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Abstract. Self-organization in autonomous sensor/actuator networks is
an emerging research area. Special focus lies on cooperation issues of mo-
bile robot systems. We employed multiple software engineering method-
ologies to develop an easily extensible core system named robrain. In this
paper, we present the structure of our plugin-based system architecture
and demonstrate its applicability based on well-defined key requirements.
The primary application area is the development of extensible software
systems for teams of collaborating mobile robots. Using available exten-
sions, the system can be interconnected with sensor networks or entities
controlling the behavior of a multi-robot system. We already used this
system in several courses at our university. We have discovered that sev-
eral studies can be easily conducted due to the modular structure and
the provided remote controllability.

1 Introduction

Robotics and Automation are key technologies that focus on challenging future
applications. They demand for new methods and solutions in various research ar-
eas. Efficient utilization of available resources is one of the most important issues.
This applies to single robots as well as to multi-robot systems. In this context,
collaborative task management and synchronization and coordination between
autonomous robot systems is of major interest. In this context, new research
lines appear concerning the development of mobile sensor/actuator networks.

Therefore, robot systems are the core of variety areas of research. In this pa-
per, we address software engineering issues for mobile robot systems that have
to deal with frequent hardware changes, support for multiple platforms, and op-
eration in different working environment. Besides research aspects that demand
for an easily extensible software and hardware architecture, the possibility to
employ the same robot systems for educational purposes is a key requirement.
Therefore, rapid prototyping of new drivers, functions, and even behaviors must
be supported by the core system software. Additionally, there is also the need
for cooperation with other units in the environment such human operators or
other robots.

Hence, the need for an easy extensible control system requiring few program-
ming effort in order to include new functionality was born. The aim is to allow
to merge an existing stand alone application into an existing control system.



A attempt to fulfill these requirements will be explained in the following.
The rest of the paper if organized as follows. Section II describes the goals
of our current research work. Section III depicts the system design including
the key requirements and software engineering issues. Then, in section IV, the
extensible robot control system named robrain is discussed. Finally, the paper
is summarized by some conclusions.

2 ROSES - Robot assisted sensor networks

The development and the control of self-organizing, self-configuring, self-healing,
self-managing, and adaptive communication systems and networks showing an
emergent behavior are the primary research aspects of the ROSES project [1].
The mentioned aspects are studied in the area of autonomous sensor/actuator
networks, i.e. a combination of mobile robot systems and stationary sensor net-
works. The introduction of mobility as well as the limited resources of typical
sensor nodes leads to new problems, challenges, and solution spaces in terms of
efficient data management and communication. Here, it is distinguished between
sensor assisted teams of robots and robot assisted mobile sensor networks. The
former means that robots might use the sensor network for more accurate lo-
calization and navigation or as an infrastructure for successful communication.
The latter means the employment of robot systems for maintenance in sensor
network or for providing communication relays.

Research Goals

– Energy efficient operation, communication, and navigation
– Sensor network assisted localization and navigation of the robots
– Utilization of the robots as a communication relay between a sensor network

and a global network, e.g. the Internet
– Quality of service aware communication in heterogeneous mobile networks

with dynamic topology
– Optimized task allocation and communication based on application and en-

ergy constraints
– Secure communication and data management in mobile sensor networks

In order to address these objectives, novel models and methodologies are
investigated for energy and application aware communication [2], different local-
ization techniques for optimized high-precision navigation are combined, mobile
robots and stationary sensor nodes are integrated to autonomous sensor/actua-
tor networks, and research on bio-inspired communication methods is conducted.
The lab environment includes the Robertino robot1 platform as well as the Mica2
and BTnode sensor motes running TinyOS. One primary application scenario is
the exploration and monitoring of unknown surroundings.

1 http://www.openrobertino.org



Fig. 1. Challenges and research directions in the area of mobile sensor/actuator net-
works

In figure 1, the most challenging issues are depicted. Self-organization (a)
means, that global tasks are solved without the need of a central control or
management, i.e. the network notes explore their neighborhood and distribute
the decomposed task in an appropriate way. Energy awareness (b) is a key prop-
erty of the systems in focus. Sensor networks should be available over a long
time period without external maintenance. Finally, the response time (c) of the
system, i.e. the time between the occurrence of an event and the appropriate
response, is an important aspect.

