
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2007, Article ID 80619, 10 pages
doi:10.1155/2007/80619

Research Article
Profile-Matching Techniques for On-Demand Software
Management in Sensor Networks

Falko Dressler, Gerhard Fuchs, Sebastien Truchat, Zheng Yao, Zengyu Lu, and Holger Marquardt

Autonomic Networking Group, Department of Computer Science 7, University of Erlangen, Martensstraße 3, 91058 Erlangen, Germany

Received 30 June 2006; Revised 12 December 2006; Accepted 2 January 2007

Recommended by Marco Conti

The heterogeneity and dynamics in terms of hardware and software configurations are steadily increasing in wireless sensor net-
works (WSNs). Therefore, software management is becoming one of the most prominent challenges in this domain. This applies
especially for on-demand updates for improved redundancy or adaptive task allocation. Methodologies for efficient software man-
agement in WSN need to be investigated for operating and maintaining large-scale sensor networks. We developed a profile-based
software management scheme that consists of a dynamic profile-matching algorithm to identify current hardware and software
configurations, an on-demand code generation module, and mechanisms for dynamic network-centric reprogramming of sensor
nodes. We exploit the advantages of robot-based reconfiguration and reprogramming methods for efficient and secure software
management. The mobile robot system is employed for decision processes and to store the source code repository. The developed
methods are depicted in detail. Additionally, we demonstrate the applicability and advantages based on a scenario that we imple-
mented in our lab.

Copyright © 2007 Falko Dressler et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In this paper, we demonstrate the need and feasibility of
profile-matching methods for operation and management of
wireless sensor networks (WSNs). We developed a scheme
for on-demand software reconfiguration and node repro-
gramming for software updates and task allocation issues.
In a lab scenario, we implemented and evaluated mecha-
nisms for (1) profile matching using light-weight RPCs and
dynamic addressing as a helper function, (2) dynamic on-
demand code generation, and (3) network-centric repro-
gramming [1, 2].

With the proliferation of WSN and sensor/actuator net-
works (SANET), new application domains appear that make
efficient use of such networks [3–5]. Examples range from
habitat monitoring to automation facilities. SANETs are ex-
posed to many challenges that have been identified in this
area [4, 6], for example, as energy efficiency, security, and ef-
ficient self-organization. An overview of the issues in sensor
nodes is provided by Culler et al. [7]. Recently, this list was
extended to cover software management in WSNs as well.
Due to the heterogeneity of employed hardware platforms
and the low resources in terms of processing power, avail-

able memory, and networking capacities (sensor nodes are
usually able to run a single task only) [8], new approaches
for efficient software engineering and software management
are needed. An overview of software management techniques
in WSNs is given by Han et al. [9]. They depict a model
consisting of three fundamental components: the execution
environment at the sensor node, the software distribution
protocol in the network, and the optimization of transmit-
ted updates. We concentrate on software management tech-
niques for WSNs that are dynamic in terms of availability,
mobility, and current application demands. Questions such
as how to configure, reconfigure, program, and reprogram
networked embedded systems such as sensor nodes are dis-
cussed by Handziski et al. [10]. Software management for
networked embedded systems such as sensor networks has
been intensively studied in the last few years [11, 12]. In this
paper, we concentrate on the efficient selection and combi-
nation of software modules depending on the capabilities
of the available sensor nodes and the global application de-
mands.

In the context of the robot assisted sensor networks
(ROSES) project, we study these aspects on a combination
of mobile robots and stationary sensor networks. We call

2 EURASIP Journal on Wireless Communications and Networking

this combination a mobile sensor/actuator network. In this
context, we distinguish between sensor assisted teams of mo-
bile robots and robot assisted sensor networks. An exam-
ple for the former scenario is sensor-based localization and
navigation. We developed a robot control system named ro-
brain1 for general purpose applications in multirobot sys-
tems. Part of this work was an interface between the robot
systems and our sensor nodes (see below). This allowed us to
study the applicability of the ad hoc sensor network for local-
ization assistance [13]. An example for the latter scenario is
assistance for maintenance and deployment of sensor nodes
as well as for task and resource allocation [14]. Currently,
we are investigating methods for adaptive reconfiguration of
sensor nodes using mobile robot systems. The major goal is
to reprogram sensor nodes specific to their hardware con-
straints and according to changes in the environment. In or-
der to address these issues, we apply profile matching mech-
anisms as formally described in [15]. Basically, profiles are
used as fingerprints describing hardware and software instal-
lations of networked nodes. Based on adequate profile defini-
tions and profile matching techniques, new samples of soft-
ware can be generated. In this paper, we discuss the applica-
bility of these mechanisms in the context of sensor networks.

