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Abstract—The quality of Intelligent Transportation Systems
strongly depends on the underlying communication protocols
and techniques. In this article, we discuss the current state of
the art, trends, and open problems in the area of simulation
techniques used to study Inter-Vehicle Communication (IVC).
Complementary to testbed experiments that are often limited
in scale and variety, simulation is one of the most important
methods for performance evaluation of IVC applications. In the
last couple of years, the quality of used simulation models has
seen tremendous improvement, yet there are still open issues
regarding the accuracy of typical simulation experiments. In this
article, we touch on a broad range of topics but focus on three
aspects that have a strong influence on the degree of realism and
hence the reliability of simulation results: the need to integrate
microscopic mobility models, the used evaluation metrics, and
the impact of human driver behavior on a macroscopic scale.
Based on selected example settings, we first demonstrate the
strong influence of these aspects on the quality of simulation
experiments and then describe available models and tools that
can be used for IVC simulation.

I. INTRODUCTION

We study and discuss the state of the art of simulation-
based performance evaluation of Inter-Vehicle Communication
(IVC) protocols and applications. In the scope of this article,
we concentrate on the most recent advances and findings
by outlining selected models, techniques, and issues that are
specifically related to IVC, with a strong focus on aspects
beyond network simulation issues. The main objective is to
determine the degree to which available simulation techniques
produce realistic results.

In the last years, there has been significant progress in
the development of IVC protocols [1], [2]. Typically, two
application scenarios are distinguished: efficiency and com-
fort applications (such as Traffic Information Systems (TIS),
multiplayer games, or location based services) and safety
applications (including emergency brakes, accident warning,
or lane change control). All these applications demand for
a wide variety of characteristics of the used communica-
tion protocols. In the IVC community, protocols have been
developed using centralized or completely distributed ap-
proaches exploiting many different communication channels.
For direct communication among vehicles, and also multi-
hop transmissions, infrastructure-less approaches started using
consumer WLAN, which is being succeeded by the emerging

IEEE 802.11p/WAVE standard. Furthermore, infrastructure-
based communication is assumed to employ WiFi or 3G/3.5G
solutions in many application scenarios.

Besides real world experiments, simulation is used as a
tool to evaluate developed information exchange protocols in
vehicular networks.

A. Challenges in Simulating IVC
Simulation of IVC applications and protocols is typically

based on classical network simulation used to evaluate the
performance of network protocols [3]. There has been much
progress in this field both in terms of improving the accuracy
of the simulation results and of improving the simulation
speed. There are, however, a number of issues specific to IVC
that need to be considered in such simulation experiments.

For evaluating the communication network in IVC, there are
two major challenging questions: how to integrate the mobility
aspects of vehicles and how to exactly estimate the charac-
teristics of the wireless channel. Mobility modeling started
using simple random waypoint or Manhattan grid models, but
there is the need to have more realistic models incorporating
the microscopic behavior of individual vehicles as well as the
macroscopic behavior of entire road traffic flows. Furthermore,
exact physical layer models are required [4], [5]. This issue
is currently being addressed in many research projects, but
still encounters problems related to the availability of highly
detailed environment models.

Beyond those aspects, there are a number of additional
challenges. This includes for example the behavior of human
drivers. Partially, this is relevant to the microscopic mobility
of cars, e.g., using car following and lane change models, but
also to macroscopic effects caused by the individual reaction
on presented traffic information.

Finally, the appropriateness of the evaluation criteria used
in classical (communication) network simulation need to be
reconsidered for IVC performance evaluation. In many cases,
the raw number of wireless communication attempts or the
achieved end-to-end latency is not sufficient. IVC specific
metrics have to be developed.

B. Contributions
In this article, we discuss three key aspects that strongly

influence the simulation quality, the degree of realism, and
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thus the significance of obtained results:
• Use of accurate mobility models (Section II) – technical

aspects of vehicles’ mobility such as mass, acceleration
as well as non-technical aspects on a microscopic level
like car-following and lane-change models.

