not true

anymore.
3This assumption is necessary to invoke the central limit theorem.

Copyright at Technical University
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that, if there is one predominant signal path, the channel is said to be a Rice fading channel,

which is not covered by the model described here.

The overall assumptions for the N-State Markov Chain model are:

� Rayleigh-Fading, producing a time-varying receiver signal-to-noise ratio (R-SNR)

� BPSK coding

� Time variations of the received signal level are assumed to come from mobility (Doppler

e�ect)

A homogeneous discrete Time Markov Chain is constructed based on these assumptions,

where transitions can occur only after every channel symbol. Each state corresponds to a

speci�c channel quality and has its own BER (with independent bit errors). The range of R-

SNR is grouped into a �nite number (K) of intervals. From R-SNR the bit error probability

is directly concluded.

Calculating the Markov Chain Parameters

� Be K the number of states, S = fso; ::; sK�1g the set of states

� Be T := ((ti;j))i;j2f0;::;K�1g the time-homogeneous state transition matrix of the un-

derlying Markova chain. T is a stochastic matrix.

� p := (p0; ::; pK�1)
t is the steady state vector of T

� e := (e0; ::; eK�1)
t is a vector of bit error probabilities ek for state sk

� The mean bit error rate e is thus given by e = pte

� For developing a suitable model we need to determine T; e; and p

� Be A the R-SNR with probability distribution function pdf pA(a) =
1
�
� exp(�a

�
) and

0 = A0 < A1 < :: < AK =1 is a partition of the range of R-SNR. � is the mean of the

R-SNR. The DTMC is de�ned to be in state sk at time t i� R-SNR(t) 2 [Ak; Ak+1).

� Be fm := v
�
be the maximum Doppler frequency, where v is the speed of the receiver,

� the wavelength

� Then the number Na is the expected number of times per second where R-SNR sinks

below a given level a:

Na =

r
2�a

�
� fm � exp

�
�a

�

�

Copyright at Technical University
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� de�ne

F (�) :=

Z �

�1

1p
2�

exp

�
�x2

2

�
dx

� The following steps are needed:

{ choose K, � and v (v > 0), and the symbol rate Rt

{ determine the range of R-SNR and de�ne a partition A0; ::; AK of the range, such

that A0 = 0 and AK =1
{ choose �

{ Then for k 2 f0; ::;K � 1g

ek =

R Ak+1

Ak

1
�
� exp

�
�a

�

�
� (1� F (

p
2a))daR Ak+1

Ak

1
�
� exp

�
�a

�

�
da

{ for k 2 f0; ::;K � 1g

pk = exp

�
�Ak

�

�
� exp

�
�Ak+1

�

�

{ de�ne R
(k)
t := Rt � pk

� Proceed with:

{ set

Nk := Na(Ak) =

s
2�Ak

�
� fm � exp

�
�Ak

�

�

{ set ti;j = 0 for ji� jj > 1

{ for k 2 f0; ::;K � 2g set

tk;k+1 =
Nk+1

R
(k)
t

{ for k 2 f1; ::;K � 1g set

tk;k�1 =
Nk

R
(k)
t

� And �nally:

{ t0;0 = 1� t0;1

Copyright at Technical University
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{ tK�1;K�1 = 1� tK�1;K�2

{ for k 2 f1; ::;K � 2g:

tk;k = 1� tk;k�1 � tk;k+1

� For computation of ek, the following formula behaves better from a numerical point of

view:

ek =
k � k+1

pk

k = exp

�
�Ak

�

�
(1� F (

p
2Ak))

+

r
�

�+ 1
F

 s
2Ak(�+ 1)

�

!

In [13], for a given set of parameters, this model is validated against a ray-tracing based

simulation.

However, this model has the serious computational problem, that for every channel sym-

bol the current state sk of the Markov chain and the corresponding BER ek needs to be

determined (the BER can be obtained from a precomputed table), a random experiment

has to be performed for checking whether the current bit is in error and a second random

experiment is needed for determining the next state. The rest of this report deals with this

problem.