The developed profile-matching techniques for on-
demand software management can be used in different appli-
cations. We implemented a common interface for our robot
control system robrain. In this paper, we use a scenario con-
sisting of a WSN assisted by mobile robot systems to depict
the method in more detail. These robots are used due to var-
ious reasons: the robots can store source code for many ap-
plications and dynamically generate binaries for the sensor
nodes, single-hop reprogramming is more reliable, and se-
curity issues are limited to one-hop neighborhoods.

The rest of the paper is organized as follows. Section 2
outlines the related work concerning network-centric node
reprogramming and software management for WSNs.
Section 3 depicts the envisioned scenario including our lab
setup and the basic concepts of profile-based sensor network
reconfiguration. Section 4 provides an in-depth discussion of
the developed profile matching techniques for on-demand
software management. In Section 5, the developed commu-
nication protocol is outlined. Finally, Section 6 concludes the
paper and outlines next steps of further work.

2. RELATED WORK

In general, two approaches for software updates in sensor
networks have been discussed in the literature: (1) multihop
network-centric node reprogramming and (2) robot-assisted
software management. Work on the first technique was done
mainly based on network-centric reprogramming. For exam-
ple, the Deluge system [16] was developed for reprogram-
ming Mica2 motes. Deluge propagates software update over
the ad hoc network and can switch between several images
to run on the sensor nodes. A role assignment system was
developed at the ETH Zurich [17] to switch between multi-

1 http://robrain.berlios.de.

ple tasks depending on the current requirements. The flexi-
ble exchange of software components in TinyOS was inves-
tigated at the University of Stuttgart. The developed toolkit
FlexCup [18] introduces software engineering methods for
sensor node programming. Incremental network reprogram-
ming was studied by Jeong and Culler [19]. The primary fo-
cus of this work was on the delivery of software images over
an ad hoc network.

In general, there are many reasons why mobile robots are
useful for sensor networks. This has been outlined for ex-
ample in the context of SANETs [4]. If available, such robot
systems can be used for operation and control of the WSN
also as robots are quite powerful systems compared to sen-
sor nodes. Additionally, we consider the use of mobile robots
for reconfiguring single sensor nodes and, therefore, larger ad
hoc sensor networks reasonable due to several advantages be-
sides their purpose for other operations besides WSN main-
tenance. The robot systems usually have much more avail-
able resources and can store and maintain software modules
needed by the sensor nodes. Additionally, there are multi-
ple reasons for employing mobile robot systems for repro-
gramming the sensor nodes. First of all, the flooding—even
if efficiently controlled—of code over a multihop sensor net-
work not only consumes a lot of energy, it also disturbs the
network in its intended operation, that is, congestion due to
code transfer might prevent the transmission of sensor read-
ings. The second reason is security. Achieving mutual trust
between a sensor node and a server is much easier if less com-
plex communication protocols are used. Therefore, sensors
should deny any reconfiguration from distant systems. Fi-
nally, the localized reconfiguration using mobile robots can
help to achieve higher level goals such as task allocation as
no centralized server system need to be involved. In this con-
text, the term localized refers to sensor nodes that are direct
neighbors in the current robot location. The use of multiple
robots can even improve the scheme.

The reconfiguration scheme as presented in this paper al-
lows the dynamic adaptation of WSN to changing applica-
tion demands and corresponding resources constraints. This
strongly influences the lifetime and coverage of sensor net-
works [20–23].

3. PROFILE-MATCHING-BASED RECONFIGURATION

In this section, we depict the envisioned scenario including
our lab setup and the basic concepts of profile-based sensor
network reconfiguration.

3.1. Reconfiguration concept

The basic ideas of profile-based reconfiguration are summa-
rized in the following. As previously described, we use mo-
bile robot systems for the decision-making process, code gen-
eration, and node reprogramming. A global goal is assumed
to describe the application requirements. Such a goal could
state the need to have specific applications available in all
parts of the sensor networks. This example refers to the of-
ten discussed coverage problem in sensor networks [20, 23].

Falko Dressler et al. 3

(a)

Who is
there?

(b)

Send
profiles

P

P

PP

P

P

(c)

Assign,
make

binaries

(d)

Repro-
gram

(e)

Sensor
node

Mobile
robot

P: Profile

Figure 1: Application scenario for reconfiguration.

Mobile systems are meant to handle this issue [22, 24]. Com-
pared to these approaches, we support the need of multiple
applications at once and include the issue of reprogramming.
Nevertheless, we do not discuss details of the decision process
that is adequately investigated by other groups [20, 25, 26].

Figure 1 shows the principal concept of reconfiguration.
We distinguish the following actions.

