
Attack Detection using Cooperating Autonomous
Detection Systems (CATS)

Falko Dressler, Gerhard Münz, Georg Carle

University of Tübingen, Wilhelm-Schickard-Insitute of Computer Science,
Computer Networks and Internet, Auf der Morgenstelle 10C

72076 Tübingen, Germany
Phone +49 7071 29-70522, Fax +49 7071 29-5220

{dressler, muenz, carle}@informatik.uni-tuebingen.de
http://net.informatik.uni-tuebingen.de/

Abstract. Today’s communication networks are threatened by an increasing
number intrusion attempts, worms, and denial of service (DoS) attacks. Apart
from general measures for attack prevention, the possibility to detect ongoing
attacks in order to take appropriate countermeasures constitutes an important
asset for network security. We present a novel approach for attack detection
based on cooperating autonomous detection systems (CATS). While a single
detection system is able to identify ongoing attacks autonomously, cooperation
with remote detection systems located in other parts of the network can improve
the detection performance.

1 Introduction
The detection of intrusions, violations, and attacks is a significant task in nowadays
communication networks. A brief history and overview to intrusion detection is, for
example, given by Kemmerer and Vigna [13]. The number of denial of service attacks
(DoS) and distributed denial of service attacks (DDoS) is increasing every day.
Typically, important servers from government or industrial systems are attacked, yet
we already see similar attacks against primary systems at universities. In addition, the
effectiveness and malignance of such attacks is increasing [12].

In this paper we present a novel approach addressing these problems: CATS, a
Cooperating Autonomous deTection System. The goal is to identify ongoing attacks
using autonomously working detection system that are able to improve their detection
performance through cooperation in a group of multiple detection systems. We use a
common taxonomy of attack detection systems in order to classify and compare our
approach with existing systems.

The proposed detection system will be implemented and used in the context of
Diadem Firewall, an IST funded project [1].

The rest of the paper is organized as follows. A taxonomy of attack detection
systems as well as a review of related work is presented in section 2. General
requirements for an efficient detection system are discussed in section 3. Our novel
approach for intrusion detection, the cooperating autonomous detection system, is
presented in section 4. Section 5 evaluates the proposed system and compares it to
existing detection systems. Finally, the conclusions are provided in section 6.

2 Taxonomy and related work
In order to classify our novel approach for cooperative autonomous detection of
intrusions and DoS attacks, we first provide a taxonomy of detection systems and an
overview of related work.

2.1 Taxonomy

Several attempts have been made in order to provide a taxonomy and classification of
intrusion detection systems (IDS) as well as denial of service (DoS) attacks and
detection techniques [2, 14, 15]. We provide a brief taxonomy of detection techniques
and define the terms used in this paper.

First, we use the term “attack detection” instead of “intrusion detection” because
we do not want only refer to the detection of intrusion attempts into a protected
system, but also include the detection of attacks that aim to disturb the well
functioning of the system, e.g. by causing system break-downs, resource exhaustion or
any other kind of DoS to legitimate users. Furthermore, we define the term “attack” as
any kind of intrusion or DoS attack. We define the term “detection system” as a
system that performs detection of intrusions, DoS attacks, or both. This generalization
is reasonable since most of today’s systems combine intrusion and DoS attack
detection.

A common classification criterion distinguishes two types of attack detection: host-
based and network-based detection. Host-based detection is restricted to a single host.
Typically the detection system is directly executed on the protected host, which allows
access to a wide range of security-related information, like log file entries, the state of
running processes and logged-on users. It also allows analyzing network
communication on any protocol layer, including the content of encrypted connections.
In contrast, network-based detection addresses a network including the traffic from
and to the connected hosts. Such a detection system is usually executed on a dedicated
machine that passively captures and analyses the traffic on the network. As an
advantage, network-based detection does not require any changes of the protected
hosts and networks, and one system is sufficient for a larger number of hosts. On the
other hand, the captured network traffic is the only source of information that can be
used.

