
A Rule System for Network-centric Operation in

Massively Distributed Systems

Falko Dressler and Reinhard German

Computer Networks and Communication Systems,
University of Erlangen-Nuremberg, Germany

{dressler,german}@informatik.uni-erlangen.de

Abstract. Sensor and Actor Networks (SANETs) represent a specific
class of massively distributed systems in which classical communication
protocols often fail due to scalability problems. New control paradigms
are needed in this place. This paper outlines biological communication
techniques as known cellular biology, which are known as cellular signal-
ing pathways. We show the adaptation of these principles to the world of
SANETs by discussing a rule-based control system for network-centric
communication and data processing. This system is able to perform data
pre-processing such as data aggregation or fusion as well as data-centric
communication based on rules that are distributed throughout the entire
network. First simulation results demonstrate that this system is able to
outperform classical routing approaches in specific SANET scenarios.

Keywords. sensor and actor networks, self-organization, bio-inspired
networking, rules-based sensor network, cellular signaling

1 Introduction

Recent advances in microelectronics enabled the development of even smaller
and cheaper devices that are primarily used in the domain of Wireless Sensor
Networks (WSNs). At the beginning of this research, the envisioned scenario
has been smart dust [1], i.e. the deployment of millions of tiny sensor nodes that
cooperate on monitoring a given area. Whereas this scenario has not yet become
reality, a multitude of algorithms for operation of massively distributed sensor
systems have been developed. Based on the research the need for network-centric
data preprocessing has been identified as a key challenge due to the observation
that communication is much more expensive in terms of energy requirements
compared to local processing. Similarly, Sensor and Actor Networks (SANETs)
introduced further challenges and requirements. SANETs represent a specific
class of sensor networks enriched with network-inherent actuation facilities [2].
In addition to the requirements known from sensor networks, actuation devices,
usually named actors [3], are included into the scenario. This requires real-time
operation in massively distributed systems and coordination capabilities on a
higher abstraction layer.

In this paper, we present a system for network-centric operation in WSNs
and SANETs that we named Rule-based Sensor Network (RSN). This system
is the result from studies in the context of bio-inspired networking – precisely,
in the context of cellular signaling cascades. In the following, we summarize the
requirements in the domain of massively distributed systems and introduce the
biological background. Then, we present RSN in detail and conclude with two
first application scenarios.

1.1 Requirements in massively distributed systems

Whereas other application domains exist, we concentrate on WSNs and SANETs.
Starting with the first domain, we can identify scalability and energy efficiency
as the most challenging characteristics. Self-organizing algorithms have been de-
veloped relying for example on clustering and aggregation techniques to improve
scalability and network lifetime [4]. In SANETs, coordination aspects need to be
solved for sensor-actor coordination as well as for actor-actor coordination [3].
This includes additional communication constraints for network-wide coordina-
tion or, at least, local decision taking strategies that lead to an emergent behavior
on a higher abstraction layer. Additionally, real-time constraints need to be con-
sidered as demanded by feedback control in sensor-actor coordination. Some of
these challenging requirements are addressed by RSN. This approach basically
provides the building blocks for developing network-centric operation and control
techniques needed in massively distributed systems such as SANETs.

DNA

Signal
(information)

Gene transcription
results in the
formation of a specific
cellular response to
the signal

Receptor

Fig. 1. Cellular signaling refers to the specific reaction according to received signaling
molecules; shown is the multilevel transcription of a received protein

