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V-Edge: Virtual Edge Computing as an Enabler for
Novel Microservices and Cooperative Computing
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Claudio Casetti, Francesco Malandrino, Vincenzo Mancuso, Florian Klingler, Gianluca Rizzo

Abstract—As we move from 5G to 6G, edge computing is
one of the concepts that needs revisiting. Its core idea is still
intriguing: Instead of sending all data and tasks from an end user’s
device to the cloud, possibly covering thousands of kilometers and
introducing delays lower-bounded by propagation speed, edge
servers deployed in close proximity to the user, e.g., at some
base station, serve as proxy for the cloud. This is particularly
interesting for upcoming machine learning (ML)-based intelligent
services, which require substantial computational and networking
performance for continuous model training. Yet this promising
idea is hampered by the limited number of such edge servers. In
this position paper, we discuss a way forward, namely the virtual
edge computing (V-Edge) concept. V-Edge helps bridging the gap
between cloud, edge, and fog by virtualizing all available resources
including the end users’ devices and making these resources widely
available. Thus, V-Edge acts as an enabler for novel microservices
as well as cooperative computing solutions in next-generation
networks. We introduce the general V-Edge architecture and we
characterize some of the key research challenges to overcome in
order to enable wide-spread and intelligent edge services.

I. INTRODUCTION

Next-generation mobile networks are envisioned to provide
the computational, memory, and storage resources needed to
run services required by diverse third parties (referred to as
vertical industries or verticals). Each service is associated with
specific requirements, quantified as key performance indicators
(KPIs). To this end, networks will require a high degree of
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Figure 1. The V-Edge concept: Abstraction of the physical resources of the
cloud back end, the 5G/6G core and RAN, as well as users and machines. All
components provide (and may use) resources for edge computing and they
may participate in a local, distributed orchestration on short time scales, while
global optimization and other non-real-time operations can be performed in
the cloud back end.

flexibility and fully automated operations, with a drastically
reduced service deployment time. Essential components to
achieve these goals are softwarization of both networking and
services using network function virtualization (NFV) [1], [2]
and the ability to store and process data close to the end
user leveraging so-called edge computing. Edge computing
goes beyond classic multi-access edge computing (MEC) as
standardized for 5G networks [3], [4]; rather, the network edge
has become the convergence point of data processing, caching,
and communication [5], which makes service provisioning at
the edge one of the key challenges in future networks. This
holds in particular for upcoming intelligent machine learning
(ML)-based services that require substantial computational
resources for model training and also need to continuously
exchange (parts of) the trained models.

Network virtualization, significantly supported by the current
5G/6G standardization and research beyond it, pushes NFV
to merge with the concept of microservices to improve
practicality, universality, and automation. Service ubiquity and
resilience are emerging as the ultimate goals – following
recent work in the context of Tactile Internet [6], [7]. The
degree of resilience describes how well a system can deal with
changing environments including unforeseen events. To achieve
these goals, networks are progressively integrating machine
learning [8] in two main ways. First, an increasing number of
user applications include ML models for a smarter application
behavior, higher ability to adapt to users’ preferences, and
more effective interaction between users and machines. Second,



2

Table I
TYPICAL NODES PARTICIPATING IN V-EDGE CLUSTERS

Stationary / infrastructure-based systems
Type CPU Storage Network Time available

ISP-operated MEC server high-performance multi-core 1− 100TByte 0.1− 10Gbit/s years
privately operated MEC server multi-core 1− 10TByte 0.1− 1Gbit/s weeks
Wi-Fi APs single core 0.1− 100GByte 0.1− 1Gbit/s months

Mobile / opportunistic systems
Type CPU Storage Network Time available

Moving car low-end multi-core 0.1− 1TByte 0.1− 1Gbit/s 1− 5min
Parked car low-end multi-core 0.1− 1TByte 0.1− 1Gbit/s 0.5− 24 h
Fully autonomous shuttle high-performance multi-core 1− 10TByte 0.1− 1Gbit/s 1− 30min
User with smartphone single to multi-core 1− 100GByte 0.1− 1Gbit/s 5− 15min

ML-based approaches have become common in research on
automatic network management, resource orchestration, as
well as in predicting a wide range of parameters (e.g., wireless
channel properties, users’ behavior, service demand). This
allows to dynamically and proactively tune the operational
parameters (and even switching between complete protocol
stacks) if needed.