Current Activities The mobile robot systems are equiped with a modular
control system allowing them to act completely autonomous. In order to achieve
this goal, modules for accessing the sensor facilities, for movement, localization
and navigation, and task allocation are work in progress. Mostly finished is the
energy control module composed of a battery management and the correspond-
ing characteristics. In collaboration with the Fraunhofer Institute for Integrated
Circuits IIS, a special circuit for voltage and current control was developed [3].
The energy module allows an approximation of the remaining energy and an esti-
mation of energy requirement of forthcoming tasks. Additionally, the connection
to the sensor network is provided by another module used for more precise local-
ization techniques [4]. In the field of sensor networks, ad hoc routing algorithms
are evaluated with the focus on energy constraints and timeliness of the com-
munications. To achieve this goal, ”real” sensor motes are interconnected with
simulation models to achieve more accurate results than available in previous
simulations.

3 System Design

In this section, the primary requirements are discussed that directed the design
and the implementation as well as some important design issues concerning the
extensibility, the adaptability, and the simplified usage in research and education.

3.1 Requirements

Before investigating the developed system in more detail, the design issues that
lead to the proposed architecture should be discussed. During the development,
the following system requirements have been identified:



Extensibility An easy extensible architecture is needed with the ability to ab-
straction to evolve higher problem areas (e.g. provide hardware layer abstraction
using existing device driver).

Adaptability The adaptability on hardware changes to include only those parts
of extensions which are actually needed to perform tasks using existing hardware
and exclude those functions which are not needed.

Ease of Integration The easy integration of existing software to the system
to extend the systems functionality and/or to provide an easy communication
layer between different standalone applications.

Applicability for Education On of the most important requirements is the
applicability of the architecture for educational and research purposes.

To adopt these requirements to the presented architecture, we use the mech-
anism of a extensible architecture where each extension component can be added
or removed at run time. In the following, we use the words extension and plugin
equivalently.

3.2 Core System

To fulfill the requirements of an easy extensible architecture and the ability to
extend the system by incorporating already written software a core of three
classes evolved as shown in figure 2 (marked yellow).

The core consists of three parts: the PluginManager, a PluginTag, and an
associated Plugin interface.

PluginManager The PluginManager holds information about available exten-
sions and which correlations exist in between them, i.e. which extensions are
used by other extensions. It also propagates the access calls to the appropriate
plugintag and controls the allowed access behavior.

At the beginning it determines the plugin places and generates for each plugin
a plugintag and leads the plugintag to load the plugin and set up his environment.

So the PluginManager performs as a link between the PluginTags.

PluginTag A PluginTag is responsible for a specific plugin. Its tasks are to
provide dependability information concerning other plugins, to privide access
control, and to forward requests to other plugins to the pluginmanager. Tem-
porarily blocked access to a plugin in case of an extension that can only be
accessed once at a time can also checked by the PluginTag. Further tasks could
be easily integrated.

During an initial start sequence, it loads the plugin into the system and
initiates an initialization procedure. It also reads the parameter values from a



Fig. 2. The core functionality of the plugin system

configuration file and provides an environment for the plugin, which holds a
map of the parameters, the plugin name, and the interface to the system. All
requests of the plugin where meant to be going through the plugintag expect
the communication with other plugins after a first successful plugin access. This
behavior is needed due security reasons: no plugin can actually forge its name
to gain access to a plugin to which it has no access.

Therefore, the PluginTag performs the management role of a plugin and
works as a middleware between the plugin and pluginmanager.

Plugin Interface The Plugin Interface provides the necessary functions which
have to be minimally implemented in order to init, activate, and deactivate the
plugin properly.

The following functions have to be implemented:

– The init function includes all initialization parameters at the beginning.
They are usually located in the constructor of a class.



Fig. 3. Start sequence of the system including involved modules and according func-
tions

– The activate function controls necessary relationships to other plugins. If a
plugin which requires to access functionality provided by other plugins, the
access requests are forwarded to the according plugins.

– The deactivate function includes cleaning operations like the destructor of a
class.

– The emergencyHalt function includes all necessary functionality in order to
immediately stop an existing task of the plugin.

Additional functions have to be added for a particular functionality of the ex-
tension to make it meaningful. The complete initialization procedure is depicted
in figure 3.