Another criterion refers to the detection method. We distinguish between
knowledge-based detection, also known as rule-based detection, and anomaly
detection. Knowledge-based detection comprises any method that disposes
information about known attacks with the purpose to search for equal or similar
occurrences. In case of network-based detection, systems that search the captured
packets for attack signatures and bit patterns belong to this category, but also any
systems that look for potential misbehavior and suspicious usage of protocols (e.g.
during a port scan). Anomaly detection uses an opposite approach: based on
information about normal network or system behavior, a significant derivation from
this reference model is considered as indicator of a potential attack. Anomaly
detection is able to recognize previously unknown attacks. However, derivation from
normal behavior can have other reasons than attacks, resulting in false positives.
Anomaly detection can be built on statistical tests and analysis.

If more than one host or larger networks are to be surveyed, a distributed detection
system consisting of several subsystems can be deployed. These subsystems are
located on different host or in different parts of the network. According to the

relationship between the subsystems, we adopt the classification of [15] and
differentiate between autonomous, cooperative, and interdependent subsystems.
Autonomous subsystems act as independent and fully functional detection systems, i.e.
they detect attacks independently without communication or interaction between them.
Even if such subsystems deliver their detection results to a centralized entity e.g. a
common database, they would still operate in an autonomous way. Cooperative
subsystems are capable of autonomous detection. In addition, they can improve their
detection performance through cooperation. Interdependent subsystems cannot
operate autonomously, e.g. because one subsystem controls other subsystems in order
to coordinate the detection process. Another example is a distributed detection system
that organizes its subsystems in a hierarchical manner. In this case, two aspects of
interdependency are possible: subsystems of higher hierarchy levels may control
subsystems of lower levels, or subsystems of higher levels may depend on data
delivered by lower-level subsystems.

Figures 1 to 3 show three examples of distributed detection systems with
autonomous, cooperative and interdependent subsystems. Optional parts are drawn in
dashed lines. In figure 1, the subsystems work autonomously without any cooperation.
An optional centralized database can be used to gather all alerts generated by the
subsystems. Figure 2 shows a detection system of autonomous subsystems that
cooperate with each other. Again, alerts might be collected in a centralized database.
Finally, a system of interdependent subsystems is depicted in figure 3. The detection
subsystems are controlled by a centralized controller subsystem that might optionally
adapt its control according to the reported alerts.

Centralized
Database

Autonomous
Subsystem 1

Autonomous
Subsystem 3

Autonomous
Subsystem 2

Alerts

Centralized
Database

Autonomous
Subsystem 1

Autonomous
Subsystem 3

Autonomous
Subsystem 2

Alerts

Fig 1. Distributed detection system with autonomous subsystems

Centralized
Database

Cooperative
Subsystem 1

Cooperative
Subsystem 3

Cooperative
Subsystem 2

Alerts

Exchange of
Cooperative
Information

Centralized
Database

Cooperative
Subsystem 1

Cooperative
Subsystem 3

Cooperative
Subsystem 2

Alerts

Exchange of
Cooperative
Information

Fig 2. Distributed detection system with cooperative autonomous subsystems

Control
Subsystem

Detection
Subsystem 1

Detection
Subsystem 3

Detection
Subsystem 2

Alerts
Control

Control
Subsystem

Detection
Subsystem 1

Detection
Subsystem 3

Detection
Subsystem 2

Alerts
Control

Fig 3. Distributed detection system with interdependent subsystems

2.2 Related work

In this section, we present four examples of relevant related work in the area of
distributed detection systems. Some of them also provide automatic response
functionality. However, in the context of this paper we concentrate on the detection
mechanisms.

EMERALD [19] is a distributed detection and response system that has been
developed at the SRI research institute in 1997. EMERALD was conceived to apply
mainly host-based detection techniques, but its architecture is also suitable for
network-based detection. It applies both knowledge-based and anomaly detection
methods. The subsystems, called monitors, are organized in a three-level hierarchy.
Each monitor of the two higher levels receives and correlates the detection results of
various monitors of the corresponding lower level. Therefore, a subscription-based
communication scheme is used that allows the subscriber to specify in which kind of
detection results it is interested. According to our taxonomy, the EMERALD monitors
can be classified as interdependent subsystems since monitors of higher levels depend
on the detection results of lower-level monitors.

Prelude IDS [4, 21, 22] is an open-source project that consists of three functional
components: sensors, managers, and countermeasure agents. The sensors deploy
knowledge-based techniques for both network and host-based detection. Anomaly
detection is not applied. Several sensors are associated to a manager that receives the
detection alerts: it processes and correlates the alerts and decides on appropriate
countermeasures. If more than one manager is used, the managers are organized in a
hierarchy with a single one at the top. Since both sensors and managers are subsystems
that are involved in the detection process and since managers depend on the results
delivered by the sensors, the Prelude subsystems can be classified as interdependent.

