
7

Monitoring Bats in the Wild: On Using Erasure Codes for
Energy-Efficient Wireless Sensor Networks

Falko Dressler, University of Paderborn
Margt Mutschlechner, University of Innsbruck
Bijun Li, TU Braunschweig
Rüdiger Kapitza, TU Braunschweig
Simon Ripperger, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science
Christopher Eibel, FAU Erlangen-Nürnberg
Benedict Herzog, FAU Erlangen-Nürnberg
Timo Hönig, FAU Erlangen-Nürnberg
Wolfgang Schröder-Preikschat, FAU Erlangen-Nürnberg

We explore the advantages of using Erasure Codes (ECs) in a very challenging sensor networking scenario,
namely monitoring and tracking bats in the wild. The mobile bat nodes collect contact information that needs
to be transmitted to stationary base stations whenever being in communication range. We are particularly
interested in improving the overall communication reliability of the wireless communication. The mobile
nodes are capable to store a few 100 kB of data and to exchange contact information in aggregated form. Due
to the continuous flight of the bats and the forest environment, the wireless channel quality varies quickly
and, thus, the communication is in general assumed to be highly unreliable. Given the very strict energy
constraints of the mobile node and the inherently asymmetric channels, conventional techniques such as
full data replication or Automatic Repeat Request to improve the communication reliability are prohibitive.
In this work, we investigate the trade-off between reliability achieved and the cost in form of additional
transmissions, i.e., the additional energy costs. Our energy measurements on a real platform combined with
larger scale simulation of the wireless communication clearly indicate the advantages of using ECs in our
scenario. The results are also applicable in other configurations when unreliable communication channels
meet tight energy budgets.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Wireless sensor networks, erasure codes, forward error correction, reliable
communication, energy efficiency

ACM Reference Format:
Falko Dressler, Margit Mutschlechner, Bijun Li, Rüdiger Kapitza, Simon Ripperger, Christopher Eibel,
Benedict Herzog, Timo Hönig, and Wolfgang Schröder-Preikschat, 2016. Monitoring Bats in the Wild: On
Using Erasure Codes for Energy-Efficient Wireless Sensor Networks. ACM Trans. Sensor Netw. 12, 1, Article 7
(February 2016), 30 pages.
DOI:http://dx.doi.org/10.1145/10.1145/2875426

This work has been supported by the German Research Foundation (DFG) under grant no. FOR 1508.
Author’s addresses: Falko Dressler, Dept. of Computer Science, University of Paderborn; Margit Mutschlech-
ner, Institute of Computer Science, University of Innsbruck; Bijun Li and Rüdiger Kapitza, Dept. of Computer
Science, TU Braunschweig; Simon Ripperger, Museum für Naturkunde, Leibniz Institute for Evolution and
Biodiversity Science; Christopher Eibel, Benedict Herzog, Timo Hönig, and Wolfgang Schröder-Preikschat,
Dept. of Computer Science, FAU Erlangen-Nürnberg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1550-4859/2016/02-ART7 $15.00
DOI:http://dx.doi.org/10.1145/10.1145/2875426

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:2 F. Dressler et al.

1. INTRODUCTION
Since the early days of sensor network research, sensor networking technology has
frequently been proposed for the use in wildlife monitoring. Among a few other appli-
cations, this has been one of the most successful examples making its way into real
world usage. Sensor networking based wildlife monitoring provides more sophisticated
methods for biologists to study a specific species, in terms of gathering a huge amount
of data by long-term observations. The first projects relied on typical sensor platforms
as used in academic research labs, e.g., the Great Duck Island project [Mainwaring
et al. 2002], or on special hardware that is even robust enough to be carried by larger
animals, e.g., the ZebraNet project [Juang et al. 2002]. Besides the manpower and other
resources saved by employing sensor nodes instead of human beings, they succeeded in
maintaining a reliable system with a very high data collection rate.

In more recent activities, heterogeneous sensor nodes have been used for tracking
generic animals and endangered species such as Iberian lynx in the surrounding
area of wildlife passages, which was built to establish safe ways for animals to cross
transportation infrastructures [Garcia-Sanchez et al. 2010]. This system allows target
identification through the use of video sensors connected to strategically deployed nodes.
Recently, a sensor networking system has been presented used for monitoring rats
[Link et al. 2010]. Furthermore, the development of the “Encounternet” system allowed
for the successful mapping of social networks in wild New Caledonian crows [Rutz
et al. 2012]. Conceptually similar to our system, nodes are attached to rats or crows to
observe their contacts and routes.

From these successful approaches to wildlife monitoring using sensor networks,
we learned about hardware design issues, network management, and data collection
techniques. In the new BATS1 project on monitoring the group dynamics of bats in
their natural habitat, we go one step further and investigate potentials of ultra-low
power sensor systems carried by the bats to monitor contacts or encounters between
individuals and to track their routes at high spatial and temporal resolution [Dressler
et al. 2016]. The aim of the project is to support biologists with their study on bats, a
strictly protected animal taxon in the European Union, to track their living habitats and
social behaviors. Mouse-eared bats (Myotis myotis) are the main study target [Arlettaz
1996; Rudolph et al. 2009]. The key challenge is that the animals with a minimal weight
of about 20 g can carry sensors of at most 2 g for node plus battery, which strongly limits
the available energy budget as well as the computational power and storage capabilities.
Comparable sensors published in the literature typically weigh more than 100 g, with
the Encounter tags being outstanding with a weight of only 20 g.

The scenario employs mobile nodes which are situated on bats and base nodes on
the ground, as shown in Figure 1. In order to document social interactions among bats,
all tagged individuals continuously exchange contact information. Data completeness
is essential for the construction and proper analysis of social networks. However, the
observed bats only appear in the communication range of a base station on an irregular
basis. If in communication range, they are supposed to upload all contact information.
In the following, we will refer to this data as chunks representing sets of contact
information collected by a mobile node on the bat.

Unfortunately, the channel quality may vary quickly due to the continuous movements
of bats and the heterogeneous environment, thus, the communication is in general
assumed to be highly unreliable. Conventional reliability-improving approaches such as
full data replication or on-demand retransmission are too expensive or even not possible
due to very strict energy constraints and asymmetric channels. This is of course in

1Dynamically adaptive applications for bat localization using embedded communicating sensor systems,
http://www.for-bats.org/

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:3

Fig. 1: The BATS deployment scenario.

conflict with the objective to improve the overall sensor network lifetime [Dietrich and
Dressler 2009].

1.1. Communication Architecture
Our bats monitoring scenario is based on mobile nodes attached to individual bats and
a stationary ground network using base stations deployed within the hunting area. The
ground network is responsible for flight tracking using on the fly localization techniques
as well as for collecting encounter information from the bat nodes.

All mobile nodes exchange beacon messages to collect encounter information. These
encounters are uploaded to the base stations whenever the mobile node gets into contact
with such a ground station. We obviously have two options: using a distributed ground
network or storing the information at a base station located at the roost where the bats
stay during the day time. The very limited storage capacities on our ultra-low power
target platform only allow to keep a very limited number of encounters in memory.
In addition, live experiments capturing the encounters of bats are only possible when
triggering a upload as early as possible. We therefore decided to follow a fully distributed
approach by uploading the encounter information as soon as the mobile node meets a
ground station.

The overall communication architecture is shown in Figure 2. Using a multi-stage
wake-up receiver, the downlink is controlled by stationary base nodes in the ground
network. Whenever a bat node gets into the communication range of a ground node,
its wake-up signal initiates the upload of contact information, i.e., all available data
chunks in form of multiple radio packets.

As mentioned before, the quality of the communication channel is inherently varying.
We study the use of Erasure Codes (ECs) in this scenario for error control and forward
error correction in order to improve the overall reliability of the channel. Each message
is assumed to be protected by a CRC, which allows to identify bit errors. The alternative
would be to use coding directly at the physical layer using ECs or Low-Density Parity-
Checks (LDPCs) codes [Gallager 1962; Pfister and Siegel 2008]. We employ simple
retransmissions as well as ECs for this upload to investigate the advantages of each
solution.

1.2. Contributions
In this paper, we investigate the use of ECs to improve the communication reliability
between the mobile nodes and the ground network. In earlier work, we already explored

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:4 F. Dressler et al.

0.2
0 1

232
064

33.965
62.579

73.365
72.971

Sender
Start End
Encounter

232
127

53.473
62.037

73.628
73.346

Sender
Start End
Encounter

...
064
064
...

...
53.473
62.037

...

...
73.628
73.346

...

Receiver
Start End
Encounter

...
232
127
...

Sender

decode and store persistently

get data

BEACONS

encode
and send

232 127

064

Sink

GUI

Base Network

wake-up

Fig. 2: Communication architecture.

the basic idea of this concept [Mutschlechner et al. 2014b; Mutschlechner et al. 2014a].
Compared to the simplistic approach to send chunk replica together with the original
data chunk, ECs offer a better performance with reduced costs. Likewise, ECs show
a better efficiency than on-demand chunk retransmissions realized by acknowledging
successfully transmitted chunks. We carefully investigate the performance of three types
of ECs in terms of reliability improvement via simulations, since the target hardware
is still under development at this moment. One of the most critical characteristics of
the used simulation model is the mobility pattern of the bats. We based this model on
empirical data on free ranging bats provided by biologists.

Extending our previous work in [Mutschlechner et al. 2014b], we now present a more
accurate mobility model for the hunting bats, which has been validated using empirical
data from published field observations. We also updated the communication model and
compared the use of ECs to simple Automatic Repeat Requests (ARQs). Furthermore,
we specifically assessed the computational feasibility of using ECs on the target micro
controller.

According to our findings, we can report several advantages of using ECs, which
have not yet been considered in other sensor data upload applications. It is clear
that the redundancy introduced by using ECs or data replication will increase energy
consumption with the number of additional chunks. Simulation results show that with
the same or even less overhead compared to classical data replication and on-demand
retransmission, ECs can provide a higher degree of reliability in our specific application
scenario.

Our key contributions can be summarized as follows:

— We introduce the use of ECs in the field of low-energy sensor tracking systems for
wildlife monitoring (Section 3).

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:5

— We developed and carefully validated a new mobility model able to characterize the
flight paths of bats during their hunting process (Section 4). This model allows to very
accurately study wireless communication in simulation and to derive typical contact
patterns and times between individuals.

— We developed a novel communication protocol based on erasure codes for dissemi-
nating contact information from the mobile bat nodes to stationary ground nodes
(Section 5).