The main feature of interest of this simple model is its ability to capture the non-stationary

error characteristics of wireless links, where bit errors tend to occur in bursts, i.e. are corre-

lated.

How to choose the number of states?

The above given model description gives no advice on how to choose some of its parameters,

namely the number of states K. We have found, that the following heuristic makes sense:

� Consider the case where a MAC protocol tries to ensure, that on a single channel only

one station transmits at a time, collisions count as error. Some protocols belonging to

this class are TDMA-like protocols, CSMA, CSMA/CA, PRMA, and so forth. If one

wants to take only fast fading (rayleigh fading), it seems to be natural to work with only

two states (Good and Bad), and to assign the bad state to fading holes, accordingly

setting the good state to all other time intervals. This model is appropriate for short

distances.

Copyright at Technical University
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� If the model is built for long distances, one must additionally take slow fading into

account, where the signal shows di�erent levels of attenuation, e.g. due to moving

beyond a large obstacle. In this case K = 4 leads to a model, where the �rst two states

are the good and bad state of the Gilbert/Elliot model in the case where there is a line

of sight, the remaining two states are the good and bad state when there is an obstacle

between sender and receiver.

� For modeling CDMA systems, where many stations may transmit simultaneously, K

should be chosen as the number of stations in the system. Such a model is used e.g. in

[8].

Copyright at Technical University
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Chapter 3

Gilbert-Elliot RF Channel

Simulation Model

In this section we describe a bit level channel model based on the Gilbert-Elliot RF channel

model described in the preceding section. The input parameters of the simulation model are

shown below. We have chosen these parameters according to the IEEE 802.11 DSSS physical

layer speci�cation and the assumed indoor application scenario:

In this section we describe a Gilbert-Elliot based model for RF channel simulation, work-

ing on a bit-by-bit basis. As underlying simulation engine we use the CSIM (version 18)

library [11]. The input parameter of the simulation model are shown below. They are cho-

sen according to the IEEE 802.11 DSSS physical layer speci�cation and the assumed indoor

application scenario:

� Vehicle speed: V = 5 km/h (1.4 m/s)

� Wave length: � = 0:125 m (2.4 GHz)

� Max. Doppler frequency: fm = 1:4=0:125 = 11:2 Hz

� Bit rate: Rt = 2 Mbit/s

The target parameters for the simulation model are:

� Number of Markov Chain states: K = 2

� Mean of R-SNR: � = 20:5db

� Threshold SNR (Good $ Bad): A = 20db

Copyright at Technical University
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The values for � and A are not quali�ed through measurements. We have chosen them

such that the formulas given above yield a bit error rate of 10�5 and relatively long state

sojourn times.

>From the computation method presented in section 2 we will get the parameters for the

DTMC, these are shown in �gure 3.1. A state of the chain stands for a certain channel state

associated with a certain bit error probability.

p11

0 1

p00

p01

p10

Transition Probabilities: Bit Error Probabilities:

State 1 - 0.1

p00 - 0.999990785635362

p01 - 0.000009214364637

p10 - 0.00001325189423

p11 - .9999867881057613#

State 0 - 0.0001972644427729

-35

Figure 3.1: From Gilbert-Elliot-Model derivated DTMC

A bit error simulation model based on the Gilbert-Elliot model can be quite easily imple-

mented, assuming a certain initial channel state:

1. Perform a random experiment according to the present channel state to determine,

whether the bit is erroneous . If the bit is erroneous mark that bit.

2. Perform a random experiment according to the present channel state to determine the

next state. In case a state change occur, set the state variable and error probability to

the new state.

3. Wait one bit time (perhaps doing some other work) and continue with step 1.

In the following we call a model, which follows this approach, Straightforward Simulation

Model. Appendix A (Straightforward Gilbert-Elliot Simulation Model) contains a

CSIM18 presentation of that model. The drawback of this modeling approach is, that at

every bit time, two Bernoulli experiments have to be executed: one to determine whether a

bit error occurs and the other one to determine a state change. This will slow down packet

level communication protocol simulation, since a packet can consist of thousands of bits. A

goal for improvement is the reduction of the Bernoulli experiments per packet. Clearly the

Copyright at Technical University
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minimum number of Bernoulli experiments needed for a single packet is two (no channel state

transition during a packet). We want to get as close to this minimum as possible.