(a) Depending on the global goal, the robot drives to the
position in the sensor network, where reconfiguration
might be necessary (we do not assume a particular
navigation scheme, various mobility models can be ap-
plied).

(b) The robot collects information about the environ-
ment, builds the context, and explores its neighbor-
hood. In this step, additional actions can be initiated
such as starting an algorithm for dynamic addressing
schemes.

(c) All sensor nodes, which have received the exploration
message, send their current profiles that contain infor-
mation about the hardware and software of the node.

(d) The robot uses the information gathered in steps (b)
and (c) to assign the roles of the sensor nodes, opti-
mized for the current goal. As a result, it creates the
new binaries of the sensor nodes. Eventually, addi-
tional processing or communication with other enti-
ties might be necessary unrelated to the reconfigura-
tion itself.

(e) The robot reprograms selected sensor nodes over the
air.

3.2. Profile-matching algorithm

The activity diagram of the reconfiguration process of the
mobile sensor network is shown in Figure 2. In this section,
we use the following notations: NP for node profile, AP for
application profile, MP for module profile, and xP∗ means at
least one profile of type x. Basically, we distinguish between
strategic and technical actions. The strategic actions are re-
sponsible for the behavior of the whole system. They depend
on a global goal (e.g., a task) and control the reconfiguration
process of the sensor network. The technical actions are in-
dependent of the goal. They are always the same and provide
the functional basics for reconfiguration. Without them, no
autonomous reconfiguration is possible.

Prepare
Position

List of applications
(needed)

Configuration

Explore

List of NPs

C

<<Datastore>>
module profiles

(on robot) <<Parallel>>
match profiles

List of matching profiles:

(NP, AP∗, MP∗)
(all possible solutions)

<<Datastore>>
application profiles

(on robot)

Assign

List of matching profiles:

(NP, AP∗, MP∗)
(for reprograming)

C

<<Datastore>>
code templates

(on robot)

<<Datastore>>
source code
(on robot)

<<Parallel>>
make binary

List of mappings:
(node address, binary)

(for reprograming)

Reprogram

Technical action

Strategical action
(depends on goal)

Figure 2: Activity diagram of the reconfiguration process.

The reconfiguration process is started with adequate
preparation actions. In this step, the robot can perform some
initial actions depending on the global goal, for example,
moving to a particular position. Then, it determines the cur-
rent context, that is, requests the profiles of neighboring sen-
sor nodes. Based on this information, the robot works out
the configuration and the list of applications that are needed
in the current context. The results parameterize the technical
actions profile matching and code generation. Finally, all sen-
sors for which new binaries were created are reprogrammed.

4 EURASIP Journal on Wireless Communications and Networking

Description of the activities

(1) First, <explore> is started. As a result, the robot col-
lected all the current configurations of the neighboring
sensor nodes in form of a list of NPs.

(2) <match profiles> determines all possible combina-
tions of applications and modules, which can run on
the nodes. For this, the MPs and APs on the robot and
the NPs from the nodes are needed. The output is a
list of matching profiles. Each entry has the form (NP,
AP∗, MP∗).

(3) <assign> reduces the cardinality of the result. This is
a strategic action and, therefore, depends on the global
goal. The output is the final mapping for the reconfig-
uration of the sensor nodes.

(4) In <make binary>, the binaries for the sensor nodes
are generated. This action needs the list of matching
profiles from the previous step, the code templates, the
source code, and the configuration. The result is a list
of (node address, binary)-mappings.

(5) Finally, this is taken as the input for <reprogram>,
which is the last step of the reconfiguration loop. The
robot reprograms the sensor nodes over the air.

3.3. Lab scenario

In our lab, we use the Robertino robot platform developed at
the Fraunhofer Institute AIS2 running embedded Linux and
Mica2 sensor motes developed at UCB running TinyOS.3 We
have connected an MIB510 programming and serial inter-
face board with the Robertino and installed a Mica2 node
as a base station. This enables our robot to communicate
directly with the wireless sensor network. For node repro-
gramming, we prepared all sensor nodes with an initial bi-
nary that contains a module for profile matching concerns.
The robot uses this module to query information about
the hardware configuration and the currently installed soft-
ware, for example, Mica2/Mica2dot, temperature measure-
ment/localization. On the robot, we store nesC code and
code templates that are described by profiles. This enables the
robot to select and adapt the source code while concerning
the current context and requirements and, finally, to create
a new binary for the sensor node. The robot can install the
image over the air. A typical setup of the application scenario
in our lab is depicted in Figure 3. Five Mica2 and Mica2dot
sensor motes are used to demonstrate the profile matching
and reprogramming approach.

