
116 Int. J. Mobile Network Design and Innovation, Vol. 2, No. 2, 2007

Dynamic address allocation for self-organised
management and control in sensor networks

Falko Dressler* and Feng Chen
Autonomic Networking Group,
Department of Computer Science,
University of Erlangen-Nuremberg,
Martensstr. 3, 91058 Erlangen, Germany
E-mail: dressler@informatik.uni-erlangen.de
E-mail: feng.chen@informatik.uni-erlangen.de
*Corresponding author

Abstract: Several data-centric communication paradigms have been proposed in the domain of
Wireless Sensor Networks (WSN). Therefore, the principles of operation and maintenance in such
networks are changing to control massively distributed systems. Previous addressing schemes fail
or produce too much overhead if only locally unique addresses of sensor nodes are required. In this
paper, we present a dynamic address allocation scheme for localised address assignments in WSN.
We developed a round-based address assignment with subsequent duplicate address detection that
operates in a self-organised manner. It inherently allows busy-sleep periods and does not assume
always awake nodes. To verify the approach, we implemented the algorithm on Mica2 sensor
motes and tested it in a WSN maintenance scenario. The results demonstrate that our method
works well for operation and maintenance of WSN without prior address assignments.

Keywords: duplicate address detection; dynamic address allocation; self-organization; on-demand
sensor management; wireless sensor networks; WSN.

Reference to this paper should be made as follows: Dressler, F. and Chen, F. (2007) ‘Dynamic
address allocation for self-organised management and control in sensor networks’, Int. J. Mobile
Network Design and Innovation, Vol. 2, No. 2, pp.116–124.

Biographical notes: Falko Dressler is an Assistant Professor leading the Autonomic Networking
Group at the Department of Computer Sciences, University of Erlangen-Nuremberg. He teaches
on self-organising sensor/actuator networks, network security and communication systems. He
has co-authored about 70 reviewed research papers. He was a Co-Chair and PC Member
for various International Conferences (ACM, IEEE, GI). He is a Member of ACM, IEEE,
IEEE Computer Society and GI (Gesellschaft fr Informatik). He is actively participating in
several working groups of the IETF. His research activities are focused on (but not limited to)
autonomic networking addressing issues in wireless ad hoc and sensor networks, self-organisation,
bio-inspired mechanisms, network security, network monitoring and measurements and robotics.

Feng Chen is pursuing his PhD in theAutonomic Networking Group at the Department of Computer
Sciences, University of Erlangen-Nuremberg. His research interests include the performance and
security aspects in ad hoc and sensor networks.

1 Introduction

In this paper, we propose a novel scheme for dynamic
address allocation in Wireless Sensor Networks (WSN).
This allocation scheme was specifically developed for
maintenance operations in large-scale networks, that is
it works on a local set of nodes instead of building
network-wide unique address tables. Therefore, it is more
scalable and efficient than competitive techniques.

Ad hoc communication has become a major subject in
the networking community. Especially, WSN have become
a research target due to their specific requirements and
restrictions (Akyildiz et al., 2002). Research challenges
and further directions include energy-aware operation,
scalability and optimised resource management (Chong and

Kumar, 2003). Besides physical resources such as memory,
processing power and energy, logical resources in terms of
naming, addressing and topology control must be organised
and controlled.

Self-organisation is regarded to be the new paradigm
for operation and control in ad hoc networks and WSN
(Dressler, 2006). Without the need for global state
maintenance, the major objective scalability can be
easily addressed. While methodologies for generic
self-organisation are still future vision, communication and
routing aspects are well-covered so far.

Usually, current network layer protocols require a unique
addressing for all nodes in the network. Various routing
protocols have been proposed (Akkaya and Younis, 2005).
Nevertheless, in ad hoc and sensor networks, the data

Copyright © 2007 Inderscience Enterprises Ltd.

Dynamic address allocation for self-organised management and control in sensor networks 117

communication, routing strategies and topology management
is very scenario dependent, that is different solutions are
optimal for example, agriculture (Baggio, 2005) and habitat
monitoring (Mainwaring et al., 2002) scenarios. A survey of
ad hoc routing protocols is for example given by Boukerche
and Nikoletseas (2004) and Akkaya and Younis (2005).
The overall objective for all these solutions is to develop
scalable routing protocols for application in WSN scenarios
consisting of a huge number of communicating nodes (Hong
et al., 2002; Iwata et al., 1999).

Interestingly, many scenarios in the domain of WSN do
not depend on fixed node addresses due to various reasons:

• The application itself does not require globally unique
addresses. For example, measurement results need to be
transmitted and analysed in an sensor/actuator network.
The application only needs to know about the region or
position of an identified event but the address of a
particular node.

• The deployment and maintenance becomes much easier
if address-less or data-centric operations are enabled.
Nodes can be deployed (or replaced) without changing
the node programme.