• Impact of human driver behavior (Section III) – human
driver behavior on a macroscopic scale such as route
choice influencing the efficiency of TIS applications.

• Adequate evaluation metrics (Section IV) – travel times
and emission models (when focusing on TIS applications)
besides typical communication related metrics, e.g., con-
gestion on the wireless channel, delays, and throughput.

This article surveys, and gives recommendations on, avail-
able simulation techniques and models. In addition, Section V
outlines some of the most commonly used simulation tools
and their properties.

II. COUPLING WITH MICROSCOPIC MOBILITY MODELS

Aside from the influence of the wireless channel, one of the
most critical issues in realistic simulation of IVC protocols
and applications is the mobility of the vehicles. A Vehicular
Ad Hoc Network (VANET) is characterized by its inherent
dynamic nature due to the mobility of the cars. This aspect
needs to be carefully modeled for simulation experiments [3].

A. Problems

Early approaches to study vehicles’ mobility using simple
random waypoint or Manhattan grid mobility models have
been proven to produce inaccurate or at least misleading
results [6].

To overcome these problems, data on vehicles moving in
urban (but also in freeway) scenarios has been collected in
many research projects, resulting in very accurate mobility
traces. These can then be fed into simulations to represent
nodes’ mobility. The key advantage is that such simulations
can easily be reproduced using the same traces. The main
drawback, however, is that no arbitrary scenarios can be
modeled in the transportation domain: the experiments need to
be done based on available traces. At the same time, models of
the micro mobility of vehicles have been developed that very
accurately simulate the mobility of individual vehicles. Using
this type of microsimulation, scenarios can be described and
simulated according to the needs of an evaluation experiment.
Today, very accurate models of the vehicle movement are
available. These take into account the characteristics of the
vehicle itself (e.g., mass, acceleration), its environment (e.g.,
speed limits, neighboring cars), but also the driver’s behavior
(e.g., aggressiveness for lane changes). Two of the best known
implementations of such models are VISSIM and SUMO [7].
The outcome of the vehicle microsimulation is then a synthetic
trace for an arbitrary scenario.

However, the key problem is that the interaction between
the IVC protocol and the vehicle’s mobility is still not con-
sidered [3]. For example, after receiving information about a
traffic congestion, a vehicle can be expected to change its route
to bypass this problematic zone.
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Fig. 1. Message exchange and time control between OMNeT++ and SUMO

B. Solutions

Most recently, bidirectional coupling of road traffic mi-
crosimulation and network simulation has been proposed to
overcome this issue [8], [9]. This allows the incorporation of
IVC based control, e.g., in the route planning of the vehicles.
For example, network simulators such as OMNeT++ or ns-2
have been coupled with SUMO, controlling the time progress
in the mobility model and continuously updating the positions
of all vehicles. In this context, the concept of using cellular
automata for modeling the microscopic mobility needs to
be mentioned, which can easily be integrated with a typical
network simulator [10]. The principle of the bidirectional
coupling is outlined in Figure 1 using the Veins simulation
framework as an example [8].

This simulation framework has also been used to generate
the simulation results presented in the following to show the
impact of the bidirectional coupling. A simple broadcast-based
TIS protocol has been investigated: blocked vehicles broadcast
information about a potential congestion to neighboring vehi-
cles, which, in turn, re-broadcast this information for a given
number of hops. If the network simulation determines that such
an incident warning has been received by a node’s wireless
interface, it stores both the timestamp and the contents of the
warning message. Using the bidirectional coupling to the road
traffic simulator, it also triggers an adjustment of the affected
road segments’ estimated travel times for this vehicle. Finally,
the vehicle recalculates its route to the destination. Later, when
the originating vehicle resumes its journey, it notifies other
vehicles that the lane can be used again, allowing them to
restore their original routes.