Copyright at Technical University
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Chapter 4

Speeding up the bit error

simulation

The �rst problem, leading to much simulation overhead, is the calculation of the (Markov

chain) state change by means of a Bernoulli experiment at every bit time. Applying some

statistics leads to an improvement. For instance, one can count the number of independent

Bernoulli experiments until an \success" event occurs. This number corresponds to a randov

variable X. For a realization of X = i is the probability of i \wrong" experiments is (1� p)i

and for the successful experiment p. The variable X follows a geometric distribution with

� PfX = ig = (1� p)ip for i = 0; 1; :::;

� E[X] = (1� p)=1� (1� p)

We can use this knowledge to speed up the simulation. Instead of executing every bit time a

Bernoulli experiment to check a state transition in the DTMC, we derive from the geometric

distribution the number of (bit) time steps of next (Markov chain) state transition in the

DTMC. CSIM18 provides for that purpose a function

� geometric(p) where p is the success probability

which returns an integer number, following the geometrical distribution.

The result of this modi�cation is, that we have to compute just once the next (Markov

chain) state every n bits, instead of performing a Bernoulli experiment every bit time. In

the following parts of the paper we call this optimization Improved Simulation Model. The

CSIM18 example, which contains the improvement as proposed above, is presented in Ap-

pendix B. This approach still allows to determine the position and the number of bit errors

Copyright at Technical University
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in a packet. This may be interesting in some communication protocols, where only parts of

the packets are error protected, e.g. for the header in ATM packets. In this case one has to

know about the position of the bit error, since a packet is only recognized as erroneous, if the

header contains an error. Another example is simulation and modeling of error correcting

codes, where the transmitted bits di�er in their signi�cance. With the help of error correction

codes, an erroneous packets can be corrected, if the number of bit errors are below a certain

threshold depending on the parameters and power of the code.

Next we attack the calculation of bit errors. Every bit is evaluated with a Bernoulli

experiment. A optimization for this case is possible. Consider the case, where one only want

to know, whether the packet is correct or wrong, that is, there is respectively no bit error

in the packet or at least one. This applies for many communication protocols, which use

only a packet error recognition like CRCs (Cyclic Reduncy Check). If one knows the bit

error probability and the packet length in bits, it is possible to compute the packet error

probability.

Let i be the number of bits and y the bit error probability, then the packet error probability

Perr is

� Perr(i; y) = 1� (1� y)i

We can use Perr in a single Bernoulli experiment to decide about correctness of the packet.

That is, instead of computing the bit error at every bit time, we compute just once for a packet

the error. This will reduce complexity and computational expenses of the bit error model

leading to an improved simulation performance. However, we have observed that for larger

i it is numerically better to use the CSIM binomial random variate generator the following

way: one can determine the number of errors in the packet, using a binomial random variable.

If the number equals zero, the packet is correct, otherwise it is erroneous.

Of course, the channel state may change during a packet transmission. This can be

handled by computing the error probability only of the packet fraction, which belongs to the

the current channel state, and for the remaining packet fractions repeat this calculation. The

partial results can be combined to determine the packet error probability. For instance, if we

have three state transitions of the markov chain during a packet transmission, we compute

for the already transmitted part of the packet according to the present bit error probability,

whether this part is erroneous. If one or more of the packet parts are erroneous, the whole

packet is erroneous. This method can also be applied to determine, whether a certain part

of a packet (e.g. header, body) is erroneous.

Copyright at Technical University
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In the following we call this optimization Optimized Simulation Model. A CSIM18 rep-

resentation of this optimization can be found in Appendix C. The di�erence between this

model and the Improved and the Straightforward Simulation Model is an enormous reduc-

tion of necessary Bernoulli experiments. Only a few Bernoulli experiments per packet are

performed1 to determine the correctness of a packet instead of performing a Bernoulli exper-

iment for every bit. Furthermore, the bitwise computation of state change is reduced to one

computation every x bits, where x follows a geometric distribution. A reduction of computa-

tional expenses and e�ective simulation time is achieved. Furthermore, from construction it

is clear that all models are stochastically equivalent, i.e. they show the same statistics. This

is con�rmed by the results shown in section 5.