• Even if dynamic addressing on a global base is
considered, the overhead due to the address assignment
process, either during development or replacement can
be too high. Such overhead is caused by address
assignment protocols to find network-wide unique
addresses.

These findings lead to many proposals for data-centric routing
approaches. Basically, most of them are based on flooding
schemes (Liu et al., 2006; Pleisch et al., 2006; Kwon
and Gerla, 2002). Probabilistic solutions using the idea
of stochastically reducing the overhead caused by flooding
approaches are very successful. The most prominent solution
is gossiping (Barrett et al., 2003; Haas et al., 2002). Similarly,
gossiping is used for resource location protocols (Kempe
et al., 2001). Finally, geographical routing is an example
of address-less operation even if this is not an example for
data-centric routing (Yu et al., 2001).

The data-centric operation principles allow an efficient
data communication. Nevertheless, during operation and
control, specific nodes need to be addressed to update
software modules, to calibrate sensors, to perform
localisation tasks and others.

In this paper, we propose and evaluate an algorithm
for localised address allocation and management. This
scheme is a major building block in an overall operation
and maintenance scenario. The scheme is round-based and
inherently allows busy-sleep periods and does not assume
always awake nodes. We also implemented the method in a
testbed consisting of Mica2 sensor motes and several mobile
robot systems maintaining the sensor network. These robots
use the address allocation scheme to identify specific nodes
that need to be calibrated or reprogrammed.

The rest of this paper is organised as follows: related work
is discussed in Section 2. The algorithm and operation details
are presented in Section 3. Then, we discuss an application
scenario in Section 4. Section 5 concludes this paper.

2 Related work

Solutions for dynamic address allocation have been
proposed in various contexts. The best known example
is Dynamic Host Configuration Protocol (DHCP) for IP
and IPv6 networks, respectively (Droms, 1997, 2004).
Similarly, techniques for operation in much more dynamic
environments such as mobile ad hoc networks have been
proposed by Bernardos and Calderon (2005). A detailed
summary can be found in a comprehensive study of dynamic
addressing schemes (Sun and Belding-Royer, 2004) and a
paper providing an overview and future directions for such
address allocation solutions (Weniger and Zitterbart, 2004).
A self-organising address allocation scheme was proposed
by Toner and O’Mahony (2003), which is based on the
original Duplicate Address Detection (DAD) algorithm as
used by Weniger (2004). In the context of ad hoc and sensor
networks, Passive Autoconfiguration for Mobile Ad hoc
Networks (PACMAN) need to be mentioned as an optimised
solution for efficient dynamic address allocation (Weniger,
2005). This approach is directly based on the lessons learnt
from the DHCP development.

In the following, we shortly discuss two solutions that we
used as a starting point for developing our novel localised
address allocation scheme: DHCP and Passive Duplicate
Address Detection (PDAD).

2.1 Dynamic host configuration protocol

DHCP (Droms, 1997, 2004) is a client-server-based network
protocol. It consists of two major building blocks: a
protocol for delivering specific parameters to the client and a
mechanism for selection and suggesting IP addresses. Each
DHCP server maintains one or more address pools. Such
a pool describes available and currently used addresses,
respectively. The address management is server-oriented.
This working principle ensures the uniqueness of assigned
IP addresses. In consequence, no detection scheme for
duplicate addresses is necessary.

DHCP supports three different mechanisms for IP address
allocation: automated, operator-controlled and dynamic.
In the first case, an IP address is permanently assigned to
a client after its first registration. Similarly, an operator
can manually assign an address to a particular client.
Finally, dynamic address allocation provides the possibility
to temporally bind an IP address to a client. This assignment
is limited to time and must be renewed after a given lease
time.

The dynamic assignment is the only possibility to reuse
addresses after the first allocation. Thus, dynamic address
allocation is usually used if only short-term connections of
clients are envisioned. Focusing on the management and
control in ad hoc and sensor networks, this seems to be an
adequate solution. Unfortunately, all the assignments are
based on the MAC address of each client that is worldwide
unique. Therefore, DHCP only maintains an IP address to
MAC address binding.

2.2 Passive duplicate address detection

PDAD (Weniger, 2004) was specifically developed for
mobile ad hoc networks. Basically, PDAD is not an algorithm

118 F. Dressler and F. Chen

for choosing an address but for detecting duplicates. The
primary objective during the development of PDAD was its
application in networks with high node mobility. Therefore,
the result was a lightweight scheme for address allocation
with passive duplicate detection.

The behaviour of the algorithm is as follows: each
node randomly choses an address by itself. There is no
need for a particular server or any other required network
infrastructure. In a second step, the node performs the DAD
algorithm to verify the uniqueness of the selected address by
passively observing the network traffic. PDAD continuously
checks routing information for bandwidth-efficient DAD, for
example, sequence numbers are verified.