Given these emerging trends, the network edge is turning into
an enabler between the cloud and a fully-distributed machine-
to-machine (M2M) network, hosting virtualized network func-
tions and user applications, to meet both service providers’ and
users’ needs. Eventually, all current MEC applications are in
scope but so are novel classes that are only enabled by new
degrees of virtualization and inherent ML support.

The aim of this position paper is to analyze the research
issues that arise when virtualization is applied to network
services and user applications at the edge in a comprehensive
manner. With the limited availability of 5G edge servers, we
believe that the only way forward is to virtualize all edge
resources. In particular, we introduce the virtual edge computing
(V-Edge) concept. It takes advantage of the flexibility offered by
network softwarization and NFV to integrate, opportunistically
and dynamically, the highly heterogeneous set of resources
available locally at the edge (e.g., computing, storage, and
communication resources), while guaranteeing seamless and
QoS-aware service provisioning to users in a variety of
verticals.

A schematic representation of the V-Edge concept is depicted
in Figure 1. Compared to 5G and traditional edge computing,
the system comprises resources with varying availability/fluc-
tuating availability: CPUs, connectivity, and storage capacity
come and go as users do, carrying the corresponding devices.
Thus, we have to move from allocating static resources to
dynamic users and applications to allocating resources that are
dynamic as well. An example is the integration of cars not
only as service users but also as service providers, explored
e.g. in [9], [10]. V-Edge goes well beyond initial activities
towards distributed computing and data storage, realizing a
full and harmonic integration between infrastructure-based
communication networks and mobile edge systems at the
resource level, as well as between user applications and network
functions at the service layer.

In V-Edge, part of the orchestration of resources and tasks

needs to be done at the edge on rather short time scales to
cope with resource volatility and dynamics. The back-end
cloud, instead, can be used for global optimization on longer
time scales. Following current ML approaches to 5G and
edge computing [8], V-Edge will also be inherently learning-
based, supporting both user applications and network functions.
Distributed learning concepts such as federated learning [11]
serve as a blueprint but need to be integrated with reactive
approaches such as reinforcement learning to deal with the
dynamics of the overall system. Federated learning also helps
to realize privacy-preserving, distributed approaches and to
effectively transfer trained models where and when needed.

The contributions of our position paper can be summarized
as follows:

• we characterize the move from classic MEC to harmonized
virtual edge computing for improved scalability, resilience,
and flexibility;

• we introduce the conceptual architecture of V-Edge
making consequent use of virtualization to deal with the
high degree of dynamics in the network; and

• we summarize and discuss relevant research questions to
be solved to make V-Edge reality.

II. THE V-EDGE ECOSYSTEM

Before outlining our conceptual virtual edge computing
architecture, we introduce the underlying basic components
of the V-Edge eco-system, including the major services it can
support.

Users: As in conventional systems, users still contribute
to the traffic demand while using edge-based applications. In
V-Edge, users may have a dual representation in the system as
edge users but also as resource providers. A big challenge, as for
other resource-sharing systems, is incentivation, as users may
not be willing to share their resources (at least energy, possibly
costly communication) with others. Incentivation concepts need
to be explored based on prosumer models in other fields (users
producing and consuming at the same time).

Resources: Required resources to satisfy the user demand,
network-wise and application-wise, are now provided by an
increasing variety of devices ranging from the cloud over
internet service provider (ISP) to community-operated edge
servers, and even to small internet of things (IoT) systems.
V-Edge goes well beyond classic MEC, by dropping the
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differentiation between cloud and edge and fog, and oppor-
tunistically recruiting local, already existing – yet possibly
unused – resources. In V-Edge, even small “fog” devices are
conceptually turned into “edge servers” to provide functions
to third parties. This way, edge computing coordinated by an
edge server and, in most cases, by the ISP and/or the cloud,
merges conceptually with fog computing, which is by nature
fully distributed and yields a heterogeneous, yet fully integrated,
virtualized ecosystem. A list of typical V-Edge nodes with their
computational, storage, and networking resources is provided
in Table I, also indicating the average time such nodes will be
available in a given location. We are, obviously, talking about
very dynamic scenarios. Classic MEC assumes dynamics in
terms of users and their tasks coming and going. Now, also
the available edge computing resources come and go, which
can be seen as constituting a virtualized edge server with time-
varying resource availability. A fundamental part is therefore
user management and resource discovery. Solutions similar to,
for example, in vehicular micro-clouds [9], may be considered.