1.2 Biologically inspired operation

In the last few years, bio-inspired networking has become a new trend for address-
ing yet unsolved problems by adapting solutions known in nature [5]. Whereas
a broad range of techniques and methods have been studied (e.g., the artificial
immune system, swarm intelligence, and evolutionary algorithms), we focus in
this paper on a rather new domain, the adaptation of communication and co-
ordination techniques from cellular signaling. Figure 1 sketches the principles of

cellular information exchange. Information particles, e.g. proteins, are received
by a cell according to the specific binding to a locally expressed receptor (or even
a set of receptors) [6]. The activation of the receptor initiates a signaling cascade
in which new proteins are created or activated and, finally, a cellular response
can be observed, which represents the specific reaction of the cell according to
the received information. Thus, cellular processes are regulated by interactions
between various types of molecules, e.g. proteins. A key challenge for biology in
the 21st century is to understand the structure and the dynamics of the complex
intercellular web of interactions that contribute to the structure and function of
a living cell [7]. To uncover these structural design principles, network motifs
have been defined as patterns of interconnections occurring in complex networks
at numbers that are significantly higher than those in randomized networks [8].

Init measurement

Input Outcome

Computational
expensive process

If value > threshold

Enforce
action A

Enforce
action B

Enforce
action C

If Va > Ta If Vb > Tb

Aggregate Va + Vb Enforce actuation

Feed forward motifs Single input motifs Multi-input motifs

Fig. 2. Typical network motifs in integrated cellular networks

The concept of network motifs is depicted in Figure 2. Please note that this
is only a small sample of network motifs in integrated cellular networks [8]. The
three basic building blocks of complex networks are shown in this figure to-
gether with application examples relevant in SANETs. Feed-forward motifs rep-
resent network-inherent mechanisms for controlling (expensive) processes. This
can also be seen as an amplification technique. Single-input motifs allow to ini-
tiate multiple reactions on a single stimulus. Furthermore, multi-input motifs
are depicted. The basic concept is twofold. First, inhibitory or controlling effects
can be achieved as two stimuli are required to continue in the signaling cascade.
Secondly, if the threshold, i.e. the multiple simultaneous stimuli, is exceeded, a
number of parallel actions can be initiated at once.

2 RSN – Rule-based Sensor Network

Inspired by the capabilities of cellular signaling, i.e. the specific reaction to re-
ceived information and the possibility to build signaling networks defining com-
plex reaction pattern, we developed a rule-based programming system for appli-
cation in SANETs. The primary design goals were a small footprint to enable
the application of RSN on small embedded systems, easily transferable code,
flexibility, and scalability for network-wide operations (basically, RSN provides
the tools and concepts but the specific application needs to be designed prop-
erly as well). The rule-system greatly helps in designing distributed algorithms

for use in self-organizing massively distributed systems. Additionally, RSN was
inspired by early rule-based systems that have been developed in the context of
active networking solutions [9]. Examples are the mobile object system [10] and
communicating rules [11].

2.1 Basic concept

The key objectives motivating the development of RSN were improved scalability
and real-time support for operation in SANETs. RSN is based on the following
three design objectives:

– Data-centric communication – Each message carries all necessary informa-
tion to allow data specific handling and processing without further knowl-
edge, e.g. about the network topology.

– Specific reaction on received data – A rule-based programming scheme is
used to describe specific actions to be taken after the reception of particular
information fragments.

– Simple local behavior control – We do not intend to control the overall sys-
tem but focus on the operation of the individual node instead. Simple state
machines have been designed, which control each node (being either sensor
or actor).

These goals are achieved by using a simple rule system that enables the
node to process received messages and to initiate adequate state and message
specific operations. Thus, all received messages are stored in a buffer (source
set). Periodically, after a configurable timeout Δt, all messages in the source set
are processed by the instructions defined by the rules. Every rule has the form
if CONDITION then { ACTION } as depicted in Figure 3. Each rule specifically
selects messages from the source set to apply the corresponding action. Details
about the actions and further RSN parameters are described in the following.

S

Source set Destination set

CONDITION

ACTION

D S

Fig. 3. Each rule selects a number of messages form the source set (CONDITION) and
applies a (set of) actions to the selected messages (ACTION)

2.2 Available actions

The following actions have been implemented in the current version of RSN.
Basically, the following categories of actions can be distinguished: rule execution,
i.e. operations on the received messages; node control, i.e. control of the local
node behavior (e.g., addition of sensors); and simulation control, i.e. actions
needed for experiment control without influence on the node behavior.