4.1 Model Comparison

In order to compare the presented models and their performance gains with respect to simu-

lation expenses, we measured the CPU time of the simulation programs. The measurement

setup was as follows: we have used a 350MHz PentiumII computer running LINUX. There

was no user task on the system, only the basic set of LINUX demons was running. We have

measured both the \real time" (the time the user sees between starting and stopping the sim-

ulation) and the CPU time with the built-in time command of the tcsh shell. The runtime

of the simulations was controlled by the CSIM run length control mechanism, which runs a

simulation until the prede�ned con�dence level of 95 % was reached for a con�dence interval

width of 10 % of the measured value. This mechanism uses the batch means method. As

target for the run length control the channel state probability was chosen. The packet sizes

are chosen �xed to be 128 bytes.

The results are shown in table 4.1 (CPU time) and table 4.2 (real time). We can clearly

see the improvement in simulation time. Comparing the Straightforward and the Optimized

Model in table 4.1 the di�erence is in the order of 9. The improvement is a result of the re-

duction of necessary Bernoulli experiments. The drastic improvement between the Improved

and Optimized model results from the fact, that the computation for determining the bit

errors is replaced be a very simple compution for determining the packet error. In the opti-

mization for determining the state change the relative complex bitwise Bernoulli experiment

is replaced by a more complex but less frequently used computation of the time of switching

to the next state, which is based on a geometric distribution.

1If no state change occur during a packet transmission, only one Bernoulli experiment is necessary to

determine a packet error
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To check the validity of the models, we have compared the mean bit error probabilities

delivered by the straightforward model and the improved model with the analytical solution

as described in section 2. The results are shown in table 4.3. The results equals very good

each other. We further checked the simulation results for error state probability and sojourn

times as compared to the analytical solution. In table 4.4 it is shown that the results di�er

only marginally.

CPU Time in Seconds

Straightf. Model Improved Model Optimized Model

2454.960 286.010 0.130

Table 4.1: CPU time of simulation models

Real Time in Minutes

Straightf. Model Improved Model Optimized Model

46:01.02 5:14.14 0:00.41

Table 4.2: Real time of simulation models

Mean Bit Error Probability

Analytical Solution Straightf. Model Improved Model

0.0000116 0.0000117 0.0000117

Table 4.3: Mean bit error probability
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Channel State Probability Sojourn Time in ms

Model State0 State1 State0 State1

Analytics 0.589857 0.410142 0.054262 0.037729

Straightf. 0.59702 0.402978 0.05468 0.036913

Improved 0.592986 0.407014 0.054988 0.037743

Optimized 0.590147 0.409853 0.054318 0.037724

Table 4.4: Error state probability and sojourn time
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Chapter 5

Simulating IEEE 802.11 DCF

We have investigated the inuence of the error models used to the runtimes needed for

simulation of higher layer protocols. For that purpose we took a complex media access

protocol: IEEE 802.11 using DCF (Distributed Coordination Function). We do not describe

the IEEE 802.11 model in detail, since we just want to know how the optimization of the bit

error model presented before scale with a complex packet protocol model. For information

and details of IEEE 802.11 the reader is referred to [12].

5.1 IEEE 802.11 DCF Model and Parameter

IEEE 802.11 is a standard for wireless in-house communication. We only want to present the

simulation setup and parameters in this section.

For obtaining results on consumed CPU time and real time we integrated the proposed bit

error models in the model of IEEE 802.11 DCF. We simulated two mobiles sending packets

to each other. The run length of the simulation again was controlled by the CSIM run length

control mechanism with the same con�dence level and accuracy values for the inter-arrival

times of erroneous packets. Both mobiles were fed by source processes, where the packet

inter-arrival time is a Poisson process with the mean of 1500 �sec and the packet size is

also determined by a Poisson process with mean of 128 bytes. The parameters of the MAC

protocol were set according to the 2Mbit/s DSSS-PHY (Direct Sequence Spread Spectrum)

of the IEEE 802.11 standard. The simulations were performed only with the Straightforward

and the Optimized Model.