3.3 Plugin System

Two kind of extensions to the core system exist. Active plugins have to be run-
ning all the time since system startup, e.g. to collect information from dedicated
hardware modules. Usually, they use their own thread and start always a con-
trol thread in the system. The second possibility is that an extension is passive.
Such plugins work like a common function call, i.e. they become active during a
function call, process the demanded information, and return the outcome. They
actually do not start a thread of their own but become activated by a control
thread.

Besides the active and passive behavior of the extensions, we derive from
the Plugin interface multiple types of interfaces. They are set in a hierarchical
relationship to each other. Currently, four types are available that will be de-
scribed in the following. Figure 4 shows an example session from the scope of
hierarchical structure, the cooperation and active and passive extensions.



Fig. 4. An example of cooperating extensions

Device Device type extensions directly access a specific hardware module.
Therefore, they provide functionality dedicated to this part of the hardware.
This may be also a virtual hardware like the common plugin described in sec-
tion Robrain.

Unit Unit type extensions are based on Device type extensions and provide
a higher abstraction levels of the provided functionality. Examples are a tcp
socket connection extension and an interactive shell extension that uses the
command plugin in order to call extension functions through a socket connection
and command line, respectively.

Skills Skills type extensions may use Unit type extensions or provide a skill
that does not rely on any hardware layer abstraction. Such a plugin could be a
counter which counts the seconds still start of the system.

Behavior Behavior type extensions are using all other extension types to build
a behavior of the overall system. An example could be the monitoring of a room
using the driver unit, measuring the distance, and getting snapshots from the
vision control.

The division into hierarchical types makes it possible to design complex tasks
that the robot can provide, like observing a room as a Behavior extension.
Such an extension uses a Unit plugin which currently grabs a picture from the
camera using the vision control Device plugin. Obviously, the functionality of
the extensions becomes more abstract with a higher application type.

Note that if a extension has to use some functionality of an extensions at the
same level, the current system design demands that these two extensions have
to be merged together.



Fig. 5. Internal access request by a plugin

3.4 Access Control and Parameters

Internal access to plugins Each extension is described by an interface to the
system. The interface is described by an interface class with according function
declarations. The aim is to separate the internal implementation of the extension
from the overall system. Each extension is known to the system by his interface
header file. Only those functions which are described in this header file will be
accessed internally from the system. Another advantage is that an extension
could be delivered without the source code. The correlations between the core
system and the plugin for internal access are depicted in figure 5.

External access to plugins Some extensions should be accessed from out-
side the system. These provide functionality through different interfaces like tcp
socket, command line, or even through speech recognition.

The view to the plugin is different from the internal access. It is possible to
define which functions of the plugin should be seen from outside in a file like the
interface file. This could be somehow disjunctive to the functions from internal
view or be the same. It must be taken into consideration that a return value
of pointer type or an array do not make much sense since the external access
control function converts all return parameters to a string.

Parameter passing Because each function has a different function signature
caused by an unknown number of arguments, argument types, and return values.
Therefore, each function will be wrapped the using the following approach.

Figure 6 shows three classes: the input and output arguments will be col-
lapsed into derived classes of CommandInput and CommandOutput, respec-
tively. The input class holds the input parameters of the function and the output
class holds the return value of the function. In a derived class of the Command-
Class the function will be called by his CommandInput class and the return
value will be stored in the CommandOutput class of the function.



Fig. 6. Abstract wrapper classes for input and output parameters of a function

All functions of an extension will be wrapped by a dispatcher which calls the
appropriate function from the list of available functions. Each function and the
appropriate wrapper classes are identified by a signature which composed by its
return value, its function name, and its type of input parameters. For example,
a function void foo(int a, string b) will have the signature void foo int string.
Note that this permits the possibility of using function overloading as pro-
vided by C++. The derived CommandInput class would be named CommonIn-
put void foo int string and so on.

As a result, a dispatcher functions is created that returns the appropriate
wrapper class as recognized by the function signature. Since CommandInput
and CommandOutput classes have always the same signature, any arbitrary
function can be collapsed into a black box scheme. In this case, the types of
parameters must not be known by the command plugin, which actually calls the
function by setting the argument string with setparameters(argumentstring) and
collecting the return value as a string with toString().

The wrapper functions, input and output classes are automatically generated
by a python script that is using the external interface description.

Notification System To be able to notify extensions about a finished task
or other events, we provide a notification system. Here, we use the Observer
Pattern2. A slightly modified version which allows to attach arbitrary functions
with a well defined signature allows to attach different handling for different
tasks.