— We investigated both the energy footprint and the computational overhead of ECs on
a real hardware platform (Section 6.1).

— Furthermore, we performed an extensive set of simulation experiments to explore the
potential of ECs compared to other solutions (Section 6.2).

2. RELATED WORK
Sensor networks have successfully been used for wildlife and habitat monitoring for a
long time already. First projects have been Great Duck Island [Mainwaring et al. 2002]
and ZebraNet [Juang et al. 2002]. In these activities, sensor networking technology has
been explored primarily to answer questions such as how to transmit sensor readings
to a connected base station or a gateway, or how long does this network operate given
the prototype sensor nodes and off-the-shelf batteries. More recently, sensor technology
in combination with GPS receivers has been applied to track movement and behavior
of individual animals [Garcia-Sanchez et al. 2010; Anthony et al. 2012; Sommer et al.
2014]. Furthermore, multiple sensor streams allowed for event type dissociation in
order to reduce power consumption of GPS receivers and to extend operation times
[Jurdak et al. 2013]. Also, the technological advances enabled new generations of sensor
nodes that can be used to track much smaller animals such as rats [Link et al. 2010].
Wireless digital transceiver technology rendered even the automated mapping of social
networks in wild birds possible [Rutz et al. 2012]. We go one step further and develop
a sensor platform that allows for both localization and documentation of encounters
weighing 2 g including a 1 g battery. Thus, known communication principles need to
be reconsidered especially with respect to the reliability and the resulting lifetime
[Dietrich and Dressler 2009]. In particular, we explore ECs as a well known technique
for forward error correction to reduce the number of repeated message transmissions
considering the underlying unreliable wireless communication channels.

Erasure codes are widely employed to improve the reliability in wireless transmis-
sions in general as well as in wireless sensor networks [Kim et al. 2004]. The usage of
EC techniques for wireless transmissions without a feedback channel has been investi-
gated in [Berger et al. 2008]. Here, the optimal trade-off between error-correction coding
within packets and erasure-correction coding across packets has been determined. The
authors show that the trade-off depends on both the fading statistics and the average
Signal to Noise Ratio (SNR) of the wireless channel, where for severe fading channels
the trade-off leans towards more redundancy across packets and less redundancy within
each packet. Hence, since we are facing a highly unreliable channel, the application of
ECs adding redundancy across packets is appropriate.

In [Angelopoulos et al. 2013], Random Linear Network Coding (RLNC) has been
proposed as a packet-level EC in combination with intra-packet error correction at the
physical layer for low data rate indoor Wireless Sensor Networks (WSNs). The results
indicate that RLNC at a code rate of r = 4

8 provides an SNR improvement of 3.4 dB and
a gain of 5.6 dB when combined with intra-packet error correction.

Also several studies to compare ECs with traditional reliability enhancing approaches
such as data replication and ARQ have been conducted. A cross-layer methodology for
analyzing error control schemes in WSNs has been proposed in [Vuran and Akyildiz
2009]. The analysis includes a comprehensive comparison of ARQ and several Forward

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:6 F. Dressler et al.

Error Correction (FEC) codes. The results presented outline that FEC codes are well
suited as reliability improvement technique in delay-sensitive WSNs since energy
consumption and the end-to-end latency is reduced. Furthermore, it has been shown
that this improvement can be exploited by employing transmit power control and hop
length extension.

To the best of our knowledge, there exists no study on the feasibility of ECs for
scenarios with spontaneous connectivity such as the scenario we are investigating with
its specific channel properties.

3. ERASURE CODES
An Erasure Code (EC) is a FEC code for the erasure channel that enhances data
transmission reliability by introducing redundancy, however, without the overhead of
strict replication. In the presented usage scenario, erasures take place on a per-packet
basis, hence, ECs are used to introduce inter-packet redundancy.

ECs consist of an encoding and a decoding algorithm. The former one extends a group
of k packets to n packets by generating m = n − k redundant packets, where k < n.
Each subset of the n packets containing at least k′ packets is sufficient to successfully
decode the original data, where k ≤ k′. The code rate r = k

n describes the overhead in
terms of redundant packets.

There exist various kinds of ECs. To identify the most suitable EC, we accomplished a
study to determine feasible candidates. We then evaluated the most promising ECs with
the help of simulations as well as energy measurements on a real hardware platform.

3.1. EC Selection
In general, ECs can be divided into optimal and nearly-optimal ECs. Optimal ECs,
such as Reed-Solomon (RS) codes [Reed and Solomon 1960], have the property that
any k out of n packets are sufficient to successfully decode the original data, i.e., k′ = k.
Nearly-optimal ECs, for example Tornado codes [Luby et al. 2001], introduce a slight
overhead such that k′ = (1 + ε) ∗ k packets are required to decode the data successfully,
where ε > 0, hence, k′ > k. However, the encoding and decoding algorithms are less
expensive. They have a linear complexity with respect to n, whereas optimal ECs can
have up to quadratic coding complexity for large n.

In recent years rateless ECs, such as Luby Transfom (LT) codes [Luby 2002] and
Rapid Tornado (RAPTOR) codes [Shokrollahi 2006], evolved. These are a special kind
of nearly-optimal ECs where the encoding algorithm generates a potentially infinite
amount of redundant data without having a fixed code rate. The main advantage
emerges in a scenario with multiple receivers where a feedback channel is present.
The encoding entity generates and transmits redundant data up until obtaining a
notification about the successful decoding from all receivers. If a receiver holds an
insufficient amount of packets, i.e., the amount of received packets is smaller than
k′, it must obtain not yet received packets in order to be able to decode successfully.
Since these might be distinct packets for each receiver, the encoding entity might have
to retransmit multiple packets individually for each receiver when using fixed-rate
ECs. The encoding algorithm of rateless ECs, however, produces an infinite amount of
redundant data, hence, transmitting a newly generated redundant packet is suitable
for each receiver. Thus, the amount of transmissions is reduced.

According to our study, which has been confirmed also in [Angelopoulos et al. 2013],
optimal ECs are most suitable for the presented scenario. In order to use rateless
nearly-optimal ECs effectively, a feedback channel is needed. This, however, is not given
in our scenario due to the high mobility of the nodes (cf. Section 4.2). Moreover, the
encoding entity is highly energy constrained, hence sending an unlimited amount of

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:7

redundant data is clearly not feasible. Therefore, rateless ECs have been excluded from
the simulation.

Regarding nearly-optimal codes in general, the overhead introduced by ε is a major
drawback in our scenario. The necessary value for ε increases as the amount of original
data k decreases. Hence, the amount of data required for decoding k′ is growing if k
decreases. To obtain a low overhead, k is supposed to have a large value, however, this
is not achievable by the highly energy-constrained mobile nodes responsible for the
encoding. Our mobile nodes have a restricted amount of storage (a few 100 kB) due to
the highly limited node weight and size. Furthermore, mobile nodes may have only
infrequent contact to the base network, hence, waiting until enough data is gathered to
get a large value for k might result in forfeiting the rare communication possibilities.

In contrast, we have the drawback of optimal ECs exhibiting a higher coding complex-
ity for large n. However, since the amount of original and redundant data is supposed
to be very small, this is negligibly low for our scenario. Therefore, we mainly focus on
optimal ECs, using a selected nearly-optimal EC for comparison purposes. In particular,
we rely on the following existing open source implementations:

— Cauchy: an RS code based on a Cauchy matrix, developed by Michael Luby [Blömer
et al. 1995]

— Vandermonde: an RS code based on a Vandermonde matrix, developed by Luigi Rizzo
[Rizzo 1997]

— Tornado: a nearly-optimal EC, developed by Michael Noisternig [Noisternig 2004]

Each one of the three implementations has been evaluated with four different code
rates: r = { 45 ,

4
6 ,

4
7 ,

4
8}. As a baseline experiment, we simulated the scenario with no

reliability improvement, i.e., data is sent without encoding. Furthermore, for comparison
reasons we integrated the full replication idea, i.e., data is sent together with an exact
replica to increase reliability, and on-demand retransmissions, i.e., data is resent until
receiving an acknowledgment indicating a successful reception of the data.

3.2. Coding Algorithms
The significant difference between the various ECs are the mathematical operands and
operations that are used during the encoding and decoding process. The two RS codes
Cauchy and Vandermonde apply the same kind of mathematical operation in their
encoding and decoding algorithms, however, they work on different kinds of matrices,
whereas Tornado varies significantly in the algorithm, i.e., the applied operations itself.

RS codes are cyclic block codes that split the original data x into k equally sized
blocks x1 . . . xk. These blocks are considered as the coefficients of a polynomial over a
finite field F :

Px(c) =

k∑
i=1

xic
i−1 (1)

The encoding algorithm extrapolates it at n distinct sampling points Px(c1) . . . Px(cn),
where the first k points Px(c1) . . . Px(ck) correspond to the original blocks (thus, success-
fully receiving the first k blocks corresponds to an error-free transmission of the original
messages). This encoding function is a linear mapping and can be realized as x→ x×A,
where A is a k × n generator matrix with elements from F . Therein lies the difference
between the two chosen RS codes since they use a Cauchy and a Vandermonde matrix,
respectively. The decoding algorithm inverts the encoding by interpolating over some of
the values of Px(c1) . . . Px(cn), where at least k out of the n sampled points are needed
to recover the original blocks. The encoding and decoding algorithms have a complexity
of O(n · log n) and O(n2), respectively, where the computational effort of the decoding

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:8 F. Dressler et al.

Fig. 3: Encoding process of Tornado.

algorithm is not crucial since only the encoding is performed by the energy-constrained
nodes.

In contrast, the encoding and decoding algorithms of Tornado are based on a bipartite
irregular graph [Luby et al. 2001]. The original data is split again into k equally sized
blocks x1 . . . xk, each one represented by one node in the graph. The algorithm is realized
in multiple levels visualized in Figure 3.

Each level except the last one performs a LDPC code by combining multiple nodes
of the graph with an inexpensive XOR operation to generate redundant data. For
each level the nodes themselves can be chosen randomly without repetition, however,
the total amount is given by a specific distribution for each level. This operation is
performed recursively until the final level encodes the nodes with an RS code. Since
each level reduces the number of nodes, the complex operations during the final level
have to be performed on a much smaller subset.

Decoding reverses the encoding algorithm by executing the RS decoding algorithm
before applying the XOR operations starting from the second to last level. Both the
encoded and decoded algorithms have a complexity of O(n · ln 1

ε), where ε is a positive
constant representing the overhead needed for decoding.