The following �gure 5.1 shows the simulation setup.
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Figure 5.1: Simulation Model

5.2 Comparison

First we compared several simulation results of the two models as listed in table 5.1.

Various simulation results of IEEE 802.11 DCF using

Results Straightf. Model Optimized Model

# of generated packets 369590 368980

# of erroneous packets 5000 5000

# of successful trans. packets 246208 245896

# of collisions 8106 7997

Normalized system load 0.67 0.67

Normalized system throughput 0.45 0.45

Channel access delay in ms 1.419 1.418

Table 5.1: Various simulation results

The results are very close to each other. So we assume, that the models deliver stochasti-

cally equal simulation results. Furthermore we compared the distribution of the inter-passage

time between to consecutive erroneous packets. The observed mean values are 55:373ms and

55:280ms for IEEE 802.11 DCF simulation with the Straightforward and the Optimized
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Model, respectively. Furthermore the distribution curves of inter-packet times as shown be-

low are very close to each other, as shown below:
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Figure 5.2: Inter packet time distribution of erroneous packets: Simulation with Straightfor-

ward (left) and Optimized Model (right)

Now we compare the the CPU and real time used for both simulation models (table 5.2

and 5.3). These times are measured with the same setup as described above (time command

of tcsh), with a �xed packet length of 128 bytes. The results show that the simulation can

be speeded up signi�cantly with an appropriate modeling approach. The gains in simulation

speed will likely be higher, if the packet size distribution has higher mean values, thus a

greater fraction of large packets. In table 5.3 we show the CPU times needed for both

models. We can conclude that the choice of the channel model can have an overwhelming

impact.

CPU Time in Seconds

Straightf. Model Optimized Model

2044.050 23.550

Table 5.2: CPU time of simulation models
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Real Time in h:min.sec

Straightf. Model Optimized Model

37:41.45 0:26.06

Table 5.3: Real time of simulation models
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Chapter 6

Conclusion

In this paper we have developed an approach for speeding up simulations of wireless net-

works. The nice thing of our approach is that the simulation can use a relatively coarse time

resolution (on the order of packets) while achieving the error modeling accuracy of bit-by-

bit simulations. Furthermore, the modeling of errors is based on physical parameters of the

underlying network. We have explained our approach for the special and common case of a

two state markov chain, however, it is straightforward to apply the methodology to the case

of N states.

We have evaluated our approach and it shows impressive reductions in simulation times,

while being (by construction) stochastically equivalent to the straightforward bit-by-bit chan-

nel model. In order to show that these gains are also visible in more complex network simula-

tions, where besides the channel there are also computationally expensive protocol processing

tasks, we have incorporated our channel models into a simulator for the IEEE 802.11 DCF

protocol. Also in this case the reductions in simulation time are signi�cant.
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Appendix A

A Straightforward Simulation

Model

For modeling purposes we have used the simulation tool CSIM18. It provides a slim library

with modeling routines and the event handling system. CSIM18 incorporates no graphical

user interface. Two very important characteristics of CSIM18 are very good simulation

performance and stability. The modeling approach of CSIM18 is process oriented. For more

information see http://www.mesquite.com.

...

long nr_of_bits=0;

long nr_of_err_bits;

STREAM error;

...

void channel_error()

{

short int err_state=0;

double ran1, ran2;

create("error");

while (1)

{

/* compute bit error and error state */

ran1=stream_uniform(error, 0.0, 1.0); // error indication

ran2=stream_uniform(error, 0.0, 1.0); // state change

switch (err_state)

{

case 0:

if (ran1 > 0.00001972644427) err_ind=NO_ERROR; else err_ind=ERROR;

if (ran2 <= 0.00000921436463) err_state=1;

break;

case 1:

err_ind=NO_ERROR;

if (ran2 <= 0.0000132518942386) err_state=0;

break;
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};

/* wait a bit duration */

hold(1/C_SPEED);

nr_of_bits++;

if (err_ind==ERROR) nr_of_err_bits++;

};

}

The function channel_error represents a CSIM18 process, which is instantiated with the create

function. After instantiation two Bernoulli experiments are executed. The �rst one

ran1=stream_uniform(error, 0.0, 1.0)

computes for the present time slot, which corresponds to a single bit, whether the bit is erroneous.