4. ON-DEMAND WSN MAINTENANCE:
DETAILS AND METHODS

In the following sections, some details on the realization of
the profile matching concept for wireless sensor networks are
discussed in more detail. We follow the diagram depicted in
Figure 2 and outline the single steps.

2 www.openrobertino.org.
3 http://www.tinyos.net.

Figure 3: Setup of the lab scenario.

4.1. Preparation

Before the preparation can be initiated, the robot must stop
at an adequate position in the area of interest. We do not
intend to discuss appropriate mobility models at this place.
Such investigations can be found in the literature [22, 27].
The preparation includes issues such as localization of the
robot, preconfiguration of system parameters according to
the current environmental conditions, and loading applica-
tion profiles form a local database.

4.2. Neighborhood exploration

Neighborhood exploration covers two separate steps. The
first one, which is optional depending on the configuration
of the wireless sensor networks, is the setup of address infor-
mation. In several scenarios, unique addresses are not neces-
sary to operate a sensor network. Therefore, also the commu-
nication between the mobile robot and a given sensor node
cannot be directed using address information. We propose to
initiate a dynamic addressing algorithm first. Based on tech-
niques described by Sun and Belding-Royer [28], we devel-
oped a localized addressing scheme for this initial task [29].
In the lab, we implemented this addressing scheme using the
mobile robot as a local server initiating the round-based ad-
dressing scheme.

The second step is to explore the neighborhood. Neigh-
borhood refers to all sensors that are directly accessible with-
out the need for multihop communication. All nearby sen-
sor nodes, that is, all nodes that are alive, in the direct com-
munication range, and available for reprogramming, must
be identified and their profiles must be collected. A simple
broadcast to the neighboring nodes is used to send a request
to all these sensor nodes. Each node sends a reply including
its current profile (containing HW/SW info). This profile is
taken as input for the following profile-matching algorithm.

Falko Dressler et al. 5

Node: NP1 {
Properties:

Addess = 1;
Board =Mica2;
Sensors =mts310;

Application =LightMeasurement;
}

This profile describes a Mica2
node with attached sensor

hardware

Application: AP1 {
Properties:

Name = TempMeasurement;
Modules = TempSensorM, CalcM;

Requirements:

Board =Mica2;
}

The application “temperature
measurement” is described by
this profile. It consists of two

modules and requires a Mica2
sensor

Figure 4: Sample profiles describing HW/SW configuration of sensor nodes and application requirements.

Module: MP1 {
Properties:

Name = CalcM;
Version = 3.0;}

This is a simple software
module doing calculations

This module is measuring the
temperature using a MTS310

sensor board

Module: MP2 {
Properties:

Name = TempSensorM;
Version = 2.0;

Requirements:
Sensor =mts310;}

This is an alternative module
measuring the temperature

using an MTS101 sensor board

Module: MP3 {
Properties:

Name = TempSensorM;
Version = 2.1;

Requirements:
Sensor =mts101;}

Figure 5: Sample profiles describing single software modules.

4.3. Profile matching

The primary goal of profile matching is to create all possi-
ble combinations of executable source code. Again, we use
a straightforward terminology for the definitions. (NP, AP∗,
MP∗) means that on the node described by NP the applica-
tions described by AP∗ with the modules described by MP∗

can be installed. Each module or application can be real-
ized using different source files. For example, a module may
consist of various submodules that can be found in multiple
nesC files.

For profile matching, the name of the description in
the profile is important for its realization. In Figures 4 and
5, we present several examples for profiles of nodes, appli-
cations, and modules. These profiles are depicted in pseu-
docode that does not specify implementation details. Repre-
sentations could be XML, bitmaps, or simple byte arrays (we
used byte arrays for our implementation). Please note the
importance of having unique names or identifiers for mod-
ules and applications. These profiles finally specify the com-

position of application programs including potential hard-
ware requirements.

In our example (see Figure 4), NP1 is a typical Mica2
sensor mote that has installed additional sensor hardware.
The node is used for light measurement. AP1 is an appli-
cation that measures the temperature. It was developed for
Mica2 motes. Similarly, module profiles are used to define
the characteristics and prerequisites of single software mod-
ules (see Figure 5). MP1 is a hardware-independent module
to calculate some statistics of measured data. Finally, MP2
and MP3 represent alternatives of a software module for dif-
ferent hardware systems.

Issues such as versioning and consistency can also be han-
dled by the profile-matching algorithm. Each module de-
scription can be annotated with version information and
according dependencies (see Figure 5). Questioning the in-
teroperability of different software versions, it can obvi-
ously happen that different versions are installed on differ-
ent nodes. This could lead to interoperability issues. For-
tunately, we do not rely on multihop communication for

6 EURASIP Journal on Wireless Communications and Networking

Match profiles

List of
applications

<<Centralbuffer>>
APs NP

<<Centralbuffer>>
MPs

List of modules
(needed)

N

Match
appl.