4. MOBILITY MODEL AND CONTACT PATTERN
The mobility model of mobile nodes has a high impact on the results of the simulation.
It influences both the quality of the communication channel as well as the duration of
the communication between mobile and base nodes. In the real deployment scenario
each mobile node corresponds to a bat, and the simulated area resembles the foraging
patch. Therefore, in order to have realistic results, the mobility model of mobile nodes
must resemble the flying behavior of the observed species during foraging in the most
realistic way.

4.1. Simulation Model
The simulation scenario is depicted in Figure 4, which reflects the envisioned deploy-
ment scenario. It has a total size of 5 km×5 km and consists of two area types: the
hunting grounds and the areas in between. For the sake of simplicity all hunting
grounds have rectangular shapes in the simulation, displayed as grey areas in Figure 4.
In the simulation there exist eight different hunting grounds with sizes ranging from
10 ha–50 ha as described in [Rudolph et al. 2009; Audet 1990; Arlettaz 1996]. Moreover,
the daytime roost is a denoted point within the simulated area, visualized as black area
in Figure 4.

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:9

0 1000 2000 3000 4000 5000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

X coordinate in m

Y
 c

o
o
rd

in
at

e
in

 m

Hunting ground

Roost

Base node

Mobile node

Fig. 4: A two-dimensional overview of the simulated scenario.

The scenario consists of two node types: mobile nodes situated on bats and base nodes
laid out in the habitat to form a stationary backbone network, visualized in Figure 4
as violet rectangles and orange dots, respectively. In total 16 mobile nodes and a base
network of 49 nodes are deployed. The base nodes are arranged in form of a grid-shaped
but not fully regular manner with a distance of 30 m between each other in one of the
hunting areas where the bats are mainly located. Moreover, a central node to ease the
gathering of statistical information is integrated.

All the simulations are based on the OMNeT++ simulation core [Varga 2001], a
discrete and event-based simulation framework. In one run we simulated approximately
5.5 h, which reflects the activity period of a bat between exiting and reentering the roost
according to [Rudolph et al. 2009].

4.2. Bat Mobility Model
Although the specific characteristics of bat movements are not completely known yet,
various figures in terms of flight speed, flight height, and flight routes are known
nowadays [Arlettaz 1996; Rudolph et al. 2009; Russo et al. 2007; Skiba 2003; Audet
1990]. Furthermore, differences to the flying behavior of birds can be found [Hedenström
et al. 2009]. To the best of our knowledge there exists no mobility model for the specific
flight of bats during foraging, however, there are various mobility models suitable as a
basis.

We decided to adapt an existing mobility model to fit the special characteristics of bat
flights. The Lévi flight model is well-known for describing the movements of free-living
animals. It has been shown to resemble the flight of birds [Viswanathan et al. 1996]. It
is based on the random waypoint model with a heavy-tailed probability distribution for
the step length. Therefore, we decided to rely on the random waypoint model, which
was extended by the foraging movement patterns of mouse-eared bats (Myotis myotis)

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:10 F. Dressler et al.

Movement Pattern Speed Height Next Pattern(s)
P1 Move to hunting

ground
30 km h−1–
50 km h−1

5 m–15 m T2 upon arrival within hunting
ground

T2 Change to P2 - - P2 when target height is reached
P2 Search for prey 15 km h−1–

35 km h−1
1 m–2 m P1 or P3 randomly, P7 after 5.5 h

P3 Hovering 0 km h−1 1 m–2 m T4 after 0.5 s–1 s
T4 Change to P4 - - P4 when target height is reached
P4 Prey capturing 0 km h−1 0 m T2 or T5 with 25 % and 75 %,

respectively
T5 Change to P5 - - P5 when target height is reached
P5 Prey consumption 15 km h−1 5 m–10 m T2 or T6 after 10 s–20 s with

25 % and 75 %, respectively
T6 Change to P6 - - P6 when target height is reached
P6 Resting 0 km h−1 3 m–5 m T2 after 1 min–130 min
P7 Return to roost 30 km h−1–

50 km h−1
5 m–15 m -

Table I: The various movement patterns of the mobility model.

described in [Arlettaz 1996; Rudolph et al. 2009; Russo et al. 2007; Skiba 2003; Audet
1990].

For most of the simulation parameters we found more or less exact figures and value
ranges in the literature. However, for the remaining parameters where not enough
profound data exists we assigned values in a most realistic range advised by biologists.
In the following we describe the mobility model in detail and give references for the
parameters.

During the simulation, a mobile node is in one of seven different movement patterns
P1 to P7. It switches between them in a well-defined manner to imitate the different
behavioural characteristics of bats while foraging. Additionally there exist some transi-
tional phases named T2, T4, T5, T6, and T7 in order to switch to the speed and height
of the next movement pattern. The various movement patterns and transitional phases
are summarized in Table I and are explained in the following in more detail.

At simulation start each mobile node, i.e., the bat, is located at the same place, the
roost. Within 0 s–60 s, a mobile node starts moving according to P1 where it moves
towards a random hunting ground at a height of 5 m–15 m and a speed of 30 km h−1–
50 km h−1 [Audet 1990; Arlettaz 1996]. When reaching a hunting ground, it changes
its behaviour in order to simulate the search for prey. The mobile node changes to
this next movement pattern by passing through transitional phase T2. It slows down
to 15 km h−1–35 km h−1 and lowers itself to a height of 1 m–2 m according to findings
described in [Arlettaz 1996; Skiba 2003].

When the target height is reached, it switches to P2 where it moves randomly
throughout the hunting ground in between these height and speed limits. It stays in
this phase until moving to a different hunting ground or catching prey. The former case
is accomplished by switching back to P1 after a random time between 2400 s–3000 s.
This results in approximately eight visited hunting grounds per night, which correlates
to [Audet 1990; Arlettaz 1996; Rudolph et al. 2009]. The prey catching is triggered
randomly such that during one simulation a mobile node switches approximately
20 times to this phase, which can be motivated by the amount of food needed by the
target bat.

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:11

Each night such a bat needs to feed approximately 10 % of its body weight. Hence,
with a weight of roughly 25 g–30 g the bat has to capture 2.5 g–3 g of insects [Audet
1990]. Assuming their prey to weigh about 150 mg–300 mg a bat would have to catch
8–20 specimen per night. However, since indigestible parts like legs and shard were
not considered in this calculation, we set the value slightly higher.

Since bats are agile and talented hunters, biologists assume a capture success rate
of roughly 75 %, which results in average to 5 failed captures and 25 catches in total.
In order to simulate the prey catching the mobile node first changes to P3 where it
hovers in the air for 0.5 s–1 s as described in [Russo et al. 2007]. Then, it passes through
the transitional phase T4 where it moves to the ground within a radius of 1 m. When
reaching the ground the mobile nodes switches to P4 and stays at the same position for
1 s–2 s to imitate the prey catching [Arlettaz 1996].

As motivated prior, the capture failed with a probability of 25 % and the mobile node
changes directly back to P2 [Arlettaz 1996]. Otherwise, the mobile node simulates the
consumption of prey. It switches to the transitional phase T5 in order to move back up
to a height of 5 m–10 m [Arlettaz 1996]. When arriving at the target height the mobile
node switches to P5 and moves in circles with a radius of 2 m–4 m at the constant target
height and a speed of 15 km h−1 for 10 s–20 s to imitate the prey consumption [Arlettaz
1996]. With a probability of 75 %, it switches back to P2 to the search for prey, otherwise,
it starts a period of rest.

With that, approximately 5 rests are accomplished in average, which corresponds to
the findings in [Rudolph et al. 2009]. The mobile node transfers to transitional phase T6,
where it moves to a height of 3 m–5 m. When arriving at the target height it switches to
P6 and stays stationary to resemble the bat resting underneath tree barks in proximity
to the ground. The resting lasts for 1 min–130 min with a mean of 60 min. Summing
up the average resting time a mobile node rests for 20 % of the total simulation time,
which corresponds to the findings in [Rudolph et al. 2009]. Afterwards, the mobile node
changes back to movement pattern P2 to search for prey. The last and final movement
pattern P7 simulates the return to the roost. After approximately 5.5 h this phase is
triggered, which has a behaviour similar to P1 [Rudolph et al. 2009].

Throughout the whole simulation a mobile node accelerates and decelerates with
2 m s−2 and 4 m s−2, respectively, and the ascending and descending speed amounts to
1 m s−1 and 2 m s−1, respectively. Furthermore, a mobile node never moves in a complete
straight line. With each position update, scheduled every 0.1 s, the direction of the
movement changes by −90◦ to 90◦, whereby this random change is normally distributed
with a mean of 0◦ and a standard deviation of 30◦.

In order to obtain reproducible results but still to exploit all the variations in the
distribution of the needed random variables, we decided to run different mobility pat-
terns using different seeds for the mobility-related random variables. Therefore, mobile
nodes move distinctly in each repetition of the simulation, whereas their movements
are the same for the nth repetition of a certain configuration.

4.3. Validation of Model Implementation
In order to develop a realistic simulation model of the foraging behaviour of bats, we
proceed in two steps. First, we assure a most realistic theoretical mobility model for the
foraging behaviour of bats. Secondly, we validate the correctness of the implementation
of this model. The first step to develop the theoretical model was to integrate all
available information found in the literature. In a second step, biologists revised and
extended the model with their knowledge and experience in order to develop the prior
described mobility model. In order to ensure a correct implementation of the model we
relied on statistical analysis of all mobility-related simulation results. In the following,
the most important parameters are discussed and compared to the theoretical model.

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:12 F. Dressler et al.

P1 T2 P2 P3 T4 P4 T5 P5 T6 P6 P7

10

100

1000

10000

Movement pattern

T
im

e
in

 s

Fig. 5: The time a mobile node spends in the various movement patterns (cf. Table I).

First, we analyze the partitioning of the simulation time into the different movement
patterns shown in Figure 5. The results are plotted in the form of a boxplot. For each
data set, a box is drawn from the first quartile to the third quartile, and the median
is marked with a thick line. Whiskers extend from the edges of the box towards the
minimum and maximum of the data set, but no further than one and a half times the
interquartile range. Outliers are drawn separately.