In summary, PDAD provides an efficient address
allocation algorithm that depends on particular ad hoc routing
information. In case of data-centric data communication,
additional messages must be created to enable PDAD in
such networks. Obviously, this results in unnecessarily high
overhead. Additionally, PDAD’s objective is to maintain
globally unique addresses. In many scenarios, there is no
such requirement.

3 Algorithm and methodology

The proposed algorithm for dynamic address allocation
benefits from many ideas learned from DHCP and PDAD.
A selected device, for example, a server performing
management and control operations, initiates and controls
the address assignment process. This server maintains a list
of previously allocated addresses. While this behaviour looks
similar to DHCP, there is no binding to any kind of hardware
address or other unique identification of a participating sensor
node. Therefore, an extension, DAD, is necessary. After
such an address allocation step, the server can continue in
maintaining the surrounding sensor nodes by contacting each
of them individually.

The envisioned scenario allows multiple server nodes
performing management and control actions concurrently.
Additionally, we assume mobility and spontaneously
emerging or failing nodes. Therefore, the address assignment
cannot last for an unlimited period of time. Nevertheless,
we do not enforce periodic reassignments to prevent the
disruption of running maintenance operations such as node
reprogramming. Instead, a round-based system is used that
creates a logical ordering of time information in a local
environment. If a new round is started, all nodes must update
their addresses while subrounds are used to discover new
nodes that appeared in the surroundings.

Initially, the server cannot communicate with particular
nodes using unicast communications because the server
cannot assume a previous address-assignment step. Therefore,
broadcast messages are employed to discover neighbouring
nodes and to initiate the address allocation. In ad hoc and
sensor networks, such a broadcast is also the most efficient
way to reach all surrounding nodes with a single radio packet.

After the first allocation step, the server can seamlessly
continue with its management and control operation
using unicast communication targeting specific nodes. For
example, nodes might be calibrated, reconfigured or
reprogrammed. To prevent disruptions, measures have to

be taken in order to ensure the uniqueness of the selected
addresses in the local environment. This also includes
the possibility for spontaneously arriving nodes and even
busy-sleep cycles without always demanding awake nodes.

In the following, we depict the involved processes during
the address selection, duplicate prevention and address
management. Exemplary, we implemented the scheme on
Mica2 sensor motes running TinyOS (see also Section 4). In
the WSN community, this system is a quasi standard in the
academic world.

3.1 Original DAA algorithm

In this section, we propose the original DAA algorithm and
assume that only one server exists and no collision occurs
throughout the DAA process. A DAA process is always
started by a dedicated node. We call this node server because
we assume that this node will provide management and
control operations for the neighbouring sensor nodes (which
is the only reason for maintaining unique addresses). The
algorithm is illustrated by an example with one server and
four nodes as shown in Figure 1.

Figure 1 The original DAA algorithm for single server without
collision

(a)

(b)

(c)

(d)

ack (17)

ack (32)
(e)

assign (3,25)

k (3)ca
k (25)ca

17

32

17

32

3

25

(f)

(g)

(h)

(i)

Nodes

r
e
p
l
y
T
i
m
e
o
u
t

a
c
k
T
i
m
e
o
u
t

Server

heIb(round ID)

reply (8)

reply (32)

reply (8)

reply (17)

assign(17,32)

redo(round ID,8)

reply (3)

reply (25)

(a) First, the server initiates a new round of DAA process
by broadcasting a HELLO message with a new round
ID. After sending, the server sets a replyTimeout and
waits for the REPLY from its neighbouring nodes.

(b) Upon reception of the HELLO message, all
neighbouring nodes first store the new round ID and
the server address. Then, each of them randomly
chooses an address and submits it to the server in a
REPLY message.

(c) Upon reception of one REPLY message, the server
stores the received address into a local list called

Dynamic address allocation for self-organised management and control in sensor networks 119

ReplyList. When replyTimeout expires, the server
verifies the uniqueness among all addresses stored in
the ReplyList and put all unique addresses into a list
called AssignList and all duplicate addresses into
another list called RedoList. If the AssignList is not
empty, the server will broadcast an ASSIGN message
with this list. In this example, the AssignList contains
17 and 32. After sending out the ASSIGN message,
the server sets an ackTimeout and waits for the
acknowledgments from those nodes notified in the
ASSIGN message.

(d) Upon reception of the ASSIGN message, each node
seeing its preselected address listed in the ASSIGN
message, should register its radio interface with this
address, which will be used in all future unicast
communications. Each registered node should send its
address in an ACK message to the server and will
ignore all future messages received from the server
with the current roundID.