The simulation results depicted in Figure 2 outline the
impact of the IVC on the mobility of the vehicles. In particular,
an urban scenario has been studied with 200 simulated cars
leaving a parking lot in the city of Erlangen, on average one
every 6 s, then heading to a business park along an individual,
dynamically chosen route. Serving as the basis for the road
layout in this scenario was map data publicly available from
the OpenStreetMap project. Four sets of simulation runs have
been performed. One set of runs simulated uninhibited road
traffic, labeled with “free” in Figure 2. In the second set
of runs, labeled with “none”, an incident was simulated by
stopping the lead vehicle of cars traveling along the major
artery connecting the parking lot and the business park. In
the final two sets, labeled with “5” and “25”, all vehicles
were equipped with IVC technology, so stopped vehicles
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Fig. 2. Average speed of individual vehicles for free flowing traffic, traffic
with an incident, and for broadcast-based IVC

could disseminate information about congested road segments.
The difference between both settings is the dissemination
range: it was configured to allow for 5 hops and 25 hops,
respectively. Vehicles that received such notifications could
often completely avoid traffic incidents.

Figure 2 (left) plots the effective average speed of each
vehicle in relation to the time it entered the simulation for
three sets of simulation runs. As can be seen, the recorded
travel times vary widely for free flowing traffic, congested
traffic, and, most importantly, traffic that has been re-routed
using IVC. Enabling broadcast-based IVC over 25 hops led
to a significant increase of vehicles’ speeds, as vehicles that
were not too close to the incident when it happened (and thus
were caught in the resulting jam predicted by the microscopic
mobility model) were now able to turn around before they
reached the affected road segment, delaying them only slightly.
Other cars managed to avoid the incident altogether. The
increased variance and improvements of the average speed are
summarized in the boxplot in Figure 2 (right). Based on the
integrated (bi-directionally coupled) road traffic microsimula-
tion and network simulation, we were able to produce realistic
results explaining the advantages of IVC in the given scenario.
In particular, the results outline the impact on each individual
vehicle as well as the effects on the overall traffic flow.

III. HUMAN DRIVER BEHAVIOR

Besides the more technical aspects of microscopic mobility
of vehicles, higher layer decision systems about route planning
and road traffic flow optimization are typically evaluated
assuming a system that reacts optimally according to the
available information. However, there is an additional aspect
impacting the reactions: human driver behavior impacts a
system not only on a microscopic level (as simulated by
car following models), but also on a macroscopic level (im-
pacting route planning and route changes): depending on the
driver’s knowledge and several additional aspects, either the
recommendations of the IVC-based information system are
considered, or no action is taken.

A. Problems

The impact of individual human driver behavior on overall
road traffic is a topic of interest since the early days of
traffic information systems. Actually, some of the most com-
prehensive psycho-physiological studies have been performed
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Fig. 3. Driver behavior submodels according to König et al. [11]

in the late 1980s and early 1990s. König et al. developed
driver behavior model using AI techniques for the driver’s
route planning [11]. Basically, the authors considered four
submodels that influence the driver’s behavior as shown in
Figure 3. Besides factors influencing the microscopic behavior
of vehicles based on experience, the degree of aggressiveness,
age, and gender, especially the reaction to received traffic
information has been studied. The preferences of drivers
generally influence both the selected route (a factor that is
integrated into navigation systems today) and the motivation
to accommodate changes to this route. Finally, the reaction to
received messages and the local knowledge are key elements of
the driver’s behavior. Local knowledge is difficult to model and
also somewhat related to the reaction to received messages.
In this work, we primarily consider the reaction to received
messages and develop a model taking into account all the
related influences.

The most comprehensive literature study of human factors
has been conducted by Dingus et al. [12] to provide guidelines
for advanced traveler information systems and commercial
vehicle operations. A very interesting aspect identified in this
study is that human drivers tend to resist deviating from their
present route to avoid congestions, i.e. they prefer following
their “traditional” routes. This report also summarizes driver
classes that have been identified earlier [13]. Based on cluster
analysis techniques, it is possible to show that four commuter
subgroups exist with respect to their willingness to respond
to the delivery of real-time traffic information [12, section on
driver acceptance and behavior].

In the field of IVC-based approaches, research has been
conducted mainly on traffic signal control and its impact
on the driver’s route choice [14], as well as on intersection
management [15]. It became obvious that a driver’s behavior
is of great interest for intelligent traffic light systems.