D-WARD [16] is a network-based DDoS detection and defense system developed
by Jelena Mirkovic at the University of California Los Angeles (UCLA). The
D-WARD architecture consists of fully autonomous subsystems that are deployed at
the entry points of so-called source-end networks. The subsystems analyze and control
the outgoing traffic with the goal to prevent hosts of the observed networks from
participating in DDoS attacks. Therefore each subsystem autonomously imposes rate
limits on suspicious flows. The detection method is based on predefined models of
normal traffic and can thus be classified as anomaly detection.

COSSACK [17] is a distributed, network-based DDoS attack detection and
response system developed at the Information Science Institute (ISI) of the University
of Southern California, funded by DARPA. The COSSACK subsystems, called

watchdogs, are located at edge networks. If a watchdog detects an attack against the
associated edge network, it multicasts an attack notification to the other watchdogs.
Upon reception of such a notification, a watchdog checks if the attack flow or parts of
it originate from its own edge network. If so, the watchdog tries to block or rate-limit
the corresponding flow by setting filter rules in routers or firewalls. With respect to
attack detection, the subsystems can be classified as cooperative since the notification
messages help other watchdogs to detect an ongoing attack. COSSACK principally
applies anomaly detection techniques.

Table 1 summarizes the classification of the presented systems. It already includes
our novel approach CATS whose detailed description follows in section 4.

Table 1 Overview of existing distributed detection systems

System Type of detection Detection methods Relationship between
subsystems

EMERALD host-based knowledge-based
and anomaly
detection

interdependent

Prelude IDS host-based and
network-based

knowledge-based
detection

interdependent

D-WARD network-based anomaly detection autonomous
COSSACK network-based anomaly detection cooperative
CATS network-based knowledge-based

and anomaly
detection

cooperative

3 General requirements for autonomous attack detection
In this section we concentrate on general requirements for distributed attack detection.
Based on this set of requirements, existing detection systems as well as our novel
approach, CATS, can be assessed. The requirements are introduced using two typical
denial of service scenarios, which are described in the following section.

3.1 Denial of service scenarios

Denial of service attacks focus on the prevention of an offered service. This can be
done in two ways: first, by exhausting network resources on the path towards the
target server and secondly, by exhausting resources of that server. An example for the
first scenario is a distributed ICMP flood attack. A TCP SYN flood attack is an
example for the second scenario. Both scenarios are depicted in figure 4. Further
information on distributed denial-of-service attacks can be found in [6].

Fig 4. Typical denial of service scenarios. A: ICMP flood using a reflector
network; B: TCP SYN flood using intermediate systems, e.g. compromised /
malicious computers

3.1.1 ICMP flood attack
An ICMP flood attack can take place in two ways. First, so called broadcast pings can
be employed utilizing an unsecured reflector network for forwarding the ICMP echo
request messages towards a victim network. Secondly, IP address spoofing can be
used by sending ICMP echo requests to multiple stations in the network with the IP
address of the victim inserted in the source IP address of each packet. All the receivers
of these ICMP request will answer by sending an appropriate response to the victim,
from which they think the request was coming from. This scenario is shown in figure
4A. The result of this attack is an overload of the network paths near the victim.
Therefore, normal service requests suffer from the artificial network congestion and
cannot be served in an adequate time.

3.1.2 TCP SYN flood attack
The goal of a TCP SYN flood attack (see figure 4B) is to exhaust local resources at
the victim. TCP is a connection oriented transport protocol. Thus, in order to transmit
data, a connection has to be established first. This is done by sending a TCP SYN
packet which is answered by an ACK+SYN. After the reception of the SYN packet, a
half-open connection remains until it is timed out or the ACK+SYN is being
answered.

Benefiting form this working principle of TCP, TYP SYN flood attacks employ
compromised computers as a relay for a particular attack. All the relay hosts are
commanded to send as many TCP SYN packets as possible to the victim. Resources
required for state information of half-open connections are exhausted quickly,
preventing the victim from receiving legitimate service requests.

3.2 Requirements for detection systems

Based on the described scenarios, general requirements for detection systems are
derived in the following.