Exclusive Access Some extensions can not be used by more than one plugin
at the same time. This can be defined by a value in the configuration file. It such
case, the PluginTag prohibits the access request and the PluginManager returns
the name of the plugin which currently uses the plugin to the requester. Note that
external access to such extensions does not make sense since the functionality
provided by this kind of extensions located in the lower levels of abstraction.
2 http://www.dofactory.com/Patterns/PatternObserver.aspx



4 Robrain

An implementation based on the described system design was done in C++ and
is called robrain. In this section, we provide some more detailed information
about the implementation and possible extensions.

4.1 Programming Environment

C++ / Common C++ We decided to use C++ for the implementation.
There were two reasons for this decision: on the one hand, the object-oriented
system design demanded for an appropriate programming language and on the
other hand, languages like JAVA required too much resources on the embedded
systems controlling our robot systems. We used Common C++3 to provide the
threading functionality. The command line options parsing and socket handling
also made by using the library functions.

The plugin skeleton A shell script is used to generate an extension skeleton.
Three parameters are needed by the script: the name and the type of the plugin
and its visibility. The plugin can be hidden for external access or it can be visible.
For the latter option the declarations of the wrapper class and the dispatcher
function as well as the appropriate include files will ge generated later for further
usage.

Configuration file and the interface headers Each plugin is configured
by an individual configuration file, which has three sections. One for the plugin
internal parameters which can be arbitrarily defined and used by the developer
of the plugin. The second section holds parameters used by the PluginTag. Cur-
rently, the following properties are available for the PluginTag section:

– visibility : holds a white space separated list of plugin names which are al-
lowed to access this plugin. For external access (view) of the plugin, access
must be granted to the command plugin name.

– requires: a list of plugin names separated by white space which is required
for proper functionality of the plugin.

– shared : a Boolean value which can be true or false to indicate the that the
plugin can accessed only exclusively.

A third section, which is optional, describes the transformation of input and
ouput strings. This section is inspired by the define macro of C:

– A definition like ”BEGIN>1” would translate the incoming word ’BEGIN’
to ’1’.

– A definition like ”END<0” would translate the outgoing word ’0’ to ’END’.

3 http://www.gnu.org/software/commoncpp



– A definition like ”ROSES=2” would translate each incoming word ’ROSES’
to ’2’ and the other way round.

The next step is to define the necessary functions that are available for the
different views to the extension. The internal view, which is the same as the
plugin interface, consists of function names of arbitrary signature whereas the
external view has functions whose return values should be meaningful due to
the conversion to a string. The Common C++ library is used to define an active
extension by using the threading classes of the library.

Plugin functionality In addition to the four standard functions init, acti-
vate, deactivate, and emergencyHalt the user defined functions as defined in the
interface headers have to be implemented.

Compiling the plugin After defining the plugin internals, we are now able to
generate optional wrapper classes and dispatcher functions for external access.
This his handled by a python script which scans the external interface function
declarations and generates the internal control structure for each class and the
dispatcher. For the internal access the interface header files of the extensions are
needed which are used by the plugin. These are usually located in the include
directory which is defined by robrain. Alternatively the interface header files can
be moved into the same directory that contains the plugin.

The plugin is now ready to compile. Afterwards, the generated shared object
file is copied to the plugins directory of robrain. The configuration and interface
header file (in case that the plugin should be internally accessible) are also copied
to the according directories. A second copy with a different name of the same
shared object can be copied into that directory while using different configuration
file which correspond to the chosen name.

4.2 Runtime system

Dynamic plugin loading The dynamic loading of extensions is implemented
using the dlopen API which is provided in C. For each shared object file in the
plugins directory the file will be opened using the dlopen function. As shown in
figure 3, for every shared object file (which is recognitized by a ’.so’ suffix) an
instance is created if the file has the GETPLUGIN symbol which is detected by
using the dlsym function. Due to name mangling of C++ the instantiation of
the class has to wrapped around with extern C. It creates an instance of a class
defined by the developer and returns the pointer to the system. In case of NULL
pointer of GETPLUGIN this plugin will be dropped since every plugin has to
include this symbol which is automatically done using the mentioned shell script
new plugin.sh.

Currently, new extensions are only available at the start of robrain. The
loading of an extensions after the start sequence demands adding further func-
tionality to the system. An aspect to take care of is that extension loading must



be done by carefully checking the dependencies of each plugins since an ’unre-
solved symbols’ failure could terminate the overall system.