B. Solutions

Using the listed four basic classes of driver behavior as well
as combinations thereof, we conducted a number of simulation
experiments to study the impact of actions taken by individual
drivers [16]. We implemented a decision system considering
the typical behavior according to the published psychological
studies and based on the following classes: A driver following
all TIS recommendations falls into the class always. This is
basically the kind of behavior that is being assumed for almost
all simulation and experimental studies of IVC solutions. The
second important class is never, in which the driver continues
his every-day procedure and completely ignores the TIS (the
ratio of drivers in class never must be clearly distinguished
from the frequently used penetration rate: even though these
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TABLE I
BEHAVIOR CLASSES

Class Description Mix

Always route selection according to TIS
recommendations

40.1 %

Never drivers unwilling to change the
route

23.4 %

d < D route changes only if the distance
to the congestion is less than D

20.6 %

d > D route changes only if the distance
to the congestion is larger than D

15.9 %

P probabilistic decision whether to
fall into class always or never

0 %

Fig. 4. Impact analysis of the driver behavior models for a TIS scenario

drivers do not follow any TIS advice, their cars certainly
take part in the distributed TIS). The third class contains
all drivers who only consider congestions that are within a
certain range d < D as relevant to their route – they simply
assume that for obstructions that are further away there will be
enough time for the congestion to clear before they will get
there. Finally, a fourth class represents drivers who want to
bypass a congestion using a long detour, but at the same time
make sure that they will not have to stop in secondary jams
due to short term detours; thus, this class is represented by
d > D. All behavior classes are summarized in Table I, along
with a probabilistic class that has drivers selecting either the
always (with probability P ) or the never model at the time
of departure. Finally, the class mix is a representation of the
driver model in [12].

For the evaluation, we again used the urban scenario [16]
along with a simple broadcast-based IVC protocol for ex-
changing traffic information. In our example, we used D =
1km and P = 0.7. A more detailed discussion is presented
in [16]. Figure 4 shows the statistical analysis of the impact
different driver models have on the travel time of vehicles
(normalized using the distance along the shortest route to
derive an effective average speed). We present the results in the
form of boxplots, indicating the median and the quartiles of all
the measurements. Because the distribution of measurements
is, by nature, multi-modal, we also display individual mea-
surements, using light gray lines; thus, dark zones represent
a significant number of cars in the same speed range. As the
most obvious result, it can be seen that all the different models
lead to a completely different overall behavior. Furthermore, as
a second outcome, we observe that the mix according to [11],
labeled with “Mix”, can be closely approximated using the

Fig. 5. Gas consumption and emission according to the EMIT model [18]

probabilistic model (P).

IV. EVALUATION METRICS

The performance evaluation of IVC protocols frequently
relies on communication network-related parameters such as
network load, congestion of the wireless channel, or end-
to-end transmission delays. This is, with some limitations,
adequate to evaluate safety applications requiring low-latency
(or even guaranteed real-time) communication. However, effi-
ciency applications cannot easily be analyzed this way.

A. Problems

As a solution, the travel time of the cars is frequently used
as a more descriptive metric. The travel time reveals the ability
of the TIS to efficiently re-route cars in case of congestions.

It should be noted that the travel time only provides mea-
sures of the microscopic behavior of individual cars and, thus,
to what extent the individual driver benefits from the system.
A completely different view would be to analyze the overall
behavior, i.e. the ability of the system to smoothen entire traffic
flows. This can either be provided by looking at the variance
of vehicle speeds or, as a combined metric with the distance
traveled and revealing further interesting aspects, by looking
at the resulting emissions (frequent accelerations result in a
sharp increase of CO2 emissions) [17].

B. Solutions

Very accurate modeling of the gas consumption and emis-
sions is provided by the EMIT model, which has been cali-
brated for a wide range of different emissions including CO2,
CO, hydrocarbon (HC), and nitrous oxide (NOx) [18]. The ba-
sic operation is depicted in Figure 5. Speed, acceleration, and
the characteristics of the particular vehicle are used to calculate
the gas consumption using an engine model. Based on these
results, emissions after passing through a catalytic converter,
which is assumed to have reached operating temperature, can
be estimated very precisely.