3.2.1 Detection of attacks
The capability of a detection system to detect anomalies and concrete attacks in a
local context is evident. The capability of the detection system to detect anomalies and
attacks in a global context is also important. The key properties of detection
mechanisms are listed in the following.

victim

victim

attacker

attacker

…

…

A) B)

reflector network

intermediate systems

Local context
Attack detection in a local context, i.e. based on information from packet data
received at the detection system only is a straightforward process integrated in almost
all detection systems. This capability requires no intercommunication or interaction
with other detection systems. Both types of attacks (see figure 4) can be detected by a
system near the victim. Nevertheless, only a system near the attacker is able to detect
the source of the attack if IP address spoofing techniques are used.

Additionally, traceback mechanisms can be deployed to identify the source of a
spoofed IP packet. Unfortunately, such mechanisms have significant resource
requirements.
Global context
Using a global context, i.e. information gathered at multiple points in the network,
allows improved detection of ongoing attacks in the network. Both scenarios
described before can be detected with a global context. Therefore, this capability is an
essential requirement. The communication overhead introduced by the different
interacting detection systems is an important performance measure of the complete
system.
Knowledge-based detection
Knowledge-based detection was the first kind of attack detection deployed in the
Internet. While statistical conclusions are not possible, well-known attacks can be
detected efficiently using this methodology.
Anomaly detection
The capability to employ anomaly detection mechanisms is a further requirement for
highly accurate attack detection. With the increasing capacities of network links, pure
knowledge-based detection systems suffer from their inability to process every single
data packet. By employing statistical methods for anomaly detection, high-speed
detection engines can be realized. Anomaly detection also allows to detect new kinds
of attacks, or slightly modified variants of known ones, that cannot be detected by
knowledge-based systems.

3.2.2 Autonomous behavior
To prevent a distributed detection system from becoming a target itself and to increase
the availability of the overall system, each subsystem should perform attack detection
autonomously. The intercommunication between the subsystems may increase the
detection accuracy but should not become a pre-requisite for the functionality of the
global detection system. Autonomous behavior requires the following capabilities:
Self-Configuration
A first requirement for autonomous behavior is the capability of self-configuration.
Starting from a master configuration, or even starting from scratch, the system must be
capable to set all required configuration parameters, such as the current location of the
probe or the type and number of neighboring entities to which communication
relationships are to be applied.
Self-Maintenance
Self-maintenance is the process of adapting the configuration parameters to the current
situation. Autonomously working entities must be capable to adapt to a changing
environment. This adaptation, typically realized by reconfiguration of runtime
parameters, comprises of changes in the resource management and in the
configuration of tasks and processes.

Self-Healing
Self-healing is an important function of autonomously working entities. In the case of
problems, mechanisms must be available which determine the kind of problem and
initiate a healing process. For example, if the system faces memory shortages, the
attack detection must be modified by selecting algorithms and parameters which
require less memory (while typically resulting in a lower detection rate).
Self-Optimization
Finally, self-optimization is an important requirement for autonomous systems. In this
context we understand self-optimization as the ability to optimize the detection
quality. This can be achieved by exchanging information about already identified
attacks or suspicious network connections and also by statistically forwarding parts of
collected data packets and network statistics to neighboring probes.

3.2.3 Distributed intelligence
A detection system can benefit from distributed intelligence. In the context of attack
detection, we distinguish between two aspects of distributed intelligence: distributed
detection, and separation of monitoring and detection functionalities.
Distributed detection
Distributed detection means that multiple detection systems are involved in the
detection process, each analyzing a variable part of the monitored data. As a
consequence, the detection load can be partitioned dynamically according to the
available resources at the different detection engines.
Separation of monitoring and detection
Monitoring and detection functionalities should be separated in order to allow for an
analysis of the monitored data at different locations and in different contexts. As a
consequence, distributed intelligence may improve the detection performance and may
increase the robustness of the whole system.

4 Cooperative autonomous attack detection
The objective of this section is to describe our novel approach for attack detection
using cooperative autonomous detection systems. First, the architecture is presented
followed by a classification of our approach based on the presented taxonomy.

4.1 Architecture of our novel autonomous detection system

The architecture of an individual detection system is depicted in figure 5. It consists of
an outer part for network monitoring and an inner part for detection.