(e) Upon reception of one ACK message, the server stores
the address in the ACK message to a list called
Ack-List. When ackTimeout expires, the server
registers the addresses in the AckList by moving them
into a address map called LocalMap. Till now, each
correctly acknowledged address has been registered
by both the server and the node generating this
address. If the server does not receive all expected
ACKs listed in the AssignList, it will add those
unacknowledged addresses to the RedoList. If the
RedoList is not empty, the server will broadcast a
REDO message with this list. All nodes seeing its own
address contained in the REDO message have to
regenerate a random address and send it back to the
server in a REPLY message. For purpose of
discovering new nodes, we let REDO messages carry
the current roundID. In this way, the nodes that have
missed the previous HELLO message can also join in
the current DAA process upon reception of the REDO
message. After sending out the REDO message, the
server should clear all the local lists and set a
replyTimeout to wait for coming REPLY messages.

(f) Upon reception of the REDO message, all nodes that
have not yet obtained a unique address from the server
in the current round, have to randomly choose an
address and send it back to the server in a REPLY
message.

(g) The server will repeat the same operations described
at step (c). The difference is that, when performing
uniqueness verification, the server should compare the
ReplyList containing all newly received addresses
with the LocalMap containing all registered addresses,
to identify the duplication, as shown in Figure 2.

The following steps (h) and (i) will repeat the steps (d)
and (e). As shown in Figure 1, the server terminates the
current round of DAA process at the end of step (i), because
it has found no more address in the RedoList. If the server
wants to discover more neighbouring nodes, it can send one
more REDO message with only the current roundID. It can be

easily imagined that the following process will repeat the one
between step (e) and (i). Since the REDO message does not
change the current roundID, we call such a circle between
two consecutive REDO messages as subround. The server
should follow certain rules to take control of the number of
subrounds needed for the current DAA round. We will discuss
this problem in the later section.

Figure 2 Uniqueness verification

ReplyList

3

25

...

...

LocalMap

17

32

...

...

Server

Duplicate? -> REDO message

3.2 Possibilities for duplicate addresses

We now analyse the probability of producing duplicate
addresses in a single subround. Such duplicates can appear if
two or more nodes choose the same address upon reception
of a HELLO or REDO message from the server.

Assuming n surrounding nodes and a available addresses,
the probability of an address collision is

Pduplicate ∼ 1 − a!/(a − n)!
an

(1)

Proof: Because there is no synchronisation between the
nodes, more than one node can assign the same address
in each subround. Therefore, the number of permutations

without one or more duplicates is P n
a = (

a
n) × n! = a!/

(n!(a − n)!). Thus, the probability to find a combination of
addresses without duplicates is Pnoduplicate = P n

a /an. This
leads to the equation for the probability of having duplicate
addresses Pduplicate = 1−Pnoduplicate as shown in Equation (1).

For validation of the algorithm, we assume a server with a

surrounding nodes and an address length of 16 bit (unit 32 t)
that is, a total number a = 216 = 65, 536 possible addresses.
Then, the probability of duplicates in a round will be about
0.00068 for 10 nodes, 0.0028 for 20 nodes and 0.072 for
100 nodes (which are usual numbers in sensor networks with
an address length of only 16 bit).

The obvious conclusion is the more sensor nodes are in the
surrounding, that is, the larger area the server radio covers,
the higher is the probability to find duplicate addresses
in a subround. Such duplicates cannot be prevented.
Nevertheless, the probability can be controlled by verifying
the application scenario and adapting the address space.
Additionally, the method for choosing the address can be
changed from a random process to one that maintains history
information. Such a process would decrease the probability
of duplicate addresses in a subround (not preventing it).
However, it would also add a remarkable overhead to
sensor nodes.

120 F. Dressler and F. Chen

3.3 Collision analysis

In the previous section, the original DAA algorithm
was proposed under the assumption of no collision. Now
we introduce collision problem into our algorithm. In
contention-based wireless communications, collision happens
when two or more packets arrive at a certain node at the same
time. In this section, we reuse the example already shown
in Figure 1 to show what will happen, when collision occurs
during the DAA process.

We should first identify which messages may collide.
For all broadcasting messages sent by the server, including
HELLO,ASSIGN and REDO messages, they will not collide
with other messages, as long as the server carefully controls
the timing of sending these messages. Such timing control has
been considered in the original algorithm by setting a timeout
after broadcasting a message in the server, for example,
replyTimeout and ackTimeout as Shown in Figure 1.

For all messages sent by the nodes, including REPLY
and ACK are prone to collisions, because there is no
time control for them so far in the original algorithm and
they are sent in a contention way. Our DAA algorithm
cannot rely on those usual collision avoidance measures like
RTS/CTS mechanism used by IEEE 802.11 protocols for
solving hidden station problem, because unique addresses
are prerequisite to these mechanisms.