The EMIT model uses a two step approach for such an
engine model, first estimating the tractive power requirement
at a vehicle’s wheels Ptract. This is calculated using the
following polynomial:

Ptract = Av +Bv2 + Cv3 +Mav +Mgv sinϑ

Based on the tractive power requirement, the gas consumption
can be estimated and, consequently, tailpipe emissions of CO2

calculated according to a second polynomial:

TPCO2 =

{
α+ βv + δv3 + ζav if Ptract > 0
α′ else
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TABLE II
EMIT FACTORS FOR A CATEGORY 9 VEHICLE

factor value unit

v vehicle speed m/s
a vehicle accel. m/s2

A rolling resistance 0.132 6 kW s/m
B speed-correction to

rolling resistance
2.738 4× 10−3 kW s2/m2

C air drag resistance 1.084 3× 10−3 kW s3/m3

M vehicle mass 1.325 0× 103 kg
g gravitational const. 9.81 m/s2

ϑ road grade 0 degrees

α 1.110 0 g/s
β 0.013 4 g/m
δ 1.980 0× 10−6 g s2/m3

ζ 0.241 0 g s2/m2

α′ 0.973 0 g/s
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Fig. 6. Scenario description and speed / acceleration profile for vehicles
approaching a congestion or taking a detour

Table II lists the used variables as well as the values of α
to ζ, A to C, and M ; fitted to match a category 9 vehicle, e.g.
a ’94 Dodge Spirit.

We implemented the EMIT model in the Veins simulation
framework, using it to highlight the importance of considering
both metrics, travel time and CO2 emissions [17]. In this
scenario, a single-lane trunk road with a speed limit of
approx. 28 m/s (100 km/h) is supported by two parallel streets
with speed limits of 22 m/s, all connected in the form of a
ladder. This configuration is outlined in Figure 6 (top). Each
simulation run consists of 101 cars driving on the main road,
one departing every 5 s, then measuring both the cumulative
time and the cumulative CO2 emission of vehicles until all
have left the simulation. We introduce an artificial incident, a
vehicle stopping, on the trunk road and disallow overtaking
this vehicle. Again, simple broadcast-based IVC takes place
between the cars in order to exchange information about the
blocked trunk road. If such a message successfully reaches
a car heading towards an obstruction, it recalculates its path
using one of the parallel streets if possible. We then modified
the stop length in order to evaluate the appropriateness of the
route recalculation with regard to the two selected metrics.
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emission, respectively

Furthermore, we changed the length of the detour by modi-
fying the rung length. This artificial setup is perfectly suited
for analyzing the impact of the detour length, even though the
road layout is certainly very abstract.

Figure 6 further shows a speed / acceleration profile for
three different cars: the stopping car, a car caught in the
resulting jam, and one taking a detour based on IVC-based
traffic information. As can be seen, the necessary accelerations
and decelerations for the detour are not negligible: in order to
be able to yield to through traffic, each vehicle will have to
brake slightly when leaving the rungs to and from the detour
(visible in the figure as two pronounced drops in speed).

This effect can be studied in more detail by comparing
the trade off between travel time and CO2 emission metrics
(because road grade is not currently modeled in SUMO, Ptract

calculations assumed planar roads and, hence, ϑ = 0). Figure 7
outlines the simulation results for varying stop times of the
lead vehicle and different lengths of the detour, i.e. changed
rung lengths. It plots the cumulative driving time, as well
as the cumulative CO2 emission, of all simulated vehicles.
Serving as the baseline scenario in both cases is a setup with
no IVC: we assume that in this scenario no vehicle is able
to detect the traffic obstruction until after it passes the last
chance to switch to the detour; thus, all vehicles will always
stay on the main road. The plots show that the break-even
points for the use of IVC (i.e., the lines where both graphs
intersect) differ by a large margin. Thus, most interestingly,
the optimal configuration of the overall TIS-based rerouting is
different for both evaluation metrics, the travel time and the
CO2 emission. Considering the CO2 emission, short stops are
more appropriate compared to taking the respective detours,
thus, optimizing the overall traffic flows. As can be seen, this
decision is not necessarily optimal with regard to the travel
times of an individual car.