Rule execution The following actions are meant to be used for network-centric
processing of messages. All these actions work on the source message set that
has been created by the condition element, i.e. by selecting messages according
to a well-defined specific pattern. Examples for the application of the described
actions are provided in the next section.

– !stop – Early termination of the rule execution. Depending on the current
state (i.e., the number and kind of received messages), it may be necessary
to stop the current processing of the rule set. The next iteration will start
with the first available rule.

– !drop – Erases all messages in the current set. Needs to be called if messages
have been successfully processed.

– !dropDuplicates – All duplicates are discarded according to a unique iden-
tifier in each message. This command is needed to emulate for example
standard gossiping algorithms.

– !return – A new message is created and appended to the source message
set.

– !returnAll – Copies of all messages in the current set are created and stored
in the source message set.

– !send – A new message is created and submitted to the lower layer protocol
for transmission to neighboring nodes.

– !sendAll – Copies of all messages in the current set are created and sub-
mitted to the lower layer protocol for transmission to neighboring nodes.

– !actuate – A message is sent to locally connected actuators.

Node control Besides the actions for message processing, actions have been
integrated to control the local node behavior. Such node control actions allow to
enable/disable locally attached sensors and actuators as well as to modify the
current rule set, i.e. the local programming of a node.

– !controlSensor – A control message is sent to all attached sensors. Ac-
cording to the submitted attributes in $control, the behavior of the sensors
can be controlled: rsnSensorEnable and rsnSensorDisable enable or dis-
able the sensor, rsnSensorSetType updates the type field of the sensor, and
rsnSensorSetMeasuringInterval changes the sampling frequency.

– !controlActuator – Similarly, this command controls locally attached ac-
tuators. The attribute $control defines the action: the actuator is enabled
or disabled by rsnActuatorEnable and rsnActuatorDisable, respectively,
and rsnActuatorSetType updates the type field of the actuator.

– !controlManagement – The management plane defines the rule set itself.
Again, the $control attribute is used to specify the intended action: the
rule interpretation can be started or stopped by rsnManagementEnable and
rsnManagementDisable, respectively, the rule set can be replaced in order
to modify the behavior of this node using rsnManagementFromRsnString or
rsnManagementFromRsnFile, and the evaluation interval can be configured
by rsnManagementSetEvaluationInterval.

Simulation control The following actions have been integrated for simplified
control of simulation experiments. These actions are not working on a given set
of messages. Nevertheless, it is possible to initiate these actions based on the
current state of the node, e.g. after the reception of a specific message.

– !recordAll – Statistics are recorded for all messages in the current working
set. In particular, the following information are stored: ID of the current
node, ID of the node that generated the message, node specific ID of the
message, globally unique ID of a message, hop count, current time, and
delay (elapsed time since message creation).

– !endSimulation – This action terminates an experiment. In our OMNeT++
based implementation, the simulation core is notified accordingly.

2.3 Variables and variable handling

All the described conditions and actions work on a set of message parameters
or local variables describing the state of the node. In the following, some of the
most important variables are introduced. Additionally, selected statistical pre-
processing techniques for data aggregation have been integrated into the current
version of RSN in order to enable selected application examples. In the follow-
ing section, we describe and analyze two application examples that inherently
benefit from the network-centric preprocessing features provided by RSN.

Message attributes Each message is specifically encoded to allow receiving
nodes to determine the meaning of the message and the necessary behavior.
This encoding can be changed according to the application scenario. Possible
parameters (currently used in the RSN implementation) are listed in Table 1.

Attribute Description

$name Descriptive name of the message
$type Type of the message; describes the content
$position Position of the source node
$hopCount Number of traversed nodes
$priority Importance factor of this message
$length Length of the message
$creationTime Timestamp describing the creation of the message
$value Message type specific value
$text Further informative text, e.g. to qualify the value

Table 1. Currently implemented message attributes

Node attributes Each node can store and update state information locally. In
the context of self-organization, this refers to the local state of an autonomous
system. Such information can be updated according to received messages or by
other local observations. Table 2 lists the currently implemented node attributes.