Services and Functions: Network services, and often user
applications, need to be deployed within the V-Edge. The
classes of user applications that can benefit most from a virtual
edge implementation include:

• services with tight latency constraints or whose support
with dedicated static infrastructure would have entailed
too high a CAPEX, e.g., cooperative (automated) driving
and UAV control, in need of local edge support even out
of cities;

• services that may exhibit bursts of demand of computing
tasks, e.g., due to “flash crowds”;

• IoT applications like monitoring tasks, where local data
have to be pre-processed for immediate use, or transferring
large amounts of data to the cloud that would require too
much data rate;

• augmented reality (AR), and in general extended reality
(XR), applications, as well as any six degrees of freedom
(6DoF) immersive technology that requires both low
latency and large data rate;

• ML applications making use of ML as a service [12],
which has emerged as a new paradigm whereby trained
or pre-trained models are provided for making decisions
in different contexts.

Orchestrator: To complete the above functions, resource
and service orchestration is needed. Resource orchestration
can be both reactive (which may sometimes be too late) or
proactive, so that resources, and the functions mapped thereon,
can naturally follow demand in space and time. We remark
that the orchestration itself becomes one of the tasks (likely
ML-supported) to be distributed and executed within the virtual
edge, in this respect similar to user applications.

The orchestrator (Figure 2) has to observe and monitor nodes
and their computing and communication resources and schedule
them for individual functions or entire microservices. Machine
learning will help to make such decisions with little and often
impaired information about the available edge components.
From an architectural perspective, the orchestrator can be
centralized at a (physical) edge server (or even in the cloud,
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Figure 2. V-Edge architecture: Logical resources from mobile users and
infrastructure-based systems (e.g., edge servers co-located with a gNB) are
aggregated into clusters. Multiple clusters are appropriately coordinated and
microservices can migrate from one cluster to another to optimize the service
location. Resource management is done by an orchestrator, which may
interwork with others, controlling neighboring clusters, to migrate services.

with the risk of additional problems due to the communication
delay), or decentralized through nodes participating in the V-
Edge. In realistic deployments, an at least partially distributed
solution may be preferred for better resilience (no single point
of failure) and responsiveness of the overall system (optimized
solutions on a global scale but updated locally).

Architecture: The architecture of a V-Edge system enables the
interaction between the components described above (Figures 1
and 2). A key feature of the V-Edge architecture is that users are
grouped together so as to virtually cluster their resources and
to provide these resources qualitatively equivalent to the ones
provided by the cloud or edge infrastructure. This cluster-based
organization facilitates and optimizes resource management
while providing resilience and flexibility, like done, e.g.,
in the context of vehicular micro-clouds [9]. Services and
network functions can be instantiated in one cluster and then
migrated to another one dynamically, under the coordination
of the orchestrator, and driven by the learning process that
underpins its operations. Figure 2 zooms into the architecture
outlining interconnected mobile and infrastructure clusters
that are orchestrated together. The distributed nature of all
resources additionally requires novel concepts and interfaces
for distributed orchestration and for the cooperation between
orchestrators and even between multiple such clusters, edge
components, and the back-end cloud servers.

III. KEY TECHNOLOGIES AND RESEARCH CHALLENGES

Existing work on edge computing has predominantly focused
on resource allocation on edge servers that may experience
dynamic load but whose deployment is static or only changes
on long time scales. V-Edge goes well beyond this limitation
by allowing also resources to be mobile, thus, computational,
storage, and communication resources may come and go at any
time. In this section, we identify most relevant key technologies
and the related research challenges that will make V-Edge a
reality.



4

Pareto set for
low churn

Pareto set for
high churn

Performance
degradation
(e.g., service

interruptions)

Overhead
(e.g., synchronization)

Churn rate

Figure 3. Services KPIs in the context of the V-Edge concept.