V. TOOL SUPPORT

Quite a number of tools have been developed in the last
couple of years that integrate support for realistic mobility
models. Most of these tools can easily be extended to also
cover emission and human driver behavior models, and some
of them even provide initial support. Table III summarizes
some of the most commonly used tools. The table can be
used as a reference if specific IVC applications and protocols
are to be investigated with the help of simulation.
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TABLE III
SUMMARY OF SIMULATION FRAMEWORKS

Toolkit Network
simulation

Mobility
modeling

Traffic
metrics

Human driver
behavior

Web site

Veins OMNeT++ SUMO 8 EMIT and
SUMO

multiple
classes

http://veins.car2x.org/

TraNS ns-2 SUMO 8 SUMO partially http://trans.epfl.ch/

iTETRIS ns-3 SUMO 8 SUMO partially http://www.ict-itetris.eu/

VGSim JiST/SWANS Nagel-
Schreckenberg

- - http://sourceforge.net/projects/vgsim/

VSimRTI JiST/SWANS VISSIM 5 VERSIT+ 5 partially http://www.dcaiti.tu-berlin.de/research/simulation/

NCTUns (Proprietary) (Proprietary) (Proprietary) - http://nsl10.csie.nctu.edu.tw/

SWANS++ JiST/SWANS STRAW 6 - not applicable http://www.aqualab.cs.northwestern.edu/projects/swans++/

GrooveNet (Proprietary) Roadnav 6 - not applicable http://www.seas.upenn.edu/∼rahulm/Research/GrooveNet/

ASH JiST/SWANS IDM/MOBIL E - not applicable http://www.cs.odu.edu/∼vanet/Software/Ash

vanet-highway ns-3 IDM/MOBIL E - not applicable http://www.cs.odu.edu/∼vanet/Software/Ns3-highway

E self-generated scenarios that simulate micromobility on a linear stretch of road with nodes moving at highway speeds
5 VISSIM (and its extensions) is commercial software, there exists no free academic license
6 TIGER scenarios include most U.S. roads and a classification, e.g., “A31: Secondary and connecting road, state and county highways, unseparated”
8 SUMO scenarios can be based on OpenStreetMap, importing speed limits, lane counts, traffic lights, access and turn restrictions

VI. CONCLUSION

In this article, we outlined some of the aspects that strongly
influence simulation experiments of IVC protocols. There is
clear progress visible in this domain and quite a number of
simulation tools have become available supporting at least
some of the discussed issues. In conclusion, it can be said that
in addition to encouraging the use of the described models for
simulative evaluation of IVC protocols, we have shown that
not using the following techniques, simulation results might
be misleading and the evaluation might suggest a behavior
deviating from what can be expected in reality:
• Realistic mobility models are of paramount importance

for evaluating the microscopic mobility of vehicles when
studying fine-grained communication aspects; bidirec-
tional coupling of road traffic microsimulation and net-
work simulation is a promising approach to overcome
limitations from using traces or randomized mobility
models.

• The impact of the human driver behavior on a macro-
scopic scale must be considered instead of assuming
technically perfect reactions to IVC messages; this is of
particular importance for the design and development of
TIS applications.

• Metrics appropriate for IVC evaluation have an impact
on the configuration of IVC-based applications, thus they
provide deeper insights into the behavior of the system
as a whole.

Of course, there are many other open issues in the field
of realistic IVC simulation that need to be addressed. For
example, realistic physical layer models rely on accurate 3D
map information that includes buildings and other obstacles.
Such maps are only available for a very small set of scenarios.

Furthermore, there is still no set of standardized simulation
setups available to be used for evaluation, thus, making the
comparability of different studies an issue.
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