The network monitoring part is responsible for capturing packets and flow statistics
from the network, either directly using a connected network interface, or by
employing monitoring probes and the standardized IP flow export (IPFIX) [7, 20] and
packet sampling (PSAMP) [8, 11] protocols. This part also performs necessary
preprocessing of the gathered data, such as packet filtering or generation of statistical
flow measurements needed by the detection part. It is further divided into a layer for
packet monitoring and sampling and a layer for statistical measurements.

The detection part is divided into two detection engines, one providing statistical
anomaly detection and the other applying knowledge-based detection mechanisms.
The required packet data and statistical measures are provided by the network
monitoring part.

The main reason for separating the network monitoring part and the detection part
is to allow for a multi-hierarchy monitoring environment for capturing packets and
flow statistics. The accounting NSLP protocol [10] can be employed for the
configuration of the monitoring environment. This allows for deploying one detection
system that analyzes data monitored at different points of the network. Furthermore, a
detection system can become itself a source of information to other detection systems
by exporting monitoring data.

Fig 5. Architecture of our novel autonomous detection system

In the following subsections, the network monitoring part and the detection part of
the detection system are described in more detail.

4.1.1 Packet monitoring and sampling layer
The architecture of our detection system allows two ways to capture packet data from
the network: by using a directly connected NIC, and by employing PSAMP exporters,
which send the collected information in a standardized way [9]. The packet
monitoring and sampling layer is responsible for capturing of packet data received via
NICs or PSAMP. Moreover this layer may preprocess the packet data. Filters or
sampling algorithms may be applied to reduce the amount of packets being further
processed.

Within the detection system, the collected packet data is used for two purposes.
First it can be directly passed on to the detection part in order to look for known attack
signatures. Secondly it can be forwarded to the statistical measurement layer that
generates flow statistics from the packet data. Additionally, the detection system can
export packet data to other detection systems using PSAMP. This functionality is
described in section 4.1.5.

4.1.2 Statistical measurement layer
The statistical measurement layer generates statistical flow measures based on the
packet data received by the packet monitoring and sampling layer, and the flow
statistics received via IPFIX. Examples for statistical measures are the number of
bytes and packets per flow or per aggregate, the number of connections per time, and

Packet monitoring & sampling

Statistical measures
- bit rate, packet rate, # of connections,...
- gathered per aggregate or single flow

Knowledge-based
detection

looking for known
signatures and
misbehavior

Potential Tools:
- Snort & Plugins
- Bro

Raw Packet
Data

IPFIX
Data

PSAMP
Data

IPFIX
Data

Events &
Characterization

Events &
Characterization

PSAMP
Data

Anomaly detection
looking for unusual behavior
without any precognition

- comparing long-time behavior
to short-time behavior

- maintaining different profiles
(per destination, aggregate,...)

Potential Techniques:
- statistical tests, neural networks,

Bayes networks

the number of similar connections. The resulting statistical measures build the basis
for further anomaly detections. For instance, an unusually high connection rate may
indicate a distributed denial of service attack where typically each connection consists
of only a single packet.

The statistical measurement layer does not only provide the data for the local
detection mechanisms. It may also export the generated flow statistics via IPFIX.
Using the terms of IPFIX [7], this corresponds to the functionality of an exporter or
concentrator.

4.1.3 Anomaly detection
In our novel detection system, we integrate two separate, independently working
detection engines - an anomaly detection engine and a knowledge-based detection
engine - in order to achieve high detection rates. The detection of an attack results in
the generation of an event that is combined with additional information for
characterizing the attack. This information can be exchanged with other detection
systems in order to improve the detection performance. On the other hand, it can be
used to trigger appropriate countermeasures.

The anomaly detection works on statistical data received from the lower statistical
measurement layer. This detection process is looking for unusual behavior without any
precognition. It compares long-time behavior to short-time behavior and maintains
different profiles, e.g. per destination, aggregate, and others. Potential techniques are
statistical tests, neural networks, and Bayes networks. The architecture of our
autonomous detection system allows to integrate a variety of other detection
algorithms.

4.1.4 Knowledge-based detection
The knowledge-based approach represents the second main pillar of our detection
engine. This engine searches the packet stream for known signatures and
misbehaviors. Open-source tools such as snort [3, 5] and Bro [18], which are widely
used in the Internet community, build the basis for this part of the detection.