A. Performance Aspects

Similar to non-virtual edge clouds, a V-Edge system needs
to optimize classic KPIs such as throughput, latency, service
rejection rate, utilization, combined with high dependability
and easy management, as well as to maximize the number
of satisfied users and expected revenue compared to capital
or operational expenditure (CAPEX, OPEX). There exists,
however, a differentiating factor between V-Edge and non-
virtual edge computing: the node churn rate, i.e., the rate
at which nodes join and leave the V-Edge system and the
evolution of the network topology in space and time due to
device mobility. Mobility needs to be tracked to estimate the
time to connection loss. ML algorithms to can help to detect
patterns of user behavior, to track gatherings, or other mobility
patterns. The churn rate is not a performance metric but rather
a system characteristic with a twofold impact. On one hand, it
may degrade the V-Edge KPIs, which could be characterized
as the price of virtualization; on the other hand, the use of
mobile devices to the V-Edge allows significant CAPEX and
OPEX savings and improving overall system resilience.

While this is a fair perspective from an end user’s or
investor’s perspective, it can fall short when comparing different
V-Edge realizations against each other. First, more fine-grained
metrics would be needed in this case to characterize the per-
formance of services as well as management and orchestration
systems (e.g., packet latency vs. service initiation time, or traffic
throughput vs. number of service deployments per second).
Second, suitable metrics should be selected to highlight the
existing trade-offs in performance. A typical example is the
overhead introduced by state synchronization to ward off
service interruptions, compared against the degradation in the
users’ quality of experience caused by those same service
interruptions.

Consequently, V-Edge will need to find compromises be-
tween multiple metrics that cannot be traded off against each
other. In such a case, configurations that are worse in all metrics
than some other known configuration are clearly not interesting;
we need to find the set of configurations that are better than
all other configurations in at least one metric (often called the
“Pareto front” as the set of all Pareto-optimal solutions). While
this is a well-known problem from optimization theory, it is
aggravated in V-Edge as these Pareto fronts likely will depend
on extrinsic, non-controllable parameters. As an example,

Figure 3 illustrates two Pareto fronts for the two metrics
“Overhead” and “Performance degradation” (thick blue or
orange lines), depending on “Churn rate” as an extrinsic
parameter. These complex dependencies and entanglement
between diverse aspects of the V-Edge are not well captured
by existing performance metrics; they rather call for a novel
approach to choosing the most suitable system configuration.

B. Orchestration of Microservices

Network softwarization is taking over the data, control, and
management planes, as well as different protocol layers. Exam-
ples of data plane virtualization include virtual routers and user
applications, while a relevant control plane example is the new
“Open and Smart Radio Access Network” (O-RAN) architecture
developed by the O-RAN Alliance to transform the radio access
networks industry towards open, intelligent, virtualized, and
fully interoperable RANs.1 As mentioned in Section II, virtual
network functions (VNFs) stemming from such softwarization
can be seen as (components of) microservices, which need to
be properly and jointly orchestrated, whenever they compete for
the same physical resources. Further, depending on their type
and logic, microservices can be executed in different execution
environments with varying trade-offs in terms of capabilities
and performance.

Thus, an orchestrator for a V-Edge system needs to provide
the same functionality as any of the orchestrators proposed for
an ordinary edge infrastructure. Namely, it has to map VNFs
used to compose microservices to the available resources, taking
into account not only their requirements but also the computing
and communication capabilities of the device on which they
are mapped and the performance impact of the services that
leverage such microservice instances. This is, however, not the
only issue a V-Edge orchestrator faces. Indeed, it has to cope
with the network and node churn: quickly changing network
conditions and node availability. A V-Edge orchestrator has to
be aware of this churn as well as of the services’ ability to deal
or not to deal with it (e.g., stateless vs. stateful services) and
their temporal and spatial availability requirements – aspects
that are exacerbated in V-Edge with respect to conventional
scenarios. This fact invalidates any conventional, long-term
approach and demands a more agile, adaptive solution.