Attribute Description

:count Number of messages in the current working set
:totalMessageCount Number of all messages received by the node
:hostName ID of the current host
:position Position of the node
:random Random value for probabilistic decisions

Table 2. Currently implemented node attributes

Preprocessing features Data aggregation is an important issue in massively
distributed systems. Usually, statistical measures are used to describe results
received from several nearby nodes. RSN supports such data aggregation tech-
niques by providing a set of preprocessing techniques as summarized in Table 3.
All the listed operations process the messages in the current working set.

Command Description

@minimum Minimum of the selected value
@maximum Maximum of the selected value
@sum Sum of the selected value
@average Average of the selected value
@median Median of the selected value
@count Number of the selected value

Table 3. Implemented preprocessing features

2.4 Implementation

We implemented RSN in form of a C++ library. This library contains all func-
tionality that is necessary to process RSN statements. RSN statements are
formulated in a flexible script language. We integrated the RSN library into
the OMNeT++ simulation framework in order to execute intensive tests and
experiments with different algorithms for data aggregation, probabilistic data
communication, and distributed actuation control. OMNeT++ 3.3 is a discrete
event simulation environment free for non-commercial use. We also used the
INET Framework 20060330, a set of simulation modules released under the GPL.
Scenarios in OMNeT++ are represented by a hierarchy of reusable modules writ-
ten in C++. Their relationships and communication links are stored as Network
Description (NED) files. Simulations are either run interactively in a graphical
environment or executed as command-line applications.

The developed simulation model is depicted in Figure 4 (left). A single node
is depicted consisting of a number of modules. Bottom-up, a wireless commu-
nication module is included (WLAN) as well as the rsnRouting module that
is currently represented by a simple broadcast module (routing issues can be
handled by RSN). The rsnManagement contains all core functions of RSN, i.e.

message handling and rule processing. Finally, the rsnDispatcher module inter-
connects attached rsnSensor and rsnActuator modules with the rsnManagement.

Fig. 4. Simulation model of RSN: integration in OMNeT++ and example setup

3 Applicability of RSN

We evaluated the applicability of RSN in two scenarios. First, we explored
network-centric data aggregation as an option to improve the efficiency of prob-
abilistic data communication (gossiping). Secondly, we investigated the capabil-
ities of network-centric actuation control in SANETs in terms of scalability and
real-time behavior.

3.1 Data aggregation scenario

Aggregation as a major building block for efficient and scalable data commu-
nication and preprocessing in WSNs and SANETs because communication is
much more expensive (in terms of energy consumption) compared to processing.
In particular, we investigated a typical probabilistic communication approach
using RSN: gossiping [12]. The principles are shown in the following RSN pro-
gram. If a message travels further than DIAMETER, it will be discarded. In the
first 4 hops, the message is flooded. In all other cases, the message is forwarded
according to a random experiment.

if $hopCount >= DIAMETER then {

!drop;

}

if ANY ($hopCount < 4 || :random > GOSSIP-PROB) then {

!sendAll;

}

!drop;

We prepared two scenarios as discussed in [12]. In the first scenario, 100
nodes are distributed on a grid – one corner node is generating 300 messages to
be transmitted by the network. Thus, the probability to duplicate messages is
very high (according to the initial flooding for the first four hops). In the second
scenario, three nodes are turned off in order to build a small linear network at the
sending corner node as depicted in Figure 4 (right). Figure 5 shows the number
of messages forwarded by a host. Obviously, the nodes close to the source are
getting overloaded while distant nodes receive the messages with a pretty low
probability.