With traditional radio telemetry, it is difficult to observe a bat throughout the whole
activity period, hence, we do not have enough knowledge for a straightforward break-
down of a bat flight into the various movement patterns. Nevertheless, figures about the
time a bat spends in some of the movement patterns can be derived and were integrated
into the mobility model. According to Figure 5, a mobile node spends most of the time
hunting in movement pattern P2, which is approximately 70 % of the total simulation
time.

Moreover, Figure 5 shows that a bat rests in P6 for about 1500 s–4800 s, which
corresponds to 8 %–24 % of the total simulation time. Hence, the total resting time
assumed by the theoretical model, i.e., 20 %, lies within this range. The time spent for
prey consumption P5 is on average 330 s per simulation run, which lies in a reasonable
range given that a bat consumes 10–30 insects each within 10 s–20 s.

The distribution of the hunting grounds also influences the time a mobile node spends
in between these locations, i.e., in movement pattern P1. The distance between the
hunting grounds in our simulation is 1 km–5.4 km with an average of 2.8 km, which is in
line with typical field research sites. Hence, with the given speed of 30 km h−1–50 km h−1

mobile nodes need in average 200 s–340 s to move to a different hunting ground. Since
mobile nodes visit up to eight hunting grounds, the average time spent between these
areas, i.e., movement pattern P1, sums up to a maximum of 1600 s–2720 s, which
corresponds to the values visualized in Figure 5.

Next, we analyze the parameters in which the various movement patterns differ the
most, namely the flight height and speed. The two parameters are visualized for each
movement pattern in Figures 6a and 6b, respectively. It can be seen that the height
and speed while moving between hunting areas (P1) and returning to the roost (P7)
are similarly distributed, which corresponds to the theoretical model, and lie mostly
within the determined ranges. The few lower outliers are due to a starting height and
speed outside the range. The height during the search for prey (P2) and the subsequent
hovering in the air (P3) should obviously be identical with values in between 1 m–2 m.
Moreover, during prey capture (P4) a mobile node is located on the ground, hence, the

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:13

P1 T2 P2 P3 T4 P4 T5 P5 T6 P6 P7

0

5

10

15

H
ei

g
h

t
in

 m

Movement pattern

(a) Height of the mobile nodes.

P1 T2 P2 P3 T4 P4 T5 P5 T6 P6 P7

0

2

4

6

8

10

12

14

S
p

ee
d

 i
n

 m
p

s

Movement pattern

(b) Speed of the mobile nodes.

Fig. 6: Most influential parameters of the movement patterns.

height is fixed to a value of zero. Likewise, the height during prey consumption (P5)
and resting (P6) has to be between 5 m–10 m and 3 m–5 m, respectively.

As Figure 6a confirms, these requirements are met in the simulation. Figure 6b
shows a constant speed of zero during hovering P3, prey capture P4, and resting P6,
which corresponds to the theoretical model. During prey consumption P5 the speed is
fixed to 15 km h−1 accordingly to the theoretical model. Finally, both Figures 6a and 6b
show that the height and speed during the transitional phases T2, T4, T5 and T6
have values in between their preceding and succeeding movement patterns. The only
exception is the speed during transitional phase T4, i.e., the change from hovering (P3)
to prey capture (P4). These two phases have a target speed of 0 km h−1, whereas the
transitional phase in between has a non-zero speed, which corresponds to Figure 6b.

We would like to point out that also the number of successful and failed catches
corresponds to the model. Furthermore, the number of rests exactly matches the
observations in the wild. Results from our simulation model are shown in Figure 7. As
can be seen, the number of successful catches is about three times as much as the failed
approaches.

4.4. Contact Opportunities
Using the presented mobility model, we can start investigating the contact opportu-
nities between individual bats and a ground station. This property is crucial for the

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:14 F. Dressler et al.

0

5

10

15

20

25

30

C
o
u
n
t

Successful

catch

Failed

catch

Rests Hunting

areas

Fig. 7: Number of successful and failed captures, rests and visited hunting areas.

Time in s

C
o

u
n

t

0 200 400 600 800

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

0
50

100
150
200
250
300
350

Fig. 8: Histogram of the contact times.

communication protocol from an overall perspective. We define contact opportunities as
the time intervals in which communication between mobile nodes and the base network
is possible. We investigated these contact times before finally assessing the performance
of the EC based communication.

A histogram of the contact times is given in Figure 8. It summarizes the contact time
observed per bat for 20 repetitions of the simulation using the described mobility model.
In addition to the complete histogram the figure contains an excerpt of the contact
times up to 10 s in order to provide a higher resolution for this range. The granularity
of the contact time is set to 1 s, which is a simulation artifact since the transmission
range of a mobile node towards the base network is checked once during every round of
the duty cycle, which is set to be 1 s.

As the figure indicates, the contact time is mainly short-termed. Nearly 90 % of
all contacts have a duration of less than 3 s. Since mobile nodes tend to leave the
communication range of a base node quickly after entering, the amount of data that
can be transmitted is limited.

A second measure of interest is the inter-contact time, i.e., the time intervals in which
no communication between a mobile node and the base network has been possible. Fig-
ure 9 visualizes a complete histogram of the inter-contact times as well as a histogram
enlarging the distribution for a range of 0 s–20 s, again summarizing all 20 repetitions.
The distribution is heavy-tailed with an upper limit given by the total simulation time.
The high peak at 1 s has already been discussed as being a simulation artifact. 80 %

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:15

Time in s

C
o

u
n

t

0 5000 10000 15000 20000

0

50

100

150

1 3 5 7 9 12 15 18

0

50

100

150

Fig. 9: Histogram of the inter-contact times.

of all inter-contact times have a duration of less than 20 s with an upward tendency
towards 1 s.

5. COMMUNICATION PROTOCOL
In the following, we briefly explore the used communication protocols. Main emphasis
is on the mobile-to-ground communication, for which we propose the use of Erasure
Codes (ECs). Both protocols make heavy use of a multi-stage wake-up receiver ensuring
that the micro controller and the digital radio transceiver are turned off most of the
time. The introduction of the used hardware is out of scope for this paper but more
information on the wake-up system can be found in [Dressler et al. 2015]. In contrast
to our earlier work in [Mutschlechner et al. 2014b], we now use more realistic values
related to the final hardware constraints.

5.1. Collecting Contact Information
Mobile nodes periodically broadcast beacons of 1 B containing their unique identifiers
to inform nearby mobile nodes about their existence. The interval between two beacons
was set to be 1 s. Upon reception of a beacon, the receiving mobile node stores this
information to build up a rendezvous table.

Each row of this table consists of the 4 bit identifier contained in the beacon, the
time when the first beacon from this node was received, and the time interval for
which beacons were continuously received. Two beacons are considered to be received
continuously if the difference of their arrival time is smaller than a pre-defined thresh-
old, which is set to 5 s. The time stamp when the first beacon was received has a size
of 21 bit, which reflects the envisioned deployment time of approximately 2 weeks,
whereas 15 bits are reserved for the duration of this rendezvous since the maximum
travel time of a bat is at most 6 h.

Each row of the rendezvous table is transmitted in an individual data chunk to
the base network. The transmission of data chunks has to be reliable, whereas the
successful reception of beacons is not as critical since the quantity of useful information
within a beacon is comparably less than within a data chunk. Therefore, ECs are used
only for data chunk transmissions.

5.2. Reliable Upload of Contact Data
When a mobile node is within the transmission range of at least one base node (this is
determined by the wake-up signal powering up the digital radio transceiver and the
micro controller), it tries to transmit the content of the rendezvous table. Obviously, no

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:16 F. Dressler et al.

data is transmitted if the rendezvous table is empty. Moreover, a data transmission is
initialized only if the number or the age of table entries reaches a pre-defined threshold.

If no EC is used, the threshold for the number of entries is set to 1, otherwise the
rendezvous table has to have at least 4 entries. This can be motivated by the fact that
the encoding of a smaller data amount restricts the variation of redundancy that can
be added, e.g. for 1 entry either no redundancy or 100 % redundancy can be added.
However, if at least one rendezvous table entry is older than 60 s the data is transmitted
independent of the rendezvous table size to guarantee the transmission of all data, i.e.,
to omit starvation. If ECs are used and there are no encoded chunks already prepared
the encoding process is triggered before the data transmission.

Due to the severe energy restrictions a duty-cycling mechanism is applied where only
a short time window is reserved for the data transmissions. This window size forms
an upper limit for the packet size, which is approximately 8 B. Since such a window
is reserved every 1 s, we have an actual throughput of 8 B s−1. The first 5 B of a data
packet are reserved for the payload, which is the size of one rendezvous table entry.

In case of using ECs, the payload may contain also one encoded chunk. The remaining
3 B are used for the mobile node’s identifier of 4 bit, 1 B meta data of the EC and a
checksum. In case of using on-demand retransmissions, a base node receiving such a
packet immediately transmits an acknowledgment to inform the mobile node about the
successful reception. In case the mobile node does not receive this information until the
next transmission window it resends the same packet.

Due to the mobile nodes’ high speed and the rapidly changing environment the
contact times between mobile nodes and base nodes can be very small (cf. Section 4.4).
Therefore, no carrier sensing techniques are performed prior to transmission since this
could prevent the mobile nodes from sending data before exiting the transmission range.
Moreover, the mobile nodes are highly constrained in terms of computational power and
energy, hence, very complex protocols are not applicable. Instead, the wake-up receiver
powered up by a signal from the base nodes initializes the data transmission.

Upon receiving a data chunk from a mobile node, base nodes store this information
for decoding. For each received data chunk, the central station records its reception and,
if the threshold for a successful decoding is reached, it tries to recover the original data.

The communication channel resulting from this specific mobility model represents
the channel in the real deployment scenario we are facing. To simulate realistic data
transmissions over the wireless channel we chose a free-space path-loss propagation
model as basis for the communication channel:

L =
1

d3
(
c

4πf
)2 , (2)

The signal gets attenuated with the distance d between sender and receiver with respect
to the carrier frequency f and the constant speed of light c. The model assumes no
obstacles, i.e., no reflecting ground, between the sender and the receiver. We have
chosen such a model instead of, for example, the two-way interference model since the
distance of the nodes is negligible low with respect to their height and most signal
disturbing factor are obstacles such as trees. In order to simulate these interferences,
we integrated a log-normal shadowing with mean 0.5 and a standard deviation of 0.25
on top of it to simulate objects obstructing the signal. This can be motivated by the fact
that we are facing multiple shadowing objects in the envisioned deployment scenario,
i.e., trees. Each such object contributes a random multiplicative factor to the shadowing,
which leads to a normal distribution when converted to dB [Andersen et al. 1995].