We address this challenge by leveraging machine learning
techniques, conceiving a multi-faceted framework that can
effectively deal with the multitude of necessary observations
and actions. Specifically, the proposed V-Edge orchestration
framework includes:

1) a network model, partially based on explicit information
(e.g., battery or computing capacity of a device) and
partially learned information (e.g., movement patterns
and sojourn time), to account for individual devices’
capabilities and behavior;

2) a service model, partially provided by the VNF graph
composing the service and the VNFs’ specifications,
partially learned (e.g., how disruption-tolerant is a service,
how does a disruption affect the users’ quality of

1O-RAN Alliance: https://www.o-ran.org
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Figure 4. The V-Edge tetrahedral orchestrator (VETO).

experience); we underline that some information that
could be provided by the service developer might actually
need to be learned in practice and that a continuous
update of the service understanding is necessary;

3) the orchestrator as such, i.e., learning scaling, placement,
routing, migration, and other actions based on the network
and service models;

4) an Auto-ML component, which is necessary to train
hyperparameters, since the above three models need to
be continuously trained in the field and since properly
parameterizing training is hard.

The four components of the framework are connected in a
tetrahedron as depicted in Figure 4, as they all depend on each
other; we dub such a framework V-Edge tetrahedral orchestrator
(VETO). VETO provides a functional separation of a learning-
based orchestrator. Some important challenges, however, remain
to be addressed for a detailed framework design. In particular,
it is critical to: (i) learn correlation between network and
service models, e.g., between user spatial distribution and
service demand dynamics, (ii) identify the hyperparameters to
be learned by the Auto-ML component, (iii) define the time
scale over which the different components should operate, (iv)
understand with which granularity instances of VETO should
be deployed to deal with different geographical areas to make
the system scalable.

C. Cooperative Computing

Cloud computing introduced dynamic resource allocation
and flexible costs in computing, enabling many novel services.
Edge computing places services in close proximity of the user
enabling new kind of services, focusing on low latency, e.g.,
services used in Tactile Internet [6], [7]. Cooperative computing,
central to the V-Edge concept, adds resilience and flexibility
by distributing computing tasks dynamically based on their
requirements to achieve the needed level of responsiveness
(e.g., ensured termination within time bounds).

Latency is caused by propagation and computing delay, both
of which need to be taken into account to find placement
and distribution of a function to return its result in time at
minimum cost [13]. Figure 5 illustrates the problem in the
application scenario of connected vehicles: V-Edge clusters
running computing functions on the vehicles themselves can
be hierarchically extended using 5G/6G infrastructure, e.g.,
following the vehicular micro cloud architecture [9]. In this

gNB

V2V V2V V2V

Virtual Edge
Cloud A

Virtual Edge
Cloud C

Virtual Edge
Cloud B

Communication between
edge clouds via 5G

Figure 5. Placement of mobile edge computing for connected vehicles.

example, vehicle to vehicle (V2V) communication is used
between the nodes within a V-Edge and between adjacent
V-Edges, while distant V-Edges communicate via the 5G
network. The V-Edge architecture provides vertically and
horizontally distributed placement of computing functions,
assuming distribution and coordination (Figure 2).

Recent advances in the field of coding, in particular network
coding and coded caching, provide efficiency, resilience, and
low latency for information distribution and storage. Coded
computing may provide solutions for cooperative comput-
ing [14] but requires novel results and innovations that
progressively solve the following challenges to be enabled
in V-Edge:

• Challenge 1. Interconnect Edge nodes in V-Edge clusters
and distribute tasks among themselves; the back-end data
centers are used as fallback solution as described already
for vehicular micro-clouds [9]. The critical issue here is
the distribution and synchronization of all relevant data
to perform computing and meta data describing tasks.
Hierarchical organization simplifies a solution but does
not necessarily yield the optimum.

• Challenge 2. A better solution can be based on coding.
Similar to network coding for storage and communication,
also computing tasks can be coded to avoid outages
if physical nodes leave the virtual edge [14]. Coded
computing is normally used between neighboring nodes
such as mobile robots or cars, but it can be extended to
cooperation among multiple edge clouds, adding resilience
and performance.

• Challenge 3. Integrate such coding-based distributed
computing with new paradigms for resource management.
Current management solutions focus separately on com-
munication and computational resources, with some initial,
simplistic attempts to joint allocation, normally tackled
as a static optimization problem. However, the problem is
highly non-linear and time-correlated (future allocations
depend on past ones in non-trivial ways), thus management
based on advanced ML techniques is compelling, yet far
from trivial.