We have listed below all possible situations that REPLY or
ACK messages collide during the DAA process. The Figure 3
shows the step (b) for the example shown in Figure 1. At this
step, all four nodes randomly choose an address and perfect
it back to the server in a REPLY message.

Figure 3 Possible collisions in a subround with one server

S

N 1

N 4

N 2

N 3

address = 8

= 32

= 8

= 17

Case A: no duplicate in collision, for example, node2’s
REPLY collides with node4’s. At step (c), the server detect
the duplicate between node1 and node3 but do not send an
ASSIGN due to the collision. Afterward it sends a REDO
with the duplicate address eight. Therefore, no address has
been allocated in this subround and all nodes have to rechoose
addresses in the next subround. No error occurs in this case.

Case B: all duplicates in collision, for example two
REPLY messages with address eight collide. At step (c)
the server is not aware of the duplication due to collision

and only sends an ASSIGN message with address 17 and 32.
There are two possible subcases.

• Case B1: If the server receives two ACKs from node2
and node4, it may wrongly consider that all nodes have
been allocated and then terminate the current DAA
round. The consequence is that node1 and node3 are
abandoned by the server in this round.

• Case B2: If two ACKs sent by node2 and node4 collide,
the server will find out the lost ACK when ackTimeout
expires. Therefore, the server will send a REDO
message to initiate a new subround. No error occurs in
this subcase.

Case C: not all duplicates in collision, for example, node1’s
reply collides with node2’s. At step (c), the server thinks
that the address eight is unique and adds it into the ASSIGN
message. At step (d), upon reception of theASSIGN message,
both node1 and node3 register the same address and then send
back a ACK. There are three possible subcases.

• Case C1: the server receives two ACKs with
address 8 and detects the duplication. Then it will
nod add this address into its LocalMap and later
add the duplicate address to the REDO message.
According to the original algorithm, this is of no
help, because all allocated nodes will ignore all
further messages in the current round. However, it is
possible that this address will be registered by the server
and some other nodes in a certain subround later on.

• Case C2: both ACKs with the duplicate address 8
collide. The server receives no ACK from the nodes
with the address 8. Then it will not add this address into
its LocalMap and later add the unacknowledged address
8 to the REDO message. The consequence will be the
same with that in Case C1.

• Cases C3: only one ACK with the duplicate
address 8, for example from node1, is received by
the server. The other ACK with the duplicate address 8
collides with the ACK from some other nodes, for
example, from node4. The consequence is that the
address 8 will be registered by the server and by
both node1 and node3.

Sum up the above three subcases, if case C happens, the
duplicate address will be allocated, which is in most cases
strictly forbidden.

3.4 Improved DAA algorithm

The collision analysis in the previous section has shown
that collisions may lead to malfunction of the original DAA
algorithm. In this section, we propose the solutions to
those problems to improve our algorithm. The improvements
are mainly focused on two aspects. One is Collision
Avoidance (CA), that is, to add some CA mechanisms to
reduce collision probability. The other is collision processing,
that is how to deal with collisions.

We consider first collision avoidance. Collisions are prone
to happen while sensor nodes are sending REPLY or ACK
messages back to the server, because they contend for the

Dynamic address allocation for self-organised management and control in sensor networks 121

channel at almost the same time. Carrier Sense Multiple
Access (CSMA) with exponential backoff algorithm is the
most usual solution. However, due to the fixed and very small
length of REPLY and ACK messages, we prefer applying a
simpler method. For example, after receiving a HELLO or a
REDO we let each node randomly choose a slot within the
reply window to send its REPLY without performing carrier
sense. The reply window size and the length of one slot must
be negotiated between the sever and sensor nodes beforehand
or be carried by HELLO or REDO messages. Furthermore,
the reply window size must be smaller than replyTimeout.
We apply this method only to sending REPLAY messages.
For ACK messages, another algorithm will be given later in
this section.

We now discuss how to deal with possible errors caused
by collisions. The improvements are proposed based on the
collision analysis in the previous section. The cases with
errors include B1, C1, C2 and C3.

For case B1: in this case, the server terminates the current
round of DAA process, when it gets an empty RedoList
after processing the AckList. To prevent those nodes, whose
REPLYs collide, from being abandoned by the server, we
add a rule to the server. We call such a subround, in which
the server receives no REPLYs after sending a HELLO or
a REDO, a null subround. The new rule is described as
follows.

When the server finds its RedoList empty at the end
of the current subround, it must start a new subround by
broadcasting a REDO with only the current roundID. The
server can terminate the current round of DAA process only
after it has experienced a certain number of null subrounds
consecutively.

This rule is described in Figure 5. The parameter
maxNullSubround is application specific and defines the
number of consecutive null subrounds needed to be executed
before the server ends current DAA process.

For Case C1 and C2: in both cases, the duplicate address
is registered by the two nodes first but not registered by the
server afterward. To correct this, we need to use the following
algorithm to register a unique address at a sensor node.