It is well known that simulation models may lead to imprecise (or even wrong)
conclusions when abstracting too many details from reality. We therefore conducted a
series of experiments in the wild to explore the radio propagation characteristics to be

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:17

expected. These experiments were focusing on Wi-Fi and IEEE 802.15.4 sensor nodes in
different types of forest environments [Mutschlechner et al. 2013]. We used the results
to calibrate our simulation models.

The employed frequency in our simulations is 686 MHz, which is the target frequency
for the data communication of the mobile nodes as described in [Dressler et al. 2015]
– this paper also details the technological background on the wake-up system. The
transmission power of the mobile nodes is set to 10 mW. The wakeup range, i.e., the
maximum distance to a base node that triggers the wake-up receiver, is approximately
10 m. The communication between the various nodes is not synchronized in any way.
Coordinating the communication would require an additional overhead, which is not
desired in our highly energy-constrained scenario if the issue is not indispensable. Since
we have a sparse distribution of senders, i.e., a small amount of nodes compared to the
size of the area, and a very limited transmission range due to the energy constraints,
we have hardly no overlapping transmission. This is also shown in our evaluation in
Section 6.2.1. Hence, we have decided not to adapt any synchronization techniques.

6. PERFORMANCE EVALUATION
The performance evaluation is twofold. First, we analyze the system performance of the
EC implementation on the real system focusing on energy consumption and computa-
tional overhead. Secondly, we investigate the usability of ECs in the communication
system using a simulation setup based on three metrics: reliability, energy consumption,
and delay.

6.1. System Performance
Erasure codes are commonly used in systems with adequate performance character-
istics (i.e., high processing power and sufficient available memory). Due to hardware
restrictions (e.g., scarce memory) as a result of limited size on mobile nodes in the BATS
scenario, one has to cope with certain requirements for all software components that
run on top. First of all, it was necessary to adapt both selected RS implementations
of the encoding functions (cf. Section 3.1) to run on our embedded target evaluation
platform. In this section, we focus on encoding functions, because the (more complex)
decoding process happens on the more powerful ground nodes or even at a central node.
Hence, we can use the original decoding routines with marginal changes.

In the following, we first introduce the target evaluation platform, which we refer to
as the device under test (DUT). Subsequently, we describe our measuring platform and
its underlying methodology and, finally, we present and discuss the measuring results.

6.1.1. Evaluation Setup. To find the best-fitting evaluation platform, it was necessary to
analyze all our requirements regarding hardware capabilities, system software, and
application code. From a hardware perspective, erasure-code algorithms make use of
rather complex operations. However, despite this set of features, the platform needs to
be very energy efficient. This combination can be only achieved if power-saving modes
and other energy-saving features are provided. Therefore, as a prototype we used a
hardware platform with comparable technical specifications to the envisioned target
platform. All energy measurements were performed on the Freescale FRDM-KL02Z
development platform [Freescale Semiconductor, Inc. 2013] with 32 kB flash memory
and 4 kB SRAM. Furthermore, it provides different ultra-low–power modes and ARM’s
Cortex-M0+ 32-bit processor with the, at the time of writing, smallest and most energy-
efficient package design available.2 The processor operates at up to 48 MHz and has
built-in features such as a two-stage pipeline and a memory protection unit. Figure 10

2http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:18 F. Dressler et al.

Fig. 10: The evaluation platform under test (Freescale FRDM-KL02Z) on the right,
which is connected with the energy measuring device on the left.

shows the complete evaluation setup, consisting of the DUT, our custom measuring
device, whose functioning is described in the following subsection, and the complete
wiring between the DUT and the measuring device.

Our scenario poses strict constraints which besides limited hardware capabilities
requires tailored software components. At software level, fulfilling these requirements
largely concerns the operating system; that is, our approach requires an operating
system that is aligned to both the requirements of our application software and the
target hardware platform. Therefore, from available real-time operating systems, we
chose SLOTH [Hofer et al. 2009], a light-weight real-time operating system. It fits
particularly well because of its resource-efficient operating mode by means of utilization
of hardware features lying underneath. In particular, by letting hardware interrupt
subsystems execute most of the scheduling and dispatching activities, not only a great
speedup but also high savings in memory usage are achieved. Hence, we implemented
an application on top of the SLOTH kernel that contains EC encoding functions, which
involved only a few, but necessary adaptations specific to our target platform. For exam-
ple, the limited memory available on our target platform led to special adaptations to
the Vandermonde-matrix–based implementation. More precisely, the encoding process
maps data packets to a series of redundancy packets, which entails a multiplication
on a finite field with 256 elements. At this point the original implementation uses
pre-calculated values, which do not fit into memory, and our implementation therefore
relies on online calculations, which have a small memory footprint: The multiplication
values are calculated on demand with an implementation of the Russian peasant multi-
plication algorithm [Bunt et al. 1988, p. 13]. All SLOTH applications to be measured
were compiled with the cross compiler from GNU Tools for ARM Embedded Processors
4.7 (Q2 2013) and SLOTH’s default optimization level that aims to optimize for code
size (-Os).

6.1.2. Measurement Methodology. Retrieving precise energy values for low-power devices
as required in the BATS project is very tedious, or even impossible, with usual energy-
measurement approaches. Particularly, current best-practice approaches require to use
hardware (e.g., micro controllers with analog-to-digital converters) with the drawback
of having sampling rates that are too low to provide fine-grained accurate measurement
results. Alternatively, one could use oscilloscopes combined with differential probes,
however, they are limited in multiple ways (e.g., not intended for measurements over
longer periods of time) and generally cumbersome to handle. Therefore, we used a
self-developed measuring device (cf. Figure 10) for all run-time and energy measure-
ments, which we have been developing in the course of earlier [Hönig et al. 2011] and

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:19

ongoing [Hönig et al. 2014] work. This device is superior to conventional approaches
that measure, for example, the voltage drop across a resistor (shunt).

The main components of our measurement device are composed of a current mirror,
which is implemented using PNP transistors, and an RS flip-flop that is responsible
for current-to-frequency conversion. The current mirror duplicates the DUT’s current,
and two additional capacitors are being charged and discharged on a rotating basis.
The RS flip-flop’s output Q signals whether the first or second capacitor is currently
being charged (while the other one is discharged at the same time). As a consequence,
the flip-flop’s output continuously toggles from a logical 0 to a logical 1 and vice versa,
depending on the capacitors’ voltage levels. Since these 0-to-1 and 1-to-0 transitions are
directly proportional to the current drawn, deriving and calculating the DUT’s energy
consumption becomes possible.

This way, measuring a program’s energy consumption is simplified as follows: At first,
the measuring device needs to be connected with the DUT. In case of the FRDM-KL02Z,
it is viable to isolate the MCU’s (i.e., both processor and memory) power drain from
the rest of the system, which minimizes noise generated by other system components
that would potentially distort measurement results. A second and third connection link
between the DUT and the measuring device is used for signaling the start and end of
a measurement as well as to wait until the measuring device is ready for processing
new measurements, respectively (the fourth wire is connected to ground). The program
code under test (i.e., our SLOTH application) just has to be prepared for toggling (at
measurement start and end) a specific GPIO pin that is connected with the measuring
device. When a measurement run is complete, the resulting values can automatically
be retrieved by the workstation that is also connected with the measuring device.

6.1.3. Measurement Results. The evaluation is decomposed into three parts: First, we
present runtime information to get estimates for average computing times that are
required in the MCU. Secondly, since the encoding algorithms are used in environments
with not only limited battery lifetimes but also very limited available memory, we
measured the memory usage of the implemented erasure-code algorithms. Thirdly, we
present concrete energy values for executing a single encoding function. Measurements
for all these metrics (runtime, memory, energy) were performed for both ported RS-code
implementations, that is, the Cauchy- and the Vandermonde-matrix–based version.

To measure runtime and energy consumption, for each configuration (i.e., specific code
rate) multiple measurements have been conducted. Within one measurement run, each
encoding function is being executed multiple times; that is, the resulting value for one
encoding function is computed by simply dividing the measured value by the number of
actual executions. The values shown are average values over all measurement runs.
As standard deviations and average errors are very small, they are not plotted in the
diagrams. The number of original data packets is constant (i.e., 4), whereas the number
of redundancy packets is varied between 1 (r = 4

5) and 8 (r = 4
12).

Timing Analysis. As our measuring device also provides high accuracy in terms of
timer resolution, we used it for measuring the encoding functions’ runtimes. Its high
precision is achieved by means of a 32-bit timer with an internal clock of 168 MHz,
which results in a resolution of not more than 5.95 ns. A comparison of the two erasure-
code implementations with respect to execution times is shown in Figure 11. As can be
seen, the run times of both algorithms increase linearly with the number of redundancy
packets, which is reasonable since each encoding function contains a single loop that
depends on this number (→ complexity: O(n)). The percentages on top of the bars repre-
senting the Vandermonde-matrix–based implementation reflect the runtime overhead
compared to the other type of RS-code implementation. With these values, it is more
obvious to see that as the code rate increases, the runtime of the Cauchy-matrix–based

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:20 F. Dressler et al.

4
5

4
6

4
7

4
8

4
9

4
10

4
11

4
12

0

0.25

0.5

0.75

1

1.25

Code rate r (= k
n)

R
u
n
ti
m
e
in

m
s Vandermonde

Cauchy

−1
.0
4% +

36
.7
%

+
37
.4
%

+
37
.8
%

+
37
.9
% +

38
% +

38
.1
%

+
38
.2
%

Fig. 11: Run-time comparison between the Cauchy- and the Vandermonde-matrix–based
RS-code implementation. The values represent a single execution of the corresponding
encoding function.

Implementation
Type

Code Rate
(= k

n)
Memory Allocation

Data Stack Total Relative
[byte] [%]

Vandermonde

4
5

20 21 41 1.00
4
6

24 21 45 1.10
4
7

28 21 49 1.20
4
8

32 21 53 1.29
4
9

36 21 57 1.39
4
10

40 21 61 1.49
4
11

44 21 65 1.59
4
12

48 21 69 1.68

Cauchy 4
5 ,

4
6 , . . . ,

4
12

318 56 374 9.13

Table II: Memory-consumption values for encoding functions of both Cauchy- and
Vandermonde-matrix–based RS-code implementations. “Data” indicates memory al-
located for data residing in the data segment (i.e., global and static local variables),
whereas “Stack” summarizes allocated memory for all local variables. The relative value
reflects the respective implementation’s total memory consumption in relation to the
total available memory (= 4 kB) for storing variables at run-time on the FRDM-KL02Z.

implementation increases slightly faster than the second implementation; that is, in
general, its execution time is higher (at least 36.7 %; with one exception at code rate
4
5 , where both algorithms perform almost identically) and grows faster with more re-
dundancy packets. However, with maximums of 1.1 ms (Cauchy-matrix–based version)
and 0.8 ms (Vandermonde-matrix–based version) at code rate r = 4

12 , both algorithms
are suitable when considering the time window of 1 s which is reserved for sending a
rendezvous-table entry (cf. Section 5.2).