Analyze
Match

modules

List of APs
(matched)

List of MPs
(matched)

N

Match Compose

List of matching
profiles:

(AP∗, MP∗)

List of matching profiles:
(NP, AP∗, MP∗)

Figure 6: Activity diagram of the profile matching action.

reprogramming (where such issues have catastrophic conse-
quences) but on a very able robot system that can easily pro-
vide backward compatibility to older versioned protocols.

An application can be installed if AP matches NP (board
property) and all MPs belonging to AP match NP (sensor
property). Profiles can be extended at any time. Each mod-
ule profile describes a code fragment. This is either a static
nesC file or a configurable template. If the profiles match, the
described code fragments for the APs and MPs can be com-
piled. The complete profile-matching procedure is depicted
in Figure 6.

First, <match appl> is initiated. In our example, the op-
eration [<match appl>: NP1.board == AP1.board →
match] is successful, that is, the application can be com-
plied for the given sensor hardware. Afterwards, <analyze>
is employed to generate a list of needed modules. In our case,
TempSensorM and CalcM are involved and forwarded to the
<match modules> procedure.

The second part of the profile-matching algorithm is
the module match. In the provided example, the <match
modules> operation performs the following checks:
[NP1.sensor == MP1.senor → OK], [NP1.sensor !=
MP2.senor → !OK], and [MP3 → OK (no require-
ments)]. A list of MPs is created that meet the requirements.

Finally, <match> perfoms a test of the APs and MPs. Us-
ing the example again, [<match> → (AP1, MP1, MP3)]
produced a final list of matching profiles that build the basis
for composing the matching profiles. If <match> produces
no match, that is, the empty set, no modules to build the
desired application are available and no corresponding bi-
nary can be generated. At <match>, (AP∗, MP∗) is one en-
try of the list. Finally, [<compose> → (NP1, AP1, MP1,
MP3)] is called to add the node profile to the profile list for
further processing during the binary generation.

4.4. Assignment

A further strategic action is the assignment. Based on the list
of matching profiles, the local server, that is, the robot, can
use multiple strategies for assigning tasks to specific sensor
nodes. We implemented a first match algorithm that might
not always lead to optimal solutions. For example, if the bat-
tery of a particular node is already in a critical state, commu-
nication and computation intensive tasks should not be as-
signed to this node. Task allocation algorithms can improve
this assignment step [30, 31].

4.5. Dynamic code generation

To be flexible, the robot builds the binaries of the sensor
nodes just in time. Therefore, it needs a dynamic source code
selection and generation system.

Figure 7 shows the activity diagram for making one bi-
nary. One static input pin belongs to the code templates for
the generation of the wiring, the node profiles, and the con-
figuration, another to the source code of the modules (nesC
files). The dynamic inputs are the current configuration and
the matching profiles. The goal is to create a binary that runs
on the node described by NP and contains all applications
and modules described by AP∗ and MP∗.

<split> extracts the information of the profiles and
provides it for further processing. <select src> selects
the source code, which is described by the APs and MPs
(there is a unique mapping) and puts it into a tem-
porary buffer. <generate wiring, node profile, and
configurable modules> generates the dynamic nesC
files, depending on the current configuration and the dif-
ferent combinations of APs and MPs, and puts them into
another temporary buffer. Therefore, the code templates are
used. <compile> compiles all the nesC files. <compose>
maps the resulting binary with the corresponding node ad-
dress.

An example is depicted in Figure 8. Needed code frag-
ments, that is, software modules that do not need further
adaptation, are compiled to the final sensor application. A
special fragment is the base system. Similar to a middleware
solution, it provides necessary standard functionality such as
the algorithms for profile exchange and network-based node
reprogramming. Additionally, code templates can be used
representing code that must be adapted according to the lo-
cal needs, for example, depending on the very specific node
hardware.