If the node receives an ASSIGN message from the server
and finds its address in the message, it will register its address
only when it receives a REDO message in the next subround
and does not see its address in the message. The algorithm is
depicted in Figure 6.

For Case C3: in this case, the duplicate address is first
registered by the two nodes and then by the server. Even if

the improved algorithm proposed above is applied, it will not
change the result. A straightforward solution to this problem
is to prevent this case from happening. More specifically, we
need to find a way to prevent allACK messages with different
addresses from colliding. To achieve this goal, we propose
a schedule-based algorithm for sending ACK messages and
explain it as follows.

The server should first rearrange all addresses in the
RedoList in a certain order, for example, in increasing
order, and then sends an ASSIGN message with the ordered
RedoList. Upon reception of the ASSIGN message, each
node listed in the message has to send its ACK at a specific
time point according to the position of its address in the
RedoList. To achieve this, we divide the acknowledgement
window – defined as the period for which the server should
wait for all expected ACK messages – into a certain number
of slots. The number of slots is equal to the number of
addresses in the RedoList. The length of a single slot is
fixed and should be negotiated between the server and
sensor nodes beforehand. The parameter ackTimeout must be
chosen larger than the acknowledgement window. In this way,
only those ACK messages with the same address will be sent
by the nodes in the same slot and they will never collide with
those with different addresses.

A possible subcase with the improved algorithm under
case C that we have discussed in the previous section is shown
in Figure 4. We can see that, the ACKs with the duplicate
address 8 are sent by node1 and node3 in the first slot of
the acknowledgement window and will have no chance to
collide with node4’s ACK, which is sent late in the second
slot by node4. This means that the possibility of case C3
is eliminated and case C has only two possible subcases,
case C1 and case C2. No matter which of the two subcases
happens, the improved algorithm will not lead to errors
any more.

Till now, the complete DAA algorithm for single server
with collisions has been given. For a better understanding of
our algorithm, we have designed two UML diagrams for both
server and sensor nodes, as shown in Figure 5 and Figure 6,
respectively.

4 Application scenario

To validate the algorithm, we implemented the dynamic
address allocation scheme in the context of a project that
focuses on dynamic reconfiguration and reprogramming of

Figure 4 The improved DAA algorithm for single server with collision

 time

HELLO ASSIGN(8 ,17)
8

32

8 17

rep lyTimeou t

REP LY

reply window

8 8 17

ACK

ack window
ackTimeou t

REDO(8)

N3 N4
N2

N1

N1 N3 N4

(se t 17)

N3 N2 N1

3 25 9

(N4 = 17)

s1=8 s2=17

ack window
ackTimeou t

s1=3 s2=9

rep lyTimeou t

reply window
s3=25

ASSIGN(3 ,9 ,25)

REP LY
N3 N2

3 259

N1

ACK

(set 3 ,9 ,25)
REDO

(N1=9 ,N2=25 ,N3=3)

Server

Nodes

122 F. Dressler and F. Chen

Figure 5 UML diagram of the DAA algorithm for server nodes

timer expires

AssignList not empty/
send an ASSIGN with AssignList,
set a timer with ackTimeout

Start a new round

do/reset all,
send a HELLO with

a new roundID

Waiting for REPLY

do/store every received
REPLAY into ReplyList

set a timer with
replyTimeout

ReplyList empty ReplyList not empty/
numNullSubround = 0

Process ReplyList

do/compare ReplyList
with LocalMap, split it into

AssignList and RedoList

AssignList
empty

Start a new sub round

do/send a REDO with
current roundID and

RedoList

Count consecutive

null sub round

check/if
(++numNullSubround
== maxNullSubround)

timer expires
Process AckList

do/add duplicate acked
and unacked addresses

to RedoList

Waiting for ACK

do/store every received
ACK into AckList

Yes
add correctly
acked addresses
to LocalMap

clear all lists

 current
round ends

No

timer expires

Delay for assignTimeout

do/set a timer with
assignTimeout

sensor nodes using mobile robot systems (Yao et al., 2006).
Due to the steadily increasing heterogeneity and dynamics
in terms of hardware and software configurations in sensor
networks, software management is becoming one of the
most prominent challenges in this domain. We developed a
profile-based software management scheme (Truchat et al.,
2006) that consists of a dynamic profile-matching algorithm
to identify current SW/HW configurations, an on-demand
code generation module and mechanisms for dynamic
network-centric reprogramming of sensor nodes. A mobile
robot system is employed for decision processes and to store
the source code repository. Our proposed address allocation
scheme is used to prevent global preconfiguration of all
network nodes.

Figure 7 shows the principal concept of sensor node
software reconfiguration (Fuchs et al., 2006).