Memory-Consumption Analysis. Keeping the required memory consumption at a
minimum is important in our scenario. Table II shows memory-consumption values for

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:21

4
5

4
6

4
7

4
8

4
9

4
10

4
11

4
12

0

5

10

15

20

Code rate r (= k
n)

E
n
er
gy

co
n
su
m
p
ti
on

in
µJ

Vandermonde
Cauchy

−0.27%

+38.4%

+39.3%

+39.3%

+39.3%

+39.5%

+39.7%

+39.7%

Fig. 12: Energy-consumption comparison between Cauchy- and Vandermonde-matrix–
based RS-code implementations.

both RS-code implementations and all previously used code rates (encoding functions
only, that is, without any operating-system overhead3). For both of them, the maximum
allocated stack size per configuration remains constant. However, in contrast to the
Cauchy-matrix–based implementation, the memory allocated in the data segment
for the Vandermonde-matrix–based implementation (41 B–69 B) increases with the
number of redundancy packets. This is a result of different encoding matrices that are
required for each configuration of both data and redundancy packets. In general, the
number of columns of theses matrices equals the number of original data packets to
be encoded, whereas the number of rows is the sum of redundancy- and original data-
packet counts. Nevertheless, for all analyzed code rates the Vandermonde-matrix–based
implementation consumes only between approximately one ninth (41B

374B) and one fifth
(69B
374B) compared to the Cauchy-matrix–based implementation.

Energy-Consumption Analysis. Figure 12 illustrates the energy behavior of both
RS-code implementations, again for the same set of code rates used for runtime and
memory analyses. Each value corresponds to the energy value for one execution of the
respective encoding function. Similar to the runtime behavior, the energy consumption
increases linearly with the number of redundancy packets. Furthermore, the Cauchy-
matrix–based implementation consumes for code rates with at least two redundancy
packets about 40 % more energy than the Vandermonde-matrix–based implementation
(1.6 µJ–17.3 µJ versus 1.6 µJ–12.4 µJ). Since for many instruction types4, a strong
correlation between runtime and energy behavior can be observed, this is in line with
our expectations. Hence, with the exception of code rate 4

5 – were both algorithms behave
almost identically in terms of runtime and energy –, the Vandermonde-matrix–based
implementation also performs better with regard to energy consumption.

All metrics (especially the energy metric) indicate that the Vandermonde-matrix–
based implementation outperforms the Cauchy-matrix–based implementation. We
conclude that from the system perspective, this encoding scheme is to be recommended
for the BATS scenario.

3The operating-system overhead is a constant value of 1584 B for both implementations, as the number of
tasks and enabled features is the same in either case.
4It is possible to estimate a program’s energy consumption by examining its executed instruction counts and
joining these values with previously established instruction-specific energy values (e.g., as done in the SEEP
energy-estimation framework [Hönig et al. 2011]).

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:22 F. Dressler et al.

6.2. Communication Performance
In the following, we investigate the performance of the communication protocols in
more detail. We concentrate on the reliability vs. overhead issue but also look into
energy consumption and delay questions. All messages will be transmitted without
acknowledgements due to time (contact) and energy (additional downlink) constraints.
In the simulations, however, we also explored ARQ as a baseline, indicating the potential
reliability improvements.

For all experiments, we used the already explained simulation setup. For simulating
the wireless channel, we used the MiXiM framework [Köpke et al. 2008], which provides
all the means for accurate wireless simulation and the integration of mobility models.
The movements of mobile nodes are based on a predefined mobility model that resembles
the flying behavior of bats, whereas base nodes are stationary with a fixed position
across all simulations. The mobility model of the mobile nodes has been described and
discussed in Section 4.2.

In order to get a better understanding of the communication performance, we assessed
the protocol using different packet error rates. In addition to the described channel
model, we configured different packet error rates of 10 %, 20 %, and 40 %. This helps to
identify the protocol behavior even in worst case communication scenarios in the forest.

For each configuration 20 repetitions were performed. Each repetition of one config-
uration is initialized with a unique random seed, however, the nth repetition of each
configuration has the same nth random seed. The variance of most recorded metrics
(except for the delay measures) was so small that we only plot the average values in the
respective figures.

6.2.1. Transmission Overhead and Achieved Reliability. To investigate the quality of the
channel, we consider the relationship between sent and received chunks. All chunks
received erroneously or not received at all were considered to be lost. Figures 13a, 14a
and 15a show this relationship by visualizing both the amount of sent chunks containing
original data as well as the amount of sent chunks containing redundant information
for our selected packet error rates of 10 %, 20 %, and 40 %, respectively. Furthermore,
the amount of received chunks of both types is indicated by shaded areas. All numbers
are relative to the amount of sent data, i.e., 100 % corresponds to the amount of sent
data. The improvement of ECs on the transmission reliability is analyzed based on
the ratio of received and recovered data with respect to the amount of sent data. This
relationship is visualized in Figures 13b, 14b and 15b, again for the three packet error
ratesi of 10 %, 20 %, and 40 %, respectively. The amount of received (decoded) data is
visualized as a blue (red) bar. Please note that the amount of recovered data is the
sum of the received and decoded chunks, i.e., the total height of the single columns. All
numbers are normalized to the amount of sent data. The variance for all measures was
negligibly small.

Apparently, the amount of sent original chunks stays constant, i.e., it is independent
of both the reliability improvement technique and the packet error rate. However, the
amount of sent redundant chunks varies with these two factors. Clearly, when using
no reliability improving technique there are no redundant chunks sent at all. The
amount of sent redundant data when using ECs depends solely on the code rate, i.e., the
packet error rate does not have any impact since the amount of redundant data is not
influenced by the reception rate. According to the code rate of r = 4

5 , r = 4
6 , r = 4

7 and
r = 4

8 , the overhead spent in sending redundant data amounts to 25 %, 50 %, 75 % and
100 %, respectively. By using the replicated sending approach we obtain results similar
to the ECs with the highest code rate, i.e., their effort spent in sending redundant data.
The approach of using ARQ, however, depends heavily on the packet error rate. This
can be explained with its dynamic sending of redundant chunks, which increases with

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:23

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0

50

100

150

200
r = 4

5
r = 4

6
r = 4

7
r = 4

8

Original Redundant Received

(a) Chunks sent vs. received

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0

20

40

60

80

100
r = 4

5
r = 4

6
r = 4

7
r = 4

8

Received Decoded

(b) Chunks received vs. decoded

Fig. 13: Transmission success rate for a packet error rate of 10 %

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0
50

100
150
200
250

r = 4
5

r = 4
6

r = 4
7

r = 4
8

Original Redundant Received

(a) Chunks sent vs. received

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0

20

40

60

80

100
r = 4

5
r = 4

6
r = 4

7
r = 4

8

Received Decoded

(b) Chunks received vs. decoded

Fig. 14: Transmission success rate for a packet error rate of 20 %

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0

100

200

300

400

r = 4
5

r = 4
6

r = 4
7

r = 4
8

Original Redundant Received

(a) Chunks sent vs. received

w
/o

A
R

Q

1
re

pl
ic

a

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

To
rn

ad
o

C
au

ch
y

V
an

de
rm

on
de

C
hu

nk
s

in
 %

0

20

40

60

80

100
r = 4

5
r = 4

6
r = 4

7
r = 4

8

Received Decoded

(b) Chunks received vs. decoded

Fig. 15: Transmission success rate for a packet error rate of 40 %

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:24 F. Dressler et al.

a decreasing reception rate. With a packet error rate of 10 % an overhead of 110 % is
spent in sending redundant data. If the packet error rate is increased up to 20 % and
40 %, the overhead is raised up to 150 % and 300 %, respectively.

For both original and redundant data types the reception rate changes only with the
varying packet error rate, i.e., it stays constant regarding the same packet error rate.
With a packet error rate of 10 % the ground network is able to receive about 70 % of
the overall amount of sent data. With a rising packet error rate of 20 % and 40 % the
reception rate drops to 62 % and 47 %, respectively.

Considering this constant reception rate, we argue that the number of packet trans-
missions does not influence the reception of packets, i.e., transmissions do not notably
interfere with each other. Hence, we conclude that the channel is not saturated at
all, which is due to the limited transmission range of mobile nodes and their sparse
distribution. The high packet loss is mainly caused by the highly unreliable channel.
These characteristics correspond to the channel we are facing in the real deployment
scenario where the fast moving bats and the very heterogeneous and rapidly changing
environment lead to a highly varying channel quality.

Apparently, without using ECs or replication techniques we are not able to recover
any data not received by the base network, independent of the packet error rate. A
notable result is the performance of the ARQ approach. Here we observe a constant
recovery rate of almost 100 %, however, the suitability of this technique is raised to
question when taking into consideration the amount of sent data as discussed before.

Using simple duplicates (full replication approach) the amount of recovered data
increases with a decreasing reception rate. With a packet error rate of 10 % the base
network is able to decode 18 % of the data from the redundant chunks, so in total 88 %
of the data can be recovered. With an increased packet error rate of 20 % and 40 % the
ground network is able to decode 22 % and 24 %, respectively, which corresponds to a
total recovery rate of 84 % and 72 %, respectively. However, the drawback is a highly
increased power consumption.

When using ECs, we can observe a steadily growing amount of recovered data when
increasing the overhead in terms of code and therefore data rate, Furthermore, we see
a huge difference between the performance of Tornado and the two RS codes Cauchy
and Vandermonde.

Tornado slightly increases the amount of recovered data, which means redundant
data does not noticeably improve the reliability. Even with a code rate of r = 4

8 , Tornado
performs worse than replicated sending, although the same amount of chunks are
transmitted. The poor behavior is mainly due to the application scenario using the
code on application layer as well as using rather short messages. In our scenario, the
different encoding algorithm of Tornado cannot provide the same performance as RS
codes. Furthermore, Tornado is designed to work on a binary erasure channel, which
means losses are assumed to be equally distributed. However, the simulations show
that base nodes are facing bursty losses.