4.1.5 Export of packet data and flow statistics
One detection system is capable of exporting packet data and flow statistics to other
detection systems using PSAMP and IPFIX. This export capability is useful since one
system might not be able to process all interesting or suspicious packet data and flow
statistics. Through the export, it is possible to delegate parts of the detection work to
other systems. A much more important advantage is the possibility to organize several
detection systems in a multi-level hierarchy. In such a constellation, some systems
may focus on processing data from their local environment. While performing attack
detection using locally captured packet data, these detection systems also forward
packet data and flow statistics to systems of a higher hierarchy level. Higher-level
systems receive and process data from various parts of the network. Hence, a system
of a higher-level may be able to examine certain aspects of an attack better than the
lower-layer systems. This is particularly true for distributed attacks.

The detection systems use PSAMP and IPFIX both for data from monitoring
probes, and for data from other detection systems.

4.2 Cooperation of multiple autonomous detection systems

So far, an individual, autonomously operating detection system can achieve a good
detection rate by incorporating features from different approaches: knowledge-based
detection and anomaly analysis. Additionally, the possibility to use a nearly unlimited

monitoring network allows to gather packet data from multiple points in the network.
From this respect, our approach is directly comparable to distributed detection
systems such as EMERALD and Prelude IDS. However, our approach can achieve
significant advantages due to its double detection mechanisms.

In this section we show how the detection quality can be enhanced further by
loosely coupling multiple autonomous detection systems to cooperating ones, which
additionally improves the overall detection quality.

Figure 6 shows a diagram of multiple interacting detection systems. Apart from the
export of sampled packets and flow statistics using PSAMP and IPFIX (see section
4.1.5), the interaction between the systems is based on the exchange of information
about suspicious network traffic.

Fig 6. Interactions between multiple autonomously working detection systems

We assume that several types of attacks cannot be detected directly, especially
distributed attacks. Instead, only assumptions can be generated about which packets or
flows may belong to attacks. There are two main reasons for this:

1. Typically, a detection system obtains only a fraction of the packets belonging
to an ongoing attack because it is not located directly at the attacker or at the
victim.

2. In multi-gigabit networks, the capacity of monitoring probes and detection
systems is limited. Frequently, sampling algorithms are employed for coping
with the high data rates, which also drop packets belonging to an attack.

We address both problems by creating state information for all suspicious data
flows. Starting from a first assumption of an ongoing attack, the detection system has
to refine the analysis in order to confirm or reject the assumption. In a first step, the
aggregation level will be decreased until the potential attack flows can be isolated and
a corresponding filter rule can be formulated. Subsequently, the filters at the
monitoring probe and the detection systems can then be programmed in order to
capture and analyze all packets belonging to the suspicious flows. Ideally, sampling
algorithms are applied only on packets that do not belong to suspicious flows.

In case that deeper analysis confirms an initial assumption, the state information is
sent to other detection systems. Other systems that have not yet detected the same
attack flow proceed as if the state information was a local assumption, trying to
confirm or reject it by refining the analysis. As a result, the detection system can either
affirm that it observes the same attack flow, or it dismisses the state information.

Therefore, the cooperation of detection systems allows to improve the detection
rate significantly and helps to identify the path of the attack flows through the
network.

5 Evaluation of cooperating autonomous detection systems
In order to evaluate our concept of cooperating autonomous detection systems, we
first provide a classification according to our taxonomy. Then we show how the
general requirements given in section 3 are fulfilled. Finally we compare CATS with
existing approaches.

5.1 Classification

Our detection system provides network-based attack detection. It applies both
knowledge-based and anomaly detection methods. Since the two methods are
complementary, a combination allows to benefit from the advantages of both methods
while mitigating the individual drawbacks. Finally, our concept can be classified as
cooperative, since the individual detection systems work autonomously while
improving their detection performance through cooperation.

5.2 Assessment based on the requirements

In section 3, we listed general requirements for attack detection systems. In this
section, we show how CATS satisfies them.

First, we stated that attack detection should support both a local and a global
context. Most existing detection systems are limited to attack detection in a local
context, using monitoring data from the local environment. There exist some
mechanisms for a global context, in particular the traceback mechanisms. However, in
most cases attack detection in a global context is reduced to the deployment of
independent, local detection systems at various locations in the network and a central
entity that receives the detection results. Our system addresses the global context
requirement in two ways. First, the clear separation of network monitoring and attack
detection allows that each individual detection system processes monitoring data
received from monitoring probes located at remote parts of the network. Secondly, the
cooperation between different detection systems allows distributed detection in a
global context.