In our example, code fragments for TinyOS programs are
written in nesC. Specific profiles as shown above are con-
nected to these fragments in order to describe functionality
and utilization. In order to generate a binary that runs on
the nodes described by its node profile, corresponding nesC
modules are extracted from the repository and provided to
the compiler. The structure of TinyOS programs requires
some additional handling in combination with the selection
of source files. First, the wiring between the modules must be
defined. Based on the available descriptions, templates can
be used for an unambiguous wiring. Secondly, some parts of

Falko Dressler et al. 7

Make binary

<<Centralbuffer>>
code templates

Configuration

T C

Matching profiles:

(NP, AP∗, MP∗)

Split
Node address

M
Module
profiles

Application
profiles

Node
profile

<<Centralbuffer>>
source code: .nc

M C T

Select
src

Generate wiring, node
profile and configurable

modules

<<Centralbuffer>>
source code: .nc

(needed)

<<Centralbuffer>>
wiring, node profile,

configured modules: .nc

Compile
Binary

Compose

XY Profile

XY nesC-file

Mapping:
(node address, binary)

Figure 7: Activity diagram of the make binary action.

Code
templates

Code
fragments

B

Base systemB

B

B

Figure 8: Code selection and complication.

the nesC code have to be adapted to different hardware con-
figurations. We also allow to generate nesC code on demand
using code templates. Such templates are filled with variables
and algorithms depending on the current context, that is, the
environmental conditions. A template and a configuration
defined by a profile will be substituted to a configurable soft-
ware module that is adapted to a particular hardware config-

uration. In a final step, the node profile is transformed to a
nesC file that can be compiled to a new binary. This binary
reflects the application profile and corresponds to the actual
hardware capabilities.

4.6. Network-based reprogramming

The last part of the node reconfiguration using profile-
matching techniques is the reprogramming of the nodes
for which new binaries were generated in the last step.
We use an extended version of Deluge [32] for this pur-
pose. In the context of code generation, base system soft-
ware modules will always be installed in any generated bi-
nary image. This includes a module that is responsible
for network-centric reprogramming and modules for the
profile-matching process itself.

5. COMMUNICATION PROTOCOL

Figure 9 depicts the communication protocol used for robot-
sensor interactions. It consists of the following protocol mes-
sages and states.

(1) HELLO exchange

The exchange of HELLO messages is performed in a first step
in order to obtain information about the neighboring sen-
sor nodes. This exchange can be initiated by any node. In
our scenario, we assume that the robot system will perform
this task. Obviously, the HELLO is a broadcast message to be
received by all surrounding nodes. The robot maintains an
address map with entries for all previously recognized neigh-
boring nodes. Each HELLO exchange is used to update this
map.

(2) Profile exchange

In order to perform maintenance functions such as software
updates, the robot must collect the profiles that describe the
current hardware and software configuration of each partic-
ular node. A light-weight RPC mechanism is used for this
purpose. The local server, that is, the robot system, initiates
the call by requesting the current profile from a specific node.
Thus, a unique unicast communication is created for each
node to be analyzed. The nodes send the requested profiles
using a scenario depended encoding. For example, we used
an array of 8 bytes to provide the necessary information in
the Mica2/TinyOS environment.

(3) Profile analysis

After receiving all requested profiles and storing this infor-
mation in a local map (profile map), the robot can ana-
lyze the configuration of all neighboring nodes and decide,
whether any update is necessary. Such updates might consist
of software updates only. Nevertheless, the more interesting
application is to allow performing task allocation schemes by
reprogramming adequate sensor nodes.

8 EURASIP Journal on Wireless Communications and Networking

Sensor node Robot
Address map

Address 1
Address 2
· · ·

stt= 14

Profiling Type RPCHello

Step 1 Profile Hello
Profiling Type RPCHello

Profiling Type RPCHello
Timeout

No Node delete

Yes

stt= 15
Profiling Type RPCProfileSend

Step 2

Step 3

Profile Send
Profiling Type RPCProfileSend

Profiling Type RPCProfileAnalysis

Profile Analysis

Check

Profile map

Profile 1
Profile 2
· · ·

Profile Assemble

Step 4

stt= 17
Profiling Type RPCDone

Figure 9: Communication protocol.

(4) RPC-done/program assemble

Finally, the RPC is terminated using an RPCDONE mes-
sage to inform the node that the profile was successfully re-
ceived by the robot. Depending on the results of the previ-
ous profile-matching step, new programs will be assembled
and configured by the robot for subsequent node reprogram-
ming.

6. CONCLUSION AND FURTHER WORK

We developed a dynamic software management system that
can be applied in different application scenarios in wireless
sensor networks. The proposed scheme is based on profile-
matching techniques that allow a direct matching of hard-
ware/software capabilities to application requirements. We
elaborated the profile-matching architecture and presented
the necessary steps for node reconfiguration. The scenario is
based on stationary sensor networks and mobile robots that
perform management and configuration tasks. Based on the
available resources at the robot systems, sophisticates soft-
ware architectures can be maintained and applied for task

allocation and general-purpose reconfiguration of surround-
ing sensor nodes.