Cauchy and Vandermonde perform exactly the same regarding reliability, which is
due to the similar encoding and decoding algorithms. At a code rate of r = 4

8 both can
decode 27 %, 28 % and 23 % of the sent data with respect to the packet error rates of
10 %, 20 % and 40 %. This shows that below a certain reception rate ECs perform poorly
since not enough data is received to decode successfully. Compared to the replicated
sending approach ECs perform better above a reception rate of 50 %. If this threshold
is undershot the performance is reversed.

However, assuming a packet error rate of only 10 % and 20 %, Cauchy and Vander-
monde outperform the replicated sending approach even with a code rate of r = 4

7 . They
are able to recover 24 % and 22 %, respectively, although the overhead spent in sending

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:25

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Chunks decoded

O
v
er

h
ea

d

r =
4

5

r =
4

6

r =
4

7

r =
4

8

better
ReliabilityE

n
er

g
y

 E
ff

ic
ie

n
cy

w/o ARQ 1 replica Tornado Cauchy Vandermonde

(a) Packet error rate of 10 %

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.5

2
.0

2
.5

Chunks decoded

O
v
er

h
ea

d

r =
4

5

r =
4

6

r =
4

7

r =
4

8

better
ReliabilityE

n
er

g
y

 E
ff

ic
ie

n
cy

w/o ARQ 1 replica Tornado Cauchy Vandermonde

(b) Packet error rate of 20 %

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

2
.0

3
.0

4
.0

Chunks decoded

O
v
er

h
ea

d

r =
4

5

r =
4

6

r =
4

7

r =
4

8

better
ReliabilityE

n
er

g
y

 E
ff

ic
ie

n
cy

w/o ARQ 1 replica Tornado Cauchy Vandermonde

(c) Packet error rate of 40 %

Fig. 16: Reliability of the different transmission strategies versus their energy efficiency
in terms of the necessary number of packet transmissions.

redundant data is decreased by 25 %. This shows that RS codes clearly outperform
replicated sending in terms of reliability provided that the reception rate is above 50 %.

With an even smaller data rate of r = 4
6 and r = 4

5 the RS codes are able to decode
17 % and 9 %, respectively (packet error rate of 10 %). An increased packet error rate
results again in a poorer performance.

6.2.2. Energy Efficiency. The usage of ECs and replicated sending inevitably increases
energy consumption. Primarily the sending of redundant chunks drains energy, how-
ever, in the former case the execution of the encoding algorithm has to be taken into
consideration as well. We have already discussed the coding efficiency of different ECs
and the resulting system performance in Sections 3 and 6.1, respectively.

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:26 F. Dressler et al.

Fig. 17: eCDF of the data delay up to the total simulation time of 21 600 s; plotted are
the results for the 10 % packet error rate. The plot shows macroscopic effects only for
received messages, i.e., packet loss is not shown in the graph.

As the main energy-draining task is the sending of redundant chunks, we focus here
on the comparison between the resulting overhead vs. the reliability improvement as a
main metric (more detailed information on the energy consumption of selected ECs has
been provided in Section 6.1). This trade-off between the improved reliability and the
overhead caused by redundant chunks is outlined in Figure 16. The graphs summarize
the results presented in the previous subsection and give an overview of the suitability
of the presented reliability improvement techniques. As we move from left to right in the
graphs, reliability measured against the amount of recovered data increases, whereas
moving from bottom to top the energy efficiency decreases with an increasing overhead.
The theoretical optimum would be on the indicated bottom-right corner, meaning that
no additional energy is spent by means of overhead in the packet transmission but still
all chunks can be received successfully. For reference, also the non-replicated sending is
indicated, obviously not inducing any overhead but at the cost of very low reliability.

When considering the ARQ version, we reach 100 % success rate but the overhead
grows to more than 450 %. As was already observed, Tornado as well as replicated
sending perform poorly compared to the two RS codes. Here, the ratio between overhead
and reliability can be configured by means of the code rate. Substantial improvements
can be achieved already at a code rate of r = 4

5 and reach very high reliability for r = 4
8 .

So, the remaining question as to which data rate for Cauchy and Vandermonde is most
feasible strongly depends on the final application. Replication is also achieving good
(even though slightly worse) results in terms of communication reliability compared to
ECs but the energy overhead is too high for our system. In general, it holds that if a
high level of reliability must be achieved, this comes to the cost of a reduced network
lifetime [Dietrich and Dressler 2009]. According to our results, ECs provide the best
compromise.

6.2.3. Communication Delay. The final measure to compare the various performance
improvement techniques is the duration from the creation of a rendezvous table entry
until a base node receives or recovers the data, i.e., the overall communication delay.
Only the delay of data received by at least one base node is taken into consideration.
We assumed that, given the rather short contact times and the substantial overhead of
ECs for higher code rates, the resulting delay will clearly increase.

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:27

An Empirical Cumulative Density Function (eCDF) of the distribution of the data
delay up to the total simulation time of 21 600 s is plotted in Figure 17. Only macroscopic
effects, i.e., microscopic effects caused by ARQ, replicas, coding are not visible.

The figure shows, on the one hand, a highly varying data delay between a few
milliseconds up to the total simulation time; the median is at about 6600 s. This can be
explained by considering the contact and inter-contact time. Mobile nodes have a short
inter-contact time, hence, even if they are not in transmission range of the base network
they reenter after short time periods and are able to transmit data with small delays.
However, the high upwards outliers increase the data delay by orders of magnitude.

On the other hand, the figure disproves our prior assumption of a negative impact of
ECs on the data delay. They show clearly that the data delay is independent of the used
algorithm and the packet error rate, i.e., the data delay is independent of the reliability
improvement technique, the data rate and the reliability of the channel. From that we
conclude that the negative impact of the overhead introduced by ECs is negligibly low
compared to the influence of the specific contact and inter-contact time.

We only plotted the measured delays for a packet error rate of 10 %. The observed
values for packet error rates of 20 % and 40 % show the same results.

In conclusion, it can be said that the that delays on the wireless link as well as delays
for retransmissions are negligibly small compared to the macroscopic effects. Thus, we
can fully concentrate on the reliability and the overhead and simply ignore the resulting
additional delays of the algorithms.

7. CONCLUSION
We studied the potentials of using Erasure Codes (ECs) for communication in a very
challenging sensor network scenario: monitoring bats in the wild. For this, we first
developed a new mobility model to accurately predict the contact times and durations
of an individual bat with a ground station in their natural habitat. This model has
been validated using observations described in the respective literature. It turns out
that this scenario features rather short contact times between the mobile nodes and
stationary base nodes that are used to upload contact information a bat collected for
further processing. Given the varying radio channel due to the speed of the animals
and the challenging forest environment, the use of reliable communication techniques
is to be recommended. Forward error correction using ECs turned out to be a promising
solution.

We identified three feasible ECs and studied their performance in detail. As a baseline,
we simply send the collected data with no additional reliability improvement techniques
in place as well as full replication, i.e., sending all data items twice, and on-demand
retransmissions. We were able to show that the nearly-optimal EC Tornado does not
show a noticeable improvement on the data transmission, whereas the selected Reed-
Solomon (RS) codes Cauchy and Vandermonde substantially increase the reception
rate. This improvement comes with the cost of an overhead due to additional data
messages that need to be sent; yet, the RS-based ECs clearly outperform simple data
replication. Based on measurements on a real hardware platform, we were able to show
that the computational overhead for encoding is feasible – the same can be noted for
the energy consumption on the nodes. In summary, the results show that ECs provide
a significant reliability improvement with an acceptable overhead for our extremely
energy-constrained hardware platform.

References
Jorgen Bach Andersen, Thedore S. Rappaport, and Susumu Yoshida. 1995. Propagation measurements and

models for wireless communications channels. IEEE Communications Magazine 33, 1 (Jan. 1995), 42–49.
DOI:http://dx.doi.org/10.1109/35.339880

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:28 F. Dressler et al.

Georgios Angelopoulos, Arun Paidimarri, Anantha P Chandrakasan, and Muriel M’edard. 2013. Experi-
mental Study of the Interplay of Channel and Network Coding in Low Power Sensor Applications. In
IEEE International Conference on Communications (ICC 2013). IEEE, Budapest, Hungary, 5126–5130.
DOI:http://dx.doi.org/10.1109/ICC.2013.6655396

David Anthony, William P. Bennett, Mehmet C. Vuran, Matthew B. Dwyer, Sebastian Elbaum, Anne
Lacy, Mike Engels, and Walter Wehtje. 2012. Sensing Through the Continent: Towards Monitor-
ing Migratory Birds Using Cellular Sensor Networks. In 11th ACM/IEEE International Sympo-
sium on Information Processing in Sensor Networks (IPSN 2012). ACM, Beijing, China, 329–340.
DOI:http://dx.doi.org/10.1145/2185677.2185747

Raphael Arlettaz. 1996. Feeding behaviour and foraging strategy of free-living mouse-
eared bats, Myotis myotis and Myotis blythii. Animal Behaviour 51, 1 (1996), 1–11.
DOI:http://dx.doi.org/10.1006/anbe.1996.0001

Doris Audet. 1990. Foraging Behavior and Habitat Use by a Gleaning Bat, Myotis myotis (Chiroptera:
Vespertilionidae). Journal of Mammalogy 71, 3 (1990), 420–427. http://www.jstor.org/stable/1381955

Christian R. Berger, Shengli Zhou, Yonggang Wen, Peter Willett, and Krishna Pattipati. 2008. Optimizing
Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions. IEEE Transactions on
Wireless Communications 7, 11 (Nov. 2008), 4586–4595. DOI:http://dx.doi.org/10.1109/T-WC.2008.070581

Johannes Blömer, Malik Kalfane, Richard Karp, Marek Karpinski, Michael Luby, and David Zuckerman.
1995. An XOR-Based Erasure-Resilient Coding Scheme. Technical Report TR-95.048. International
Computer Science Institute, Berkeley.

Lucas N. H. Bunt, Phillip S. Jones, and Jack D. Bedient. 1988. The Historical Roots of Elementary Mathematics.
Dover Publications. 336 pages.