Plugin usage The two access methods of internal and external access require
different handling.

The internal access is done by getting a pointer of type Plugin and using the
dynamic cast function of C++ to convert the object to the desired object class.
Finally, one can access the extension functions like any other C++ object.

The external access requires the installation of the command plugin and the
interactiveshell and/or the tcpsocket extension in order to set up calls like ”call
plugin function(...)”.

command extension of type Device is responsible for parsing the incoming
call encoded into a string object by calling the corresponding plugin function and
returning the results in form of a string. Furthermore, a list of available plugins
to outside to the system can be listed, which correspondents the visibility of the
plugins to the command plugin. Therefore, the command plugin defines the link
between the plugins which can be seen from external view and the higher level
plugins which connects to the outside world. Each plugin which has to be seen
from outside needs to be a visible to the command plugin.

interactiveshell extension of type Unit opens a command line interface where
the functionality of the command plugin can be accessed.

tcpsocket extension of type Unit opens a socket port and forwards the in-
coming strings to the command plugin and vice versa.

4.3 Open Issues

Due to limitations of the programming language, we identified two issues that
need to be solved in a future version of robrain:

Symbol loading Loading or removing an extension without checking depen-
dencies could quit the system with an ’unresolved symbols’ failure since the in-
ternal access between the extensions are implemented as a raw access using the
pointer of the object after doing a dynamic cast of the plugin to the appropriate
extension class.

Data types Using the string stream operation to convert between any arbitrary
type and the string type only those types are supported that can be handled by
string streams. That means only C++ specific types and classes are allowed. In
order to use non C++ types, the particular type can be wrapped with a class
providing information how to deal with the operator<< and operator>> operators
by defining them as friends of the class and define the internal handling of
the values by overloading these operators. Figure 7 shows an example for the
definition and the usage of a new type.



1 class Complex {

2 friend ostream& operator << (ostream& output ,

3 const Complex& p);

4 ...

5 private:

6 int re;

7 int im;

8 ...

9 public:

10 ...

11 }

12 ostream& operator <<(ostream& output ,

13 const Complex& c) {

14 output << "(" << c.re << ", " << c.im <<")";

15 return output;

16 }

17 // example usage

18 Complex c;

19 cout << c;

Fig. 7. Example for definition and usage of new types

4.4 Available plugins

Several extensions have been already written for the architecture. Besides the
core applications in order to use the robot, there are plugins which arise from
multiple project and master theses.

Mocdevice We use the robot system Robertino, which comes with a simple
C library for hardware access. The Mocdevice plugin provides hardware access
and solves the need that only one instance of the library is used at a time. All
the function calls are synchronized through a mutex. Based on this extension,
higher level functionality like controlled motion, e.g. driving a given distance or
angle will be performed by the DriverUnit extension. There is also an extension
for measuring the battery status and for distance determination.

SNwExplorationUnit A sensor network plugin was created as part of a stu-
dent’s theses [5]. It provides necessary functionality to access a sensor network
consisting of Mica2 motes. Currently, it collects data from sensor nodes and
provides them to the system.

BM2 In another project, a hardware module for smart power management
(battery management and battery monitoring) was developed and adapted to
the Robertino [3]. The software component was developed in form of a plugin
for robrain which provides energy measurement and monitoring functionality.



5 Conclusions and Further Work

In conclusion it can be said that we were able to design, implement, and deploy
a software architecture for use in autonomous mobile robot systems that fulfills
all key requirements. The attempt of an easy extensible system for robot control
resulted in a software architecture that addresses a wide application area. The
system can easily be adapted to other robot platforms supporting a programming
environment using C++. During the last year, we employed the developed ro-
brain system as a basis for several project and master theses. We have discovered
that several studies can be easily conducted due to the modular structure and
the provided remote controllability. Additionally, the system was used in some
courses. The students were rapidly able to use and extend the system depending
on their needs.

More sophisticating methods like RPC-based access are planned because the
external handling through a string limits the possible usage. There are also a
work to integrate python as an easy to use language to provide task planning
and extension development. Additionally, further student projects are going on to
provide a GUI interface to the system and to use the vision hardware of the robot.
Nearly every standalone software which is actually working (and implemented in
C++) can easily be included into the system extending the existing functionality.
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