The presented profile matching techniques build the ba-
sis for the development of dynamic reconfiguration in large-
scale sensor networks. The adaptive exchange of software
modules depending on the global goals and environmental
factors has become possible. Additionally, the complexities
of ad hoc communication as well as the security concerns
in network-based node reprogramming are minimized. In
future and related work, strategies for the robot-based re-
programming must be developed that are optimized for effi-
ciency and coverage.

To demonstrate the functionality of the profile-based re-
configuration scheme, we implemented the following mod-
ules: dynamic node addressing, RPC-based profile matching,
dynamic code generation, and network-centric reprogram-
ming in our lab environment. Even though we created a
common interface for our robot control system robrain, the
developed systems can be flexibly used. Future work includes
the integration of other types of sensor nodes, for example,
BT nodes, the development of control schemes for optimized
node selection depending on the node state (resources, en-
ergy), and the network state (at least in a given region).

Falko Dressler et al. 9

REFERENCES

[1] G. Fuchs, S. Truchat, and F. Dressler, “Distributed software
management in sensor networks using profiling techniques,”
in Proceedings of the 1st International Conference on Communi-
cation System Software and Middleware (COMSWARE ’06): 1st
International Workshop on Software for Sensor Networks (Sen-
sorWare ’06), pp. 1–6, New Delhi, India, January 2006.

[2] Z. Yao, Z. Lu, H. Marquardt, G. Fuchs, S. Truchat, and F.
Dressler, “On-demand software management in sensor net-
works using profiling techniques,” in Proceedings of the 2nd
International Workshop on Multi-hop Ad Hoc Networks: from
Theory to Reality (REALMAN ’06), pp. 113–115, Florence,
Italy, May 2006.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393–422, 2002.

[4] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor
networks: research challenges,” Ad Hoc Networks, vol. 2, no. 4,
pp. 351–367, 2004.

[5] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor
networks,” Computer, vol. 37, no. 8, pp. 41–49, 2004.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
century challenges: scalable coordination in sensor networks,”
in Proceedings of ACM/IEEE International Conference on Mo-
bile Computing and Networking, pp. 263–270, Seattle, Wash,
USA, August 1999.

[7] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A
network-centric approach to embedded software for tiny de-
vices,” in Proceedings of the 1st International Workshop on Em-
bedded Software (EMSOFT ’01), vol. 2211 of Lecture Notes in
Computer Science, pp. 114–130, Tahoe City, Calif, USA, Octo-
ber 2001.

[8] C. Margi, “A survey on networking, sensor processing and sys-
tem aspects of sensor networks,” Report, University of Califor-
nia, Santa Cruz, Calif, USA, February 2003.

[9] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor net-
work software update management: a survey,” International
Journal of Network Management, vol. 15, no. 4, pp. 283–294,
2005.

[10] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and
D. Culler, “Flexible hardware abstraction for wireless sensor
networks,” in Proceedings of the 2nd European Workshop on
Wireless Sensor Networks (EWSN ’05), pp. 145–157, Istanbul,
Turkey, January-February 2005.

[11] B. Hurler, H.-J. Hof, and M. Zitterbart, “A general architec-
ture for wireless sensor networks: first steps,” in Proceedings
of the 24th International Conference on Distributed Computing
Systems Workshops, pp. 442–444, Tokyo, Japan, March 2004.

[12] D. L. Martin, A. J. Cheyer, and D. B. Moran, “The open agent
architecture: a framework for building distributed software
systems,” Applied Artificial Intelligence, vol. 13, no. 1-2, pp. 91–
128, 1999.

[13] F. Dressler, “Sensor-based localization-assistance for mobile
nodes,” in Proceedings of 4. GI/ITG KuVS Fachgespräch Draht-
lose Sensornetze, pp. 102–106, Zurich, Switzerland, March
2005.

[14] F. Dressler and G. Fuchs, “Energy-aware operation and
task allocation of autonomous robots,” in Proceedings of the
5th International Workshop on Robot Motion and Control
(RoMoCo ’05), pp. 163–168, Dymaczewo, Poland, June 2005.

[15] S. Truchat, G. Fuchs, S. Meyer, and F. Dressler, “An adap-
tive model for reconfigurable autonomous services using
profiling,” International Journal of Pervasive Computing and

Communications, vol. 2, no. 3, pp. S247–S259, 2006, special
issue on pervasive management.

[16] A. Chlipala, J. Hui, and G. Tolle, “Deluge: Data Dissemination
for Network Reprogramming at Scale,” 2004, (http://www.
cs.berkeley.edu/∼jwhui/research/).