The second one

ran2=stream_uniform(error, 0.0, 1.0)

determines the following state of the DTMC. Both experiments are done with respect to the current

channel state. After one bit time hold(1/C_SPEED) the experiment is repeated.
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Appendix B

An Improved Simulation Model

An optimized version of the Gilbert-Elliot bit error model is shown below:

...

long nr_of_bits=0;

long nr_of_err_bits=0;

STREAM error;

...

void channel_error()

{

short int err_state=0;

double ran1;

long i,x;

create("error");

while (1)

{

/* compute bit error and error state */

switch (err_state)

{

case 0:

/* step to state 1 after x time */

x=stream_geometric(error,0.00000921436463);

hold(x/C_SPEED);

err_state=1;

/* This is for statistic: Count Bit errors and bits */

for (i=1; i<=x; i++)

{

ran1=stream_uniform(error, 0.0, 1.0);

if (ran1 < 0.00001972644427) nr_of_err_bits++;

};

nr_of_bits +=x;

break;

case 1:

/* step to state 0 after x time */

x=stream_geometric(error, 0.0000132518942386);

hold(x/C_SPEED);

err_state=0;

/* This is for statistic: Count the bits;

no errors in this state*/

nr_of_bits +=x;
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break;

};

};

}

Considering a certain state (case 0 or 1) of the DTMC we compute the sojourn time in that state

with x=stream_geometric(error,0.000010120867254), measuring in numbers of bits. After the

waiting time (hold(x/C_SPEED)), where C_SPEED is the transmission rate, the state is changed. In

the case that a state has both a predecessor and a successor state (e.g. a DTMC with eight states1),

an operation would be necessary to decide in which state to go next. This is easily accomplished by

the normalized transition probabilities to the predecessor and successor state. For the computed x

bits, the number of bit errors are evaluated (in the for statement).

1As mentioned in section 2, a Gilbert-Elliot channel model can have an arbitrary number of states. We

have chosen a model with only two states, since it turned out to be su�cient for our parameters.
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Appendix C

An Optimized Simulation Model

The optimized CSIM18 version of the Gilbert-Elliot Channel Model is shown below:

...

long nr_of_bits=0;

long nr_of_err_bits=0;

STREAM error;

double bit_err_prob; // contains current bit error probability

EVENT State_Change; // this event indicate a state change

...

void channel_error()

{

short int err_state=0;

double ran1;

long i,x,y;

create("error");

bit_err_prob = 0.00001972644427;

while (1)

{

/* compute bit error and error state */

switch (err_state)

{

case 0:

/* step to state 1 after x time */

x=stream_geometric(error,0.00000921436463);

hold(x/C_SPEED); err_state=1;

/* Set bit error prob of state 1 and indicate state change */

bit_err_prob = 0.0; set(State_Change);

nr_of_bits +=x;

break;

case 1:

/* step to state 0 after x time */

x=stream_geometric(error, 0.0000132518942386);

hold(x/C_SPEED); err_state=0;

/* Set bit error prob of state 0 and indicate state change */

bit_err_prob = 0.00001972644427; set(State_Change);

nr_of_bits +=x;

break;

};

};
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}

In this routine the for-statement of the Improved Simulation Model (Appendix B) is replaced by an

indication of the current bit error probability (bit_err_prob = 0.xxxxx) and state change

set(State_Change)

This can be used by a packet model to determine the current bit error probability and a state change

during the transmission of packets.
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Appendix D

An Error-Position aware Model

Introduction

A more advanced algorithm for simulation addresses two speci�c features:

� it provides information about the position of bit errors and upper layer software routines can

be called in order to evaluate the speci�c e�ects of bit errors on that particular position. An

example using this feature is transmission with start- and stop bits, where an error in a start

bit is recognized immediately, long time before any checksum is evaluated.