0

2000

4000

6000

8000

10000

12000

14000

Y

fo

rw
ar

de
d

m
es

sa
ge

s

X

12000-14000

10000-12000

8000-10000

6000-8000

4000-6000

2000-4000

0-2000
0

200

400

600

800

1000

Y

fo

rw
ar

de
d

m
es

sa
ge

s

X

800-1000

600-800

400-600

200-400

0-200

Fig. 5. Gossiping scenario: 100 nodes in a grid (left); linear network at the sending
node (right)

Then, we installed a simple aggregation rule that controls the transmission of
a single message if multiple messages have been received. The results are depicted
in Figure 6. This time, much less duplicates are transmitted and, thus, the load
of the network is reduced. At the same time, the dispersion of the messages in the
network is increased. Unfortunately, the gossiping algorithm drops all messages
(including aggregated ones) with the same probability. Thus, additional rules
need to be implemented that correct this behavior, e.g. by defining priorities for
aggregated and non-aggregated messages.

if :count > 1 then {

!send($hopCount := @minimum of $hopCount,

$value := @average of $value);

!drop;

}

3.2 Network-centric actuation

In the following, we present an excerpt from extensive simulations to study
network-centric actuation using RSN published in [13]. We compared network-
centric actuation control with a classical base station scenario. For the latter
one, we used the Dynamic MANET on Demand (DYMO) routing protocol to
transmit messages from sensor nodes to a base station and the results back to
one out of four available actors. In the RSN scenario, the sensor nodes have
been configured with the following program – it represents a simple version of
gossiping.

0

500

1000

1500

2000

Y

fo

rw
ar

de
d

m
es

sa
ge

s

X

1500-2000

1000-1500

500-1000

0-500

0

100

200

300

400

500

600

700

Y

fo

rw
ar

de
d

m
es

sa
ge

s

X

600-700

500-600

400-500

300-400

200-300

100-200

0-100

Fig. 6. Gossiping scenario with data aggregation: 100 nodes in a grid (left); linear
network at the sending node (right)

if $hopCount >= DIAMETER then {

!drop;

}

if :random <= GOSSIP-PROB then {

!sendAll;

}

!drop;

The actors have an even simpler programming. For each received message,
they check whether the THRESHOLD (set to 50, 70, and 90, respectively) has been
exceeded and, if necessary, local actuation is initiated.

!recordAll;

if $value > THRESHOLD then {

!actuate($type:=rsnActuatorLightSource,

$value:=@average of $value);

}

!drop;

A number of simulations have been executed with the primary objective
to analyze the following characteristics of both evaluated communication and
control approaches:

– Real-time support, i.e. the overall latency between measuring a value higher
than the particular threshold and the time the message successfully arrived
at the actuators. In this context, also the path length is of interest, which
is directly proportional to the end-to-end latency and to the message loss
probability.

– Overhead, i.e. the number of messages that need to be processed by all the
nodes to transmit the necessary data messages. This includes protocol over-
head from routing protocols as well as overhead due to duplicated messages
for gossiping approaches.

First, the latency of the application messages has been analyzed. We mea-
sured the time from creating a sensor message until it was successfully received
by the actor. Because only messages exceeding a given threshold are of inter-
est for the actors, we just analyzed the latency after identifying the message
as matching this criterion. In Figure 7 (left and middle), results for the RSN

scenario are shown in form of boxplots. The graphs differentiate between the
deployment scenarios (we evaluated grid and random deployment) and the gos-
siping probability (set to 0.2, 0.5, and 0.8, respectively). If only the reception of
the first copy of the message is considered, the end-to-end delay slightly oscil-
lates around 1.4ms. The measured maximum is at about 16ms. The results are
nevertheless only meaningful, if all sensor messages can be differentiated, e.g.
by a unique id. If this is not possible, the reception of further copies cannot be
distinguished form the first one. The measurement results taking this effect into
account slightly oscillate around 2.2ms with a maximum peak at 33ms.