In compliance to the requirements, our approach provides both knowledge-based
and anomaly detection using two distinct detection engines.

With respect to the desired autonomous behavior, we outline some design aspects
concerning the four categories self-configuration, self-maintenance, self-healing, and
self-optimization. With respect to self-configuration, a discovery mechanism is needed
that enables the detection system to discover monitoring probes as well as other
detection systems for cooperation. For this purpose, service discovery mechanisms
that have been developed for other problem domains can be employed. Self-
maintenance and self-healing address the ability to adapt the monitoring and detection
load according to the available resources of monitoring probes and detection systems
by setting PSAMP and IPFIX parameters accordingly. An aspect of self-optimization
is the capability to refine the applied analysis methods in order to confirm or reject
initial attack assumptions. The usage of dynamic profiles instead of fix thresholds for
anomaly detection allows self-optimization according to temporally changing network
conditions.

Last but not least, our approach profits from distributed intelligence through the
separation of monitoring and detection functionalities and the cooperation between
multiple detection systems.

5.3 Comparison with other attack detection approaches

In section 2.2, we briefly presented four research projects in the area of distributed
detection systems. The only cooperative system was COSSACK. COSSACK also is
the most recent project, and appears superior to the other three systems. Therefore, we
concentrate on a comparison of our detection system with the COSSACK system.

The main differences between COSSACK and our system are the employed
detection methods, the location of deployment in the network, and the treatment of
spoofed source addresses.

5.3.1 Employed detection methods
COSSACK applies so-called “blind” detection techniques, which corresponds to
anomaly detection in our taxonomy. Our proposed detection engine integrates both
knowledge-based and anomaly detection.

5.3.2 Location of deployment
COSSACK watchdogs are deployed at edge networks in order to detect attacks against
hosts inside the surveyed network. Instead, our detection system can be deployed
anywhere in the network. Moreover we think that a deployment of several detection
systems at appropriate locations inside the network is promising. Such locations may
be access routers, gateways, but also core routers.

Papadopoulos et al. discuss the question of location in [17]. Apparently they
abandoned the idea to place their watchdogs inside the core of the network. First, they
argue that monitoring and detection cannot be performed at line speed because of the
very large link bandwidth. Our solution faces this problem using packet sampling and
aggregated flow statistics. Hence, the monitoring and detection load can be controlled
and limited by adapting the PSAMP and IPFIX parameters accordingly. As soon as a
profound assumption of an attack exists, the sampling rate as well as the level of
aggregation for the corresponding flow is lowered for deeper analysis of what is going
on.

Papadopoulos [17] presents another reason for not deploying the watchdogs in the
core network: Watchdogs classify flows according to predefined aggregate rate
thresholds. These thresholds are set depending on the link bandwidth between the
edge network and the core. However, in the core only coarse approximations of the
edge link bandwidth are available. We do not use fixed thresholds but dynamic
profiles for anomaly detection. These profiles do not rely on prior knowledge since
they are created in a self-learning process.

5.3.3 Source address spoofing
COSSACK watchdogs identify the origin of an attack examining the source addresses
of the corresponding packets. Obviously this method does not work if attackers use
spoofed source addresses. Papadopoulos et al mention this problem without
addressing it any further, arguing that there are sufficient technical remedies like
egress and ingress filters that inhibit source address spoofing. We do not think that
such filters can be applied in all possible cases (see also [6]). Instead we prefer not to
rely on the correctness of source addresses. Using our cooperating detection systems,
it should be possible to track the course of the attack flow by identifying the
monitoring probes where the flow has been seen. Even though the origin networks
cannot be identified exactly with this method, we still will be able to determine where
the attack flow could be preferably blocked or rate-limited.

5.4 Assessment Summary

In Table 2, we compare CATS with related detection systems regarding their
fulfillment of the requirements depicted in section 3.2. Obviously, CATS is the only
system that fulfills all requirements.