[17] C. Frank and K. Römer, “Algorithms for generic role assign-
ment in wireless sensor networks,” in Proceedings of the 3rd In-
ternational Conference on Embedded Networked Sensor Systems
(SenSys ’05), pp. 230–242, San Diego, Calif, USA, November
2005.

[18] M. Gauger, “Dynamic component exchange in TinyOS (Dy-
namischer Austausch von Komponenten in TinyOS),” Mas-
ter’s thesis (Diplomarbeit), Distributed Systems, University of
Stuttgart, Stuttgart, Germany, April 2005.

[19] J. Jeong and D. Culler, “Incremental network programming for
wireless sensors,” in Proceedings of the 1st Annual IEEE Com-
munications Society Conference on Sensor and Ad Hoc Commu-
nications and Networks (SAHCN ’04), pp. 25–33, Santa Clara,
Calif, USA, October 2004.

[20] X. Bai, S. Kumar, D. Xua, Z. Yun, and T.-H. Lai, “Deploying
wireless sensors to achieve both coverage and connectivity,” in
Proceedings of the 7th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc ’06), pp. 131–
142, Florence, Italy, May 2006.

[21] F. Dressler and I. Dietrich, “Lifetime analysis in heterogeneous
sensor networks,” in Proceedings of the 9th EUROMICRO Con-
ference on Digital System Design: Architectures, Methods and
Tools (DSD ’06), pp. 606–616, Dubrovnik, Croatia, August-
September 2006.

[22] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility
improves coverage of sensor networks,” in Proceedings of the
the 6th ACM International Symposium on Mobile Ad Hoc Net-
working & Computing (MobiHoc ’05), pp. 300–308, Urbana-
Champaign, Ill, USA, May 2005.

[23] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B.
Srivastava, “Coverage problems in wireless ad-hoc sensor
networks,” in Proceedings of the 20th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies
(INFOCOM ’01), vol. 3, pp. 1380–1387, Anchorage, Alaska,
USA, April 2001.

[24] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and
deployment by a mobile robot and communication network,”
in Proceedings of the International Workshop on Information
Processing in Sensor Networks, pp. 376–391, Palo Alto, Calif,
USA, April 2003.

[25] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N.
Shroff, “A minimum cost heterogeneous sensor network with
a lifetime constraint,” IEEE Transactions on Mobile Computing,
vol. 4, no. 1, pp. 4–14, 2005.

[26] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “In-
tegrated coverage and connectivity configuration for energy
conservation in sensor networks,” ACM Transactions on Sen-
sor Networks, vol. 1, no. 1, pp. 36–72, 2005.

[27] M. A. Batalin and G. S. Sukhatme, “Sensor coverage using
mobile robots and stationary nodes,” in Scalability and Traf-
fic Control in IP Networks II, vol. 4868 of Proceedings of SPIE,
pp. 269–276, Boston, Mass, USA, July 2002.

[28] Y. Sun and E. M. Belding-Royer, “A study of dynamic address-
ing techniques in mobile ad hoc networks,” Wireless Commu-
nications and Mobile Computing, vol. 4, no. 3, pp. 315–329,
2004.

[29] Z. Yao and F. Dressler, “Dynamic address allocation for
management and control in wireless sensor networks,” in

10 EURASIP Journal on Wireless Communications and Networking

Proceedings of the 40th Annual Hawaii International Conference
on System Sciences (HICSS ’07), p. 292b, Waikoloa, Hawaii,
USA, January 2007.

[30] K. H. Low, W. K. Leow, and M. H. Ang Jr., “Autonomic mobile
sensor network with self-coordinated task allocation and ex-
ecution,” IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews, vol. 36, no. 3, pp. 315–327,
2006.

[31] M. Younis, K. Akkaya, and A. Kunjithapatham, “Optimization
of task allocation in a cluster-based sensor network,” in Pro-
ceedings of the 8th IEEE International Symposium on Computers
and Communication (ISCC ’03), vol. 1, pp. 329–334, Kemer-
Antalya, Turkey, June-July 2003.

[32] J. W. Hui and D. Culler, “The dynamic behavior of a data dis-
semination protocol for network programming at scale,” in
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys ’04), pp. 81–94, Baltimore,
Md, USA, November 2004.

	Introduction
	Related work
	profile-matching-based reconfiguration
	Reconfiguration concept
	Profile-matching algorithm
	Description of the activities

	Lab scenario

	On-demand WSN maintenance:details and methods
	Preparation
	Neighborhood exploration
	Profile matching
	Assignment
	Dynamic code generation
	Network-based reprogramming

	Communication Protocol
	(1) HELLO exchange
	(2) Profile exchange
	(3) Profile analysis
	(4) RPC-done/program assemble

	Conclusion and Further Work
	REFERENCES