If we compare these results to the base station scenario as shown in Figure 7
(right), we obviously see that the delays in this scenario are significantly higher
(median: 20ms, mean: 55ms, and max: 5.700ms). There are two reasons for this
behavior. First, the mean path length is essentially longer as discussed below
and, secondly, the on-demand routing protocol takes some time for setting up
the routing path before being able to transmit a message. This effect is shown by
the comparison between the 60 s and 600 s message generation setups. The route
timeout of DYMO has been configured to 120 s. Thus, in the 600 s scenario,
almost always the route towards the base and towards the actor nodes will
timeout and needs to be reestablished. Further results and more details are
available in [13].

Fig. 7. End-to-end latency. Left (RSN): time until the first copy of a message arrives;
middle (RSN) time until any copy arrives; right (base station): end-to-end latency as
observed from the application

4 Conclusion

In this paper, we investigated techniques for network-centric data processing
in WSNs and SANETs. Based on a sketched overview to cellular information
processing, we developed RSN, a rule-based system for sensor network program-
ming. The application range of this approach is manifold; we outlined the ad-
vantages based on two examples: data aggregation for optimized probabilistic
communication and network-centric actuation control.

The main advantages of RSN are the small footprint of rules and the simple
local programming of nodes – making self-organization possible even in large
scale sensor and actor networks. In particular, this system allows the quick and
heterogeneous reprogramming of (individual) nodes. Therefore, network-centric
optimization of the placement of computational intensive rules becomes possible
– some concepts can be adapted from the database community: the data stream
query optimization problem. Our future work in the context of RSN includes
further evaluation of aggregation techniques, the implementation on sensor nodes
for ”real world” experiments, and intensified investigations of reprogramming
techniques.

References

1. Kahn, J.M., Katz, R., Pister, K.: Emerging Challenges: Mobile Networking for
”Smart Dust”. Journal of Communications and Networking 2(3) (September 2000)

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless Sensor and Actor Networks: Research
Challenges. Elsevier Ad Hoc Networks 2 (October 2004) 351–367

3. Melodia, T., Pompili, D., Gungor, V.C., Akyildiz, I.F.: A Distributed Coordination
Framework for Wireless Sensor and Actor Networks. In: 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (ACM Mobihoc 2005),
Urbana-Champaign, Il, USA (May 2005) 99–110

4. Dressler, F.: Self-Organization in Ad Hoc Networks: Overview and Classification.
Technical report, University of Erlangen, Dept. of Computer Science 7 (March
2006)

5. Dressler, F., Carreras, I.: Advances in Biologically Inspired Information Systems -
Models, Methods, and Tools. Volume 69 of Studies in Computational Intelligence
(SCI). Springer (2007)

6. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular
Biology of the Cell. 3rd edn. Garland Publishing, Inc. (1994)

7. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics 5(2) (February 2004) 101–113

8. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
Motifs: Simple Building Blocks of Complex Networks. Nature 298 (April 2002)
824–827

9. Calvert, K.L., Bhattacharjee, S., Zegura, E.W., Sterbenz, J.: Directions in Active
Networks. IEEE Communications Magazine 36(10) (October 1998) 72–78

10. Vitek, J., Tschudin, C.: Mobile Object Systems - Towards the Programmable
Internet. Volume LNCS 1222. Springer (1997)

11. Mackert, L.F., Neumeier-Mackert, I.B.: Communicating Rule Systems. In: 7th
IFIP International Conference on Protocol Specification, Testing and Verification.
(1987) 77–88

12. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-Based Ad Hoc Routing. In: 21st IEEE
Conference on Computer Communications (IEEE INFOCOM 2002). (June 2002)
1707–1716

13. Dressler, F., Dietrich, I., German, R., Krüger, B.: Efficient Operation in Sensor
and Actor Networks Inspired by Cellular Signaling Cascades. In: 1st ICST/ACM
International Conference on Autonomic Computing and Communication Systems
(Autonomics 2007), Rome, Italy (October 2007)