Thus, for cooperative computing, the open research questions
can be summarized as follows:

• Characterization of the computing requirements before-
hand to select the appropriate subset of computing
resources that can perform the task with the required
dependability;

• identification of the subset of data to be distributed, in
particular what data goes to which computing node;
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• dynamic and distributed allocation of communication
and computing resources in an environment subject to
continuous change and sudden failures of both computing
nodes and communication links;

• data fusion and compressed sensing in distributed environ-
ments, where computational decisions influence further
computing tasks and future decision (think, as an example,
of distributed inference on roads, including vulnerable
users as pedestrians and bikers);

• sparsification of models to reduce the overhead resulting
from model distribution in distributed learning.

Such challenges and research questions naturally rely on
distributed learning concepts. Federated learning in particular
will play a dominant role because it realizes distributed training
and then merging the models generated in a privacy-preserving
manner [11], [15].

IV. DISCUSSION AND CONCLUSION

Revisiting the motivation for our virtual edge computing
(V-Edge) approach, in the following, we discuss the benefits of
this novel architecture and what cannot be done with traditional
cloud, MEC, and fog computing. From a paradigmatic point
of view, there are many reasons to make use of V-Edge even
though some fundamental problems need to be addressed before
implementation. Making the V-Edge concept reality, however,
requires a tremendous effort for algorithms, for a conceptual
view on scalability and resilience, as well as for technologically
discovering nodes quickly and fast communication between
V-Edge nodes.

From a policy perspective, the V-Edge concept addresses
many problems that have hampered (mobile) global communica-
tions in the past decades. As discussed above, V-Edge requires
open solutions at different architectural levels. Openness in
telecommunications and computing has proven to be one of
the key enablers for innovation and economic growth. Thus,
the V-Edge vision naturally becomes the melting pot for
novel services, solutions, start-ups, and technological evolution.
This consideration alone should be enough for all actors, and
standardization bodies in particular, to embrace V-Edge and
mold future business based on this equitable architecture.

Scalability is going hand in hand with efficient resource
discovery and utilization to make advanced services more
accessible and, thus, affordable by a wider sector of the society.
If, on one hand, a distributed architecture is the only solution
to scalability, on the other hand, it is well known that uncoor-
dinated distribution uses resources inefficiently, from storage
and computing power down to communication and energy.
V-Edge proposes an advanced, ML-oriented orchestration that
enables the efficient and dynamic use of resources, especially
leveraging those that go unused for a large part of the time.
An example for all: processing power on autonomous vehicles
when they are parked. The safety requirements of Society
of Automotive Engineers (SAE) Level-5 autonomous driving
require a processing power (CPU and GPU) that is comparable
to several nodes of high-performance computing systems, and
this extreme capacity is right there, at the edge, but with
traditional architectures it is impossible to tap it.

Resilience is one of the most pressing reasons to foster V-
Edge. 5G/6G architectures, together with computation (think
about GPUs) and local access (WiFi 6 and the upcoming
WiFi 7), have shown that only extreme distribution and
densification of resources can meet the increasing requirements
on communications and services. V-Edge is bringing this
evidence from subliminal awareness to architectural design,
highlighting and formalizing the interdependence between
communications, computing, management (resource allocation
and scheduling), and service KPIs. So doing, V-Edge clarifies
the technical challenges that need to be addressed for success,
first of all in the realm of ML, acknowledging that traditional
models cannot be applied to a system whose evolution is
not predictable a priori. Resilience, to some extent, requires
some level of adaptability and flexibility that empowers the
autonomous evolution of functions, services, and management
models through autonomous learning and self-development.

Finally, security, privacy, and trust need to be considered,
which goes well beyond the scope of this paper but aligns well
with resilience. Lessons learned in computer science indicates
that distributed systems are in general safer, more secure, and
most of all naturally support the implementation of “privacy
by design” principles. V-Edge clearly matches this indication,
with its extreme distribution and the orchestration of resources
coming from different actors and entities. We are, however,
also well aware that practical systems often fail to meet
theoretical results, in particular concerning security where the
complexity of distributed systems may lead to design failures,
with severe consequences. Trust will also help incentivizing
users to participate. This is a further topic for research and
design towards the V-Edge realization.
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