� it can properly handle multiple changes of the wireless channel state during a single packet.

The algorithm is given in this appendix, using C++ syntax and the CSIM library. Event processing

occurs at the packet boundaries, at every time the medium switches its state within the Gilbert/Elliot

model, and at every time, a bit error occurs.

The algorithm works the following way: An independent process biterrorrate_modulator per-

forms switching of the channel state. It always stores the time, when the next switching will happen,

in the variable tSwitchTime. Furthermore, the current bit error rate is stored in a global variable

dCurrentBER. Now, when a packet or frame needs to be sent, the process frame_sender determines

the portion of the frame which will be transmitted until the next medium switch will happen. For

this portion of the frame the occurrence of errors is simulated (procedure simulate_k_bits). When

this is done, frame_sender waits for the switching event and after that repeats this algorithm for the

remaining portion of the frame.

The input for the procedure simulate_k_bits is given by the current bit error rate (BER) and

by the index of the starting and stopping bit of the portion currently to transmit (w.r.t. to the whole

frame), giving k bits to transmit. By construction, no channel state switch will occur during this

portion, thus bit errors occur independently of each other. Since we want not to simulate bit-by-bit,

we decided to use the following approach:
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� At �rst a binomial random experiment is used to determine the number n of bit errors during

the current portion.

� If this number is 0, we let pass simulation time according to the duration of the portion.

� If this number is greater than 0, we need to determine n pairwise di�erent error positions within

the portion to transmit. These error positions should be \equally distributed".

� After determining the error positions (and thus the time of their occurrence) each error is

simulated, by letting the simulator for each error pass the time between two error events (or

between start of the portion and the �rst error event) and then to notify the upper layers on

the error.

So the remaining question is how we can determine exactly n distinct positions within k bits such that

these are equally distributed. The most obvious approach is to create uniform random numbers for

the range between minimum and maximum bit index in a loop, until exactly n distinct positions are

found. To this behalf, the result of every experiment must be stored and it must be checked, whether

the random number is already contained in the storage. However, this is not a good choice, since it

is hard to deterministically bound the number of loop iterations needed, especially if n is not small

as compared to k. So we used the following approximation: the k bits are subdivided into n intervals

of equal size, the remaining bits are called slack and are not considered anymore. In every interval

we generate a uniform random number within that interval and store the value. It can be argued,

that the resulting bit errors are not uniformly distributed, especially if n is large (leading to a large

slack). However, we believe that this approximation su�ces, since in our experiments, for frames of

10000 bit size the di�erence between the distributions of inter-error-times for the approximation and

a brute-force \bit-by-bit" simulation were marginal, even for relatively high bit error rates of 10�3.

Furthermore, especially in a wireless scenario larger frame lengths are rarely used.

Source Code

void biterrorrate_modulator (void)

{

create ("biterrorrate_modulator");

double dTmp;

while (TRUE)

{

dCurrentBER = simPara.dGoodBER;

dTmp = expntl(simPara.dDurationGood);

tSwitchTime = clock + dTmp;

eSwitch.set();

hold(dTmp);
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dCurrentBER = simPara.dBadBER;

dTmp = expntl(simPara.dDurationBad);

tSwitchTime = clock + dTmp;

eSwitch.set();

hold(dTmp);

}

}

// -----------------------------------------

BOOL afCurrentlyTransmitting [NUMBER_OF_MAC_ADDRESSES];

// ------------------------------

void signal_receive_error (...)

{

// signals an error to upper layers at the time it occurs

.....

}

// ------------------------------

void signal_error_event (...)

{

// signals an error to upper layers after the end of packet

// transmission (medium goes idle)

.....

}

// ------------------------------

void deliver_frame (....)

{

// make some final tests (e.g. checksum) and deliver the

// frame

.....