Isabel Dietrich and Falko Dressler. 2009. On the Lifetime of Wireless Sensor Networks. ACM Transactions
on Sensor Networks (TOSN) 5, 1 (Feb. 2009), 1–39. DOI:http://dx.doi.org/10.1145/1464420.1464425

Falko Dressler, Bastian Bloessl, Martin Hierold, Chia-Yu Hsieh, Thorsten Nowak, Robert Weigel, and
Alexander Koelpin. 2015. Protocol Design for Ultra-Low Power Wake-Up Systems for Tracking Bats
in the Wild. In IEEE International Conference on Communications (ICC 2015). IEEE, London, UK,
6345–6350. DOI:http://dx.doi.org/10.1109/ICC.2015.7249335

Falko Dressler, Simon Ripperger, Martin Hierold, Thorsten Nowak, Christopher Eibel, Björn Cassens, Frieder
Mayer, Klaus Meyer-Wegener, and Alexander Koelpin. 2016. From Radio Telemetry to Ultra-Low Power
Sensor Networks - Tracking Bats in the Wild. IEEE Communications Magazine (2016). to appear.

Freescale Semiconductor, Inc. 2013. FRDM-KL02Z User Manual, Revision 0. Freescale Semiconductor, Inc.
R.G. Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1 (Jan.

1962), 21–28. DOI:http://dx.doi.org/10.1109/TIT.1962.1057683
Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, Fernando Losilla, Pawel Kulakowski, Joan Garcia-

Haro, Alejandro Rodriguez, Jose-Vicente Lopez-Bao, and Francisco Palomares. 2010. Wireless
Sensor Network Deployment for Monitoring Wildlife Passages. Sensors 10, 8 (2010), 7236–7262.
DOI:http://dx.doi.org/10.3390/s100807236

Anders Hedenström, L. Christoffer Johansson, and Geoffrey R. Spedding. 2009. Bird or bat: compar-
ing airframe design and flight performance. Bioinspiration & Biomimetics 4, 1 (2009), 015001.
DOI:http://dx.doi.org/10.1088/1748-3182

Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat. 2009. Sloth: Threads as
Interrupts. In 30th IEEE Real-Time Systems Symposium (RTSS 2009). IEEE, Washington, DC, 204–213.
DOI:http://dx.doi.org/10.1109/RTSS.2009.18

Timo Hönig, Christopher Eibel, Rüdiger Kapitza, and Wolfgang Schröder-Preikschat. 2011. SEEP: Exploiting
Symbolic Execution for Energy-aware Programming. In 23nd ACM Symposium on Operating Systems
Principles (SOSP 2011), 4th Workshop on Power-Aware Computing and Systems (HotPower 2011). ACM,
Cascais, Portugal, 4:1–4:5. DOI:http://dx.doi.org/10.1145/2039252.2039256

Timo Hönig, Heiko Janker, Christopher Eibel, Oliver Mihelic, Rüdiger Kapitza, and Wolfgang Schröder-
Preikschat. 2014. Proactive Energy-Aware Programming with PEEK. In USENIX Conference on Timely
Results in Operating Systems (TRIOS 2014). Broomfield, CO, 1–14.

Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh, and Daniel Ruben-
stein. 2002. Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Ex-
periences with ZebraNet. ACM SIGOPS Operating Systems Review 36, 5 (Dec. 2002), 96–107.
DOI:http://dx.doi.org/10.1145/635508.605408

Raja Jurdak, Philipp Sommer, Branislav Kusy, Navinda Kottege, Christopher Crossman, Adam Mckeown,
and David Westcott. 2013. Camazotz: Multimodal Activity-based GPS Sampling. In 12th ACM/IEEE
International Symposium on Information Processing in Sensor Networks (IPSN 2013). ACM, Philadelphia,
PA, 67–78. DOI:http://dx.doi.org/10.1145/2461381.2461393

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

Monitoring Bats: On Using Erasure Codes for Energy-Efficient Wireless Sensor Networks 7:29

Sukun Kim, R. Fonseca, and D. Culler. 2004. Reliable transfer on wireless sensor networks. In 1st IEEE
Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON
2004). IEEE, Santa Clara, CA, 449–459. DOI:http://dx.doi.org/10.1109/SAHCN.2004.1381947

Andreas Köpke, Michael Swigulski, Karl Wessel, Daniel Willkomm, P.T. Klein Haneveld, Tom Parker, Otto
Visser, Hermann Simon Lichte, and Stefan Valentin. 2008. Simulating Wireless and Mobile Networks in
OMNeT++ – The MiXiM Vision. In 1st ACM/ICST International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMUTools 2008): 1st ACM/ICST International
Workshop on OMNeT++ (OMNeT++ 2008). ACM, Marseille, France.

Jó Agila Bitsch Link, Gregor Fabritius, Muhammad Hamad Alizai, and Klaus Wehrle. 2010. BurrowView -
seeing the world through the eyes of rats. In 8th IEEE International Conference on Pervasive Comput-
ing and Communications (PERCOM 2010), 2nd IEEE International Workshop on Information Qual-
ity and Quality of Service for Pervasive Computing (IQ2S 2010). IEEE, Mannheim, Germany, 56–61.
DOI:http://dx.doi.org/10.1109/PERCOMW.2010.5470603

Michael Luby. 2002. LT Codes. In 43rd Symposium on Foundations of Computer Science (FOCS 2002). IEEE,
Vancouver, BC, Canada, 271–280. DOI:http://dx.doi.org/10.1109/SFCS.2002.1181950

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman. 2001. Effi-
cient Erasure Correcting Codes. IEEE Transactions on Information Theory 47, 2 (2001), 569–584.
DOI:http://dx.doi.org/10.1109/18.910575

Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson. 2002. Wireless Sensor
Networks for Habitat Monitoring. In 1st ACM Workshop on Wireless Sensor Networks and Applications
(WSNA 2002). Atlanta, GA.

Margit Mutschlechner, Patrick Baldemaier, Philipp Handle, and Falko Dressler. 2013. Wireless in The
Woods: Experimental Evaluation of IEEE 802.11a/b/g in Forested Environments. In 12. GI/ITG KuVS
Fachgespräch Drahtlose Sensornetze (FGSN 2013). Cottbus, Germany, 5–8.

Margit Mutschlechner, Florian Klingler, Felix Erlacher, Florian Hagenauer, Marcel Kiessling, and Falko
Dressler. 2014a. Reliable Communication using Erasure Codes for Monitoring Bats in the Wild. In 33rd
IEEE Conference on Computer Communications (INFOCOM 2014), Student Activities. IEEE, Toronto,
Canada, 189–190. DOI:http://dx.doi.org/10.1109/INFCOMW.2014.6849219

Margit Mutschlechner, Bijun Li, Ruediger Kapitza, and Falko Dressler. 2014b. Using Erasure Codes to
Overcome Reliability Issues in Energy-Constrained Sensor Networks. In 11th IEEE/IFIP Conference
on Wireless On demand Network Systems and Services (WONS 2014). IEEE, Obergurgl, Austria, 41–48.
DOI:http://dx.doi.org/10.1109/WONS.2014.6814720

Michael Noisternig. 2004. Tornado-Codes. http://notion.muelln-kommune.net/cgi/tornado-paper.ps.cgi. (2004).
H.D. Pfister and P.H. Siegel. 2008. Joint iterative decoding of LDPC codes for channels with memory

and erasure noise. IEEE Journal on Selected Areas in Communications 26, 2 (Feb. 2008), 320–337.
DOI:http://dx.doi.org/10.1109/JSAC.2008.080209

Irving S. Reed and Gustave Solomon. 1960. Polynomial Codes Over Certain Finite Fields. Journal of the
Society for Industrial & Applied Mathematics 8, 2 (1960), 300–304. DOI:http://dx.doi.org/10.1137/0108018

Luigi Rizzo. 1997. Effective Erasure Codes for Reliable Computer Communication Proto-
cols. ACM SIGCOMM Computer Communication Review (CCR) 27, 2 (April 1997), 24–36.
DOI:http://dx.doi.org/10.1145/263876.263881

Bernd-Ulrich Rudolph, Alois Liegl, and Otto Von Helversen. 2009. Habitat Selection and Activity Pat-
terns in the Greater Mouse-Eared Bat Myotis myotis. Acta Chiropterologica 11, 2 (2009), 351–361.
DOI:http://dx.doi.org/10.3161/150811009X485585

Danilo Russo, Gareth Jones, and Raphaël Arlettaz. 2007. Echolocation and passive listening by foraging
mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology 210, 1 (2007), 166–176.
DOI:http://dx.doi.org/10.1242/jeb.02644

Christian Rutz, Zackory T. Burns, Richard James, Stefanie M.H. Ismar, John Burt, Brian Otis, Jayson Bowen,
and James J.H. St Clair. 2012. Automated mapping of social networks in wild birds. Current Biology 22,
17 (2012), R669–R671. DOI:http://dx.doi.org/10.1016/j.cub.2012.06.037

Amin Shokrollahi. 2006. Raptor Codes. IEEE Transactions on Information Theory 52, 6 (June 2006), 2551–
2567. DOI:http://dx.doi.org/10.1109/TIT.2006.874390

Reinald Skiba. 2003. Europäische Fledermäuse: Kennzeichen, Echoortung und Detektoranwendung. Westarp-
Wissenschaften. 212 pages.

Philipp Sommer, Branislav Kusy, Adam McKeown, and Raja Jurdak. 2014. The Big Night Out: Experi-
ences from Tracking Flying Foxes with Delay-Tolerant Wireless Networking. In Real-World Wireless
Sensor Networks, Koen Langendoen, Wen Hu, Federico Ferrari, Marco Zimmerling, and Luca Mottola
(Eds.). Lecture Notes in Electrical Engineering, Vol. 281. Springer International Publishing, 15–27.
DOI:http://dx.doi.org/10.1007/978-3-319-03071-5 2

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

7:30 F. Dressler et al.

András Varga. 2001. The OMNeT++ Discrete Event Simulation System. In European Simulation Multiconfer-
ence (ESM 2001). Prague, Czech Republic.

G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, and H. E. Stanley.
1996. Lévy flight search patterns of wandering albatrosses. Nature 381, 6581 (May 1996), 413–415.
DOI:http://dx.doi.org/10.1038/381413a0

Mehmet C. Vuran and Ian F. Akyildiz. 2009. Error Control in Wireless Sensor Networks: A Cross
Layer Analysis. IEEE/ACM Transactions on Networking (TON) 17, 4 (Aug. 2009), 1186–1199.
DOI:http://dx.doi.org/10.1109/TNET.2008.2009971

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 7, Publication date: February 2016.