1 Depending on the goal, the robot drives to the position
in the sensor network where reconfiguration is
necessary (we do not assume a particular navigation
scheme, various mobility models can be applied).

2 The robot collects information about the environment,
builds the context and explores its neighbourhood. At
this step, additional actions can be initiated such as
preparing the sensor calibration or starting an algorithm
for dynamic addressing.

3 All sensor nodes respond to the exploration
message by sending their current profiles (HW/SW
descriptions).

4 The robot uses the information gathered at steps
(b) and (c) for profile matching and to assign the roles
of the sensor notes (depending on the current goal).
Finally, it creates the new binaries of the sensor
notes.

5 The robot reprogrammes selected sensor notes over
the air.

In our lab, we use the Robertino robot platform developed
at the Fraunhofer Institute AIS running embedded Linux
and Mica2 sensor motes developed at UCB running TinyOS.
For direct robot-sensor communication, we installed a single
Mica2 mote on the robot.

We successfully used the dynamic address allocation
scheme for management issues in WSN as described in
this paper to provide a communication infrastructure for
communication between the robot system and surrounding
sensors. The implementation allows to choose 16-bit
addresses as used in the algorithm description.

In our experiments, we never observed the special case of
address duplication. To test this case, we manually configured
specific nodes with a fixed address. Using this kind of
experimentation, we verified the correct behaviour of the
round based DAD.

Dynamic address allocation for self-organised management and control in sensor networks 123

Figure 6 UML diagram of the DAA algorithm for sensor nodes

Enter a new round

do/store new roundID,
store server address,

clear my address

Waiting for

HELLO or REDO

a HELLO or
a REDO received

send a REPLY with tempAddr
in the chosen slot

Waiting for ASSIGN

do/set a timer with
assignTimeout

Prepare for REPLY

do/generate a random address
and store it in tempAddr,

choose a slot to send

Process AssignList

do/compute myTimeSlot
for sending ACK

Waiting for REDO

I am in AssignList /
set Case A1

ASSIGN received

timer expires, no
ASSIGN received/
set Case B

Delay for myTimeSlot

I am not in AssignList/
set Case A2

set a timer with
myTimeSlot

timer expires/
send an ACK

REDO received

Case A1

I am not in
RedoList/
register
tempAddr

Case A2 or
Case B

My address allocated,
exit current round.

I am in RedoList

a HELLO or a REDO with a
new roundID > current roundID
received

Figure 7 Application scenario for reconfiguration

a)

profile

mobile
robot

sensor
node

P:
d)

assign,
make
binaries

c)

P

P

P

P P P

send
profiles

b)
Who is
there?

e)

repro-
gramme

Source: Fuchs et al. (2006).

5 Conclusion

In conclusion, it can be said that we developed an address
assignment algorithm that works in a localised environment.
Therefore, the overhead due to management of topology and

uniqueness of the addresses becomes very low. Additionally,
the method profits from the single-hop communication that
is usually more reliable compared to a multi-hop approach.
Basically, we selected particular solutions from PDAD and
DHCP to create an efficient and robust dynamic address
allocation scheme for management and control in WSNs.

Compared to PDAD, our solution is more reliable, has
less overhead and is independent of the employed routing
algorithm. Similarly to DHCP, the algorithm is server-centric,
that is, the allocation is initiated by a particular system.
The DAD is performed by the same system. Therefore, this
verification is very simple. The communication overhead
increases linearly with the number of nodes. New nodes do
not influence previous allocations. This is also true for waking
up nodes performing busy-sleep cycles. They are processed
individually in a new subround.

References

Akkaya, K. and Younis, M. (2005) ‘A survey of routing protocols
in wireless sensor networks’, Elsevier Ad Hoc Network Journal,
Vol. 3, No. 3, pp.325–349.

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E.
(2002) ‘A survey on sensor networks’, IEEE Communications
Magazine, Vol. 40, No. 8, pp.102–116.

124 F. Dressler and F. Chen

Baggio, A. (2005) ‘Wireless sensor networks in precision
agriculture’, ACM Workshop on Real-World Wireless Sensor
Networks (REALWSN 2005), Stockholm, Sweden.

Barrett, C.L., Eidenbenz, S.J. and Kroc, L. (2003) ‘Parametric
probabilistic sensor network routing’, International Conference
on Mobile Computing and Networking, San Diego, CA.

Bernardos, C. and Calderon, M. (2005) ‘Survey of IP address
autoconfiguration mechanisms for MANETs’, Internet-Draft
(work in progress), draft-bernardos-manet-autoconf-survey-
00.txt.

Boukerche, A. and Nikoletseas, S. (2004) ‘Protocols for data
propagation in wireless sensor networks: a survey’, in
M. Guizani, (Ed). Wireless Communications Systems and
Networks, Kluwer Academic Publishers.