}

// ------------------------------

BOOL simulate_k_bits (double dBER,

USHORT usBitIdxLow,

USHORT usBitIdxHigh)

// simulates k Bits

// the return values indicates, whether an error was generated

{

double dStopTime;

long lLastPos, lNumBits, lNumErrs, lIntLen, lSlack;
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long lMin, lMax;

int i;

long *alErrPos;

BOOL fErrorSignalled;

fErrorSignalled = FALSE;

lNumBits = usBitIdxHigh - usBitIdxLow + 1;

dStopTime = lNumBits * simPara.dBitTime + clock;

lNumErrs = binomial (dBER, lNumBits);

if (lNumErrs == 0)

{

// no errors ... let time pass

hold (lNumBits * simPara.dBitTime);

return FALSE;

}

alErrPos = new long [lNumErrs];

// now determine the positions of the bit errors

// the interval of BitIdxLow to BitIdxHigh is divided into lNumErrs

// Subintervals of equal size. In each subinterval one bit error

// position will be determined with uniform distribution.

// if the slack is zero then the whole distribution of the

// bit errors is uniform

lIntLen = lNumBits / lNumErrs;

lSlack = lNumBits % lNumErrs;

for (i = 1; i <= lNumErrs; i++)

{

lMin = usBitIdxLow + (i-1)*lIntLen;

lMax = usBitIdxLow + i*lIntLen - 1;

alErrPos[i-1] = uniform_int (lMin, lMax);

}

// now we simulate the bit errors

lLastPos = usBitIdxLow;

i = 0;

while (i < lNumErrs)

{

// let pass time until we reach the bit error

// position

hold ( ((alErrPos[i] - lLastPos) + 1) * simPara.dBitTime);

lLastPos = alErrPos[i] + 1;
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// and signal error

signal_receive_error (...);

fErrorSignalled = TRUE;

i++;

}

delete [] alErrPos;

// let the remaining time pass....

hold (dStopTime - clock);

return fErrorSignalled;

}

// ------------------------------

void frame_sender (USHORT idx)

{

create ("frame_sender");

while (TRUE)

{

// getting frame from upper layers, pointed to

// by pFrame

afCurrentlyTransmitting[idx] = TRUE;

{

double dDuration;

USHORT usConsumedBits;

USHORT usNumBits;

USHORT usBitsToSimulate;

BOOL fErrorSignalled;

BOOL fCollFound;

BOOL fTmp;

// Collision Detection

fCollFound = FALSE;

fErrorSignalled = FALSE;

for (i=0; i<simPara.usNumberOfStations; i++)

{

if ((i != idx) && (afCurrentlyTransmitting[i]))

{

fCollFound = TRUE;

}

}

if (fCollFound)

{

signal_receive_error (....);
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fErrorSignalled = TRUE;

}

// first reset the eSwitch event

eSwitch.clear();

usNumBits = (pFrame->usLen) * 8;

dDuration = usNumBits * simPara.dBitTime;

usConsumedBits = 0;

while ((dDuration > 0.0) && (usConsumedBits < usNumBits))

{

if (dDuration <= (tSwitchTime - clock))

{

// no medium switch will happen in the remaining

// portion of the frame

dDuration = 0.0;

fTmp = simulate_k_bits(dCurrentBER, usConsumedBits, usNumBits-1);

fErrorSignalled = fErrorSignalled || fTmp;

}

else

{

// at least one medium switch will happen during

// the current frame.

dDuration = dDuration - (tSwitchTime - clock);

usBitsToSimulate = (USHORT) ceil(((tSwitchTime - clock) * simPara.dBitrate));

fTmp = simulate_k_bits(dCurrentBER,

usConsumedBits,

usConsumedBits + usBitsToSimulate - 1);

fErrorSignalled = fErrorSignalled || fTmp;

usConsumedBits = usConsumedBits + usBitsToSimulate;

// wait for the switch event

eSwitch.wait();

}

}

// make some final tests (e.g. checksum) and deliver the

// frame

deliver_frame (...);

}

.....

}

}
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