Table 2 Requirements analysis

 EMER-
ALD

Prelude
IDS

D-
WARD

COSS-
ACK

CATS

Local
context

yes yes yes yes yes

Global
context

no (host-
based)

no no yes yes

Knowledge-
based detection

yes yes no no yes

Attack
detection

Anomaly
detection

yes no yes yes yes

Autonomous behavior

no no yes yes yes

Sep. of monitor-
ring & detection

no no no no yes Distributed
intelligence

Distributed
detection

yes partly no no yes

6 Conclusions
In this paper we presented a novel approach for efficient and high-quality attack
detection called CATS. The proposed detection system makes use of a distributed
monitoring environment and achieves improved detection results through cooperation
with remote detection systems. The detection quality is further increased by
combining anomaly and knowledge-based detection mechanisms.

In order to assess our approach, we provided a conceptual comparison with existing
systems. We conclude that our approach allows to achieve significant performance
enhancements compared to existing approaches. Currently, we are implementing a
prototype of the detection system in the context of the Diadem Firewall [1] project.
This prototype will allow us to verify the capabilities of the detection system using
real-world and simulated traffic.

7 References
1. "Diadem Firewall," EU FP6 Project IST-2002-002154, http://www.diadem-firewall.org

(2004)
2. R. Bace and P. Mell, "Intrusion Detection Systems," NIST (2001)
3. J. Beale and B. Caswell, Snort 2.1 Intrusion Detection, 2nd edition ed, Syngress, 2004
4. M. Blanc, L. Oudot, and V. Glaume, "Global Intrusion Detection: Prelude Hybrid IDS,"

Technical Report (2003)
5. B. Caswell and J. Hewlett, "Snort Users Manual," The Snort Project, Manual (2004)
6. R. K. C. Chang, "Defending against Flooding-Based Distributed Denial-of-Service Attacks:

A Tutorial," IEEE Communications Magazine, vol. 10 (2002) 42-51
7. B. Claise, M. Fullmer, P. Calato, and R. Penno, "IPFIX Protocol Specifications," in draft-

ietf-ipfix-protocol-03.txt (2004)

8. B. Claise, "Packet Sampling (PSAMP) Protocol Specifications," in draft-ietf-psamp-
protocol-01.txt (2004)

9. T. Dietz, F. Dressler, G. Carle, and B. Claise, "Information Model for Packet Sampling
Exports," Internet-Draft, draft-ietf-psamp-info-01.txt (2004)

10. F. Dressler, G. Carle, C. Fan, C. Kappler, and H. Tschofenig, "NSLP for Accounting
Configuration Signaling," Internet-Draft, draft-dressler-nsis-accounting-nslp-00.txt (2004)

11. N. Duffield, "A Framework for Packet Selection and Reporting," in draft-ietf-psamp-
framework-05.txt (2003)

12. M. Handley, "Internet Denial of Service Considerations," draft-iab-dos-00.txt (2004)
13. R. Kemmerer and G. Vigna, "Intrusion Detection: A Brief History and Overview," IEEE

Computer (2002) 27-30
14. R. B. Lee, "Taxonomies of Distributed Denial of Service Networks, Attacks, Tools, and

Countermeasures," Princeton University, Technical Report (2004)
15. J. Mirkovic, J. Martin, and P. Reiher, "A Taxonomy of DDoS Attacks and DDoS Defense

Mechanisms," University of California, Los Angeles, Technical Report #020018 (2002)
16. J. Mirkovic, G. Prier, and P. Reiher, "Attacking DDoS at the Source," Proceedings of 10th

IEEE International Conference on Network Protocols (ICNP 2002), Paris, France (2002)
312-321

17. C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan, "COSSACK:
Coordinated Suppression of Simultaneous Attacks," Proceedings of DARPA Information
Survivability Conference and Exposition, Washington DC, USA (2003)

18. V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time," Comuter
Networks, vol. 31 (1999) 2435-2463

19. P. A. Porras and P. G. Neumann, "EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances," Proceedings of National Information Systems Security
Conference (1997)

20. J. Quittek, T. Zseby, B. Claise, and S. Zander, "Requirements for IP Flow Information
Export," in draft-ietf-ipfix-reqs-16.txt (2004)

21. K. Zaraska, "IDS Active Response Mechanisms: Countermeasure Subsytem for Prelude
IDS," Technical Report (2002)

22. K. Zaraska, "Prelude IDS: current state and development perspectives," Technical Report
(2003)