Chong, C-Y. and Kumar, S.P. (2003) ‘Sensor networks: evolution,
opportunities, and challenges’, Proceedings of the IEEE, Vol. 91,
No. 8, pp.1247–1256.

Dressler, F. (2006) Self-organization in ad hoc networks: overview
and classification, Technical Report 02/06, University of
Erlangen, Department of Computer Science 7.

Droms, R. (1997) Dynamic Host Configuration Protocol,
RFC 2131.

Droms, R. (2004) Stateless Dynamic Host Configuration Protocol
(DHCP) Service for IPv6, RFC 3736.

Fuchs, G., Truchat, S. and Dressler, F. (2006) ‘Distributed software
management in sensor networks using profiling techniques’,
1st IEEE/ACM International Conference on Communication
System Software and Middleware (IEEE COMSWARE 2006):
1st International Workshop on Software for Sensor Networks
(Sensor-Ware 2006), New Delhi, India.

Haas, Z.J., Halpern, J.Y. and Li, L. (2002) ‘Gossip-based ad hoc
routing’, IEEE INFOCOM 2002, pp.1707–1716.

Hong, X., Xu, K. and Gerla, M. (2002). ‘Scalable routing protocols
for mobile ad hoc networks’, IEEE Network, Vol. 16, pp.11–21.

Iwata, A., Chiang, C-C., Pei, G., Gerla, M. and Chen, T-W. (1999)
‘Scalable routing strategies for ad hoc wireless networks’, IEEE
Journal on Selected Areas in Communications: Special Issue on
Ad-Hoc Networks, Vol. 17, No. 8, pp.1369–1379.

Kempe, D., Kleinberg, J. and Demers, A. (2001) ‘Spatial gossip
and resource location protocols’, Journal of the ACM (JACM),
Vol. 51, No. 6, pp.943–967.

Kwon, T.J. and Gerla, M. (2002) ‘Efficient flooding with passive
clustering (PC) in ad hoc networks’, ACM SIGCOMM Computer
Communication Review.

Liu, H., Wan, P., Jia, X., Liu, X. and Yao, F. (2006) ‘Efficient
flooding scheme based on 1-hop information in mobile ad hoc
networks’, 25th IEEE Conference on Computer Communications
(IEEE INFOCOM 2006), Barcelona, Spain.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D. and
Anderson, J. (2002) ‘Wireless sensor networks for habitat
monitoring’, First ACM Workshop on Wireless Sensor Networks
and Applications, Atlanta, GA.

Pleisch, S., Balakrishnan, M., Birman, K. and van Renesse, R.
(2006) ‘MISTRAL: efficient flooding in mobile adhoc networks’,
Seventh ACM International Symposium on Mobile Ad Hoc
Networking and Computing (ACM MobiHoc 2006), Florence,
Italy.

Sun, Y. and Belding-Royer, E.M. (2004) ‘A study of dynamic
addressing techniques in mobile ad hoc networks’, Wireless
Communications and Mobile Computing, Vol. 4, No. 3,
pp.315–329.

Toner, S. and O’Mahony, D. (2003) ‘Self-organising node address
management in ad hoc networks’, 8th IFIP International
Conference on Personal Wireless Communications (PWC 2003),
Vol. LNCS 2775, pp.476–483, Venice, Italy, Springer.

Truchat, S., Fuchs, G., Meyer, S. and Dressler, F. (2006)
‘An adaptive model for reconfigurable autonomous services
using profiling’, International Journal of Pervasive Computing
and Communications (JPCC): Special Issue on Pervasive
Management.

Weniger, K. (2004) ‘Passive duplicate address detection in
mobile ad hoc networks’, ‘IEEE Wireless Communications and
Networking Conference (WCNC), New Orleans.

Weniger, K. (2005) ‘PACMAN: passive autoconfiguration for
mobile ad hoc networks’, IEEE Journal on Selected Areas in
Communications (JSAC).

Weniger, K. and Zitterbart, M. (2004) ‘Address auto-configuration
in mobile ad hoc networks: current approaches and future
directions’, IEEE Network Magazine: Special Issue on Ad Hoc
Networking: Data Communications and Topology Control.

Yao, Z., Lu, Z., Marquardt, H., Fuchs, G., Truchat, S. and
Dressler, F. (2006) ‘On-demand software management in sensor
networks using profiling techniques’, ACM Second International
Workshop on Multi-Hop Ad Hoc Networks: From Theory
to Reality 2006 (ACM REAL-MAN 2006), Demo Session,
pp.113–115, Florence, Italy.

Yu, Y., Govindan, R. and Estrin, D. (2001) Geographical and
Energy Aware Routing: A Recursive Data Dissemination
Protocol for Wireless Sensor Networks. Technical Report
UCLA/CSD-TR-01-0023, UCLA Computer Science
Department Technical Report.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

