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Abstract—This paper addresses the problem of maximizing
the downlink sum-rate in passive Reconfigurable Intelligent
Surface (RIS)-assisted Cell-Free MIMO (CF-MIMO) networks.
To circumvent the prohibitive signaling overhead inherent in
instantaneous Channel State Information (CSI) acquisition, a sta-
tistical CSI-based framework is proposed, effectively minimizing
estimation burdens. A tractable expression for the sum spectral
efficiency is first derived, based on statistics obtained from
Minimum Mean Squared Error (MMSE) channel estimation.
The resulting optimization problem is non-convex and involves
the joint design of Access Point (AP) transmit power and RIS
phase shifts. To efficiently solve this problem, an Alternating
Optimization (AO) scheme is developed to decompose it into two
subproblems: power allocation, addressed via the Weighted Mini-
mum Mean Squared Error (WMMSE) algorithm, and phase-shift
optimization, tackled using a model-driven Projected Gradient
Ascent (PGA) approach. Simulation results demonstrate that the
proposed framework significantly enhances both spectral and
energy efficiency compared to existing baseline methods, while
ensuring rapid convergence and improved system reliability,
thereby validating the effectiveness of the statistical CSI-driven
design.

Index Terms—Cell-Free MIMO, Reconfigurable Intelligent
Surface (RIS), Alternating Optimization (AO), WMMSE, Pro-
jected Gradient Ascent (PGA), Statistical CSI.

I. INTRODUCTION

Future 5G and 6G demand massive connectivity and high
throughput which are severely constrained by inter-cell inter-
ference in cellular architectures. CF-MIMO overcomes this
limitation through a user-centric structure where many dis-
tributed Access Points (APs) jointly serve all users, providing
a uniformly high quality of service [1]. However, the practical
deployment of CF-MIMO faces challenges in harsh propaga-
tion environments, where signal blockages and deep fading
severely attenuate the direct links, leading to an unpredictable
degradation in achievable data rates and coverage uniformity
[2].

To address these issues, RISs are introduced as a low-
cost, energy-efficient solution [3]. Passive RISs introduce
multiplicative fading, making random phase configurations
ineffective [1]. Unlocking the network potential requires com-
plex joint optimization of AP power and RIS phases. However,
acquiring the instantaneous CSI required for such optimization
incurs prohibitive signaling, scaling poorly with the number of
RIS elements.

To overcome the dual challenges of high Channel State
Information (CSI) overhead and algorithmic complexity, this

work proposes a statistical CSI-based approach. The primary
contributions of this work are summarized below:

• We formulate the downlink sum-rate maximization prob-
lem for a passive RIS-assisted CF-MIMO system, relying
solely on statistical CSI. This approach significantly
reduces the channel estimation overhead compared to
methods requiring instantaneous CSI.

• A tractable expression for the sum spectral efficiency is
derived based on MMSE channel estimates and statistical
CSI. This expression accounts for the effects of beam-
forming uncertainty and inter-user interference, enabling
efficient optimization.

• We propose a low-complexity (a computationally effi-
cient) AO framework to solve the non-convex joint op-
timization problem. The framework decouples the prob-
lem into two sub-problems: power control optimization
solved using the WMMSE algorithm and RIS phase-shift
optimization solved using a model-based PGA method.

These contributions collectively address the gap in existing
literature by providing a low-overhead, model-based optimiza-
tion framework that efficiently enhances both spectral and
energy efficiency in RIS-aided cell-free systems using only
statistical CSI.

II. LITERATURE REVIEW

Existing research in CF-MIMO has diverged. Authors in [4]
propose a two-timescale scheme, employing instantaneous CSI
for APs and statistical CSI for the RIS, which still requires sig-
nificant estimation overhead for the AP-to-user links. Others
operating solely on statistical CSI have resorted to heuristic
or complex algorithms. For example, in [5], authors tackle
sum Spectral Efficiency (SE) maximization using a successive-
QT algorithm combined with a computationally intensive and
complex Particle Swarm Optimization (PSO) heuristic for the
phase optimization.

In contrast, several recent works focus primarily on perfor-
mance evaluation. For instance, the authors in [6] analyzed the
Hybrid Relay-Reflecting Intelligent Surface (HR-RIS) system,
but relied on simplified equal power allocation. Similarly,
in [7], the authors derived closed-form expressions for the
spectral efficiency of wireless-powered RIS-aided CF-MIMO
networks using two-layer decoding. While providing valuable
analytical insights into these complex architectures, these



studies do not propose a joint optimization framework to
actively enhance the system performance.

Recent efforts addressing robustness and fairness often
incur high computational overhead. For instance, [8] and [9]
employed complex iterative schemes, such as the Penalty
Convex-Concave Procedure (P-CCP) and Successive Convex
Approximation (SCA), to maximize worst-case sum rate and
fairness-based energy efficiency (EE), respectively; however,
these methods require solving sequences of convex problems,
introducing significant delays. Similarly, [10] tackled EE
maximization via Quadratic and Lagrangian transforms but
explicitly resorted to a Deep Learning alternative to mitigate
the high complexity of the iterative approach.

Recent works exploit statistical CSI to reduce pilot over-
head, yet gaps remain. Studies like [11] and [12] are limited to
multi-cell architectures, missing the macro-diversity gains of
cell-free systems. While [13] addresses the cell-free context,
their work is tailored to STAR-RIS hardware and relies on
meta-heuristic algorithms. Consequently, analytically tractable
joint optimization for standard RIS-aided cell-free massive
MIMO remains largely unexplored.

Consequently, recent approaches in CF-MIMO resort to
data-driven learning methods to bypass the optimization com-
plexity. For instance, in [14], the authors employ a Multi-
Agent Deep Reinforcement Learning (MA-DRL) framework
to jointly design beamforming and reflection codebooks. While
effective for distributed implementation, such DRL-based so-
lutions suffer from high training latency, lack of interpretabil-
ity, and significant computational overhead during the learning
phase compared to direct model-based optimization.

Based on the above survey, there is still a need for de-
veloping a model based optimization framework that has a
low computational complexity and depends only on statistical
CSI. In this paper, we bridge this gap by proposing a joint
optimization framework based on AO to solve the resulting
highly non-convex problem under statistical channel knowl-
edge alone.

III. SYSTEM AND CHANNEL MODELS

A. System Model

A downlink Cell-Free Multiple-Input Multiple-Output
(CF-MIMO) network is considered as shown in Fig.1, where
B APs, each equipped with M antennas cooperatively serve
K single-antenna User Equipments (UEs). In the downlink
data phase, all B APs are centrally coordinated to coherently
and simultaneously transmit the data streams intended for all
K UEs, enabling system-wide spatial processing. The system
is assisted by R passive RISs, each consisting of N -elements.
Adopting Time-Division Duplex (TDD) operation, the analysis
concentrates on two distinct phases: uplink pilot training
and downlink data transmission. All nodes are uniformly
distributed over a D ×D m2 square area.

B. Channel Model

The effective uplink channel gbk ∈ CM×1 from UE k to
AP b is modeled as the superposition of the direct path and

Fig. 1. CF-MIMO system model.

the R reflected paths:

gbk = hbk +

R∑
r=1

GbrΘrfkr (1)

where hbk ∈ CM×1 is the direct channel from UE k to
AP b, fkr ∈ CN×1 is the channel from UE k to RIS r,
Gbr ∈ CM×N is the channel from RIS r to AP b, and
Θr = diag(θr1, . . . , θrN ) is the diagonal matrix of complex
reflection coefficients of the r-th RIS. Each coefficient can be
written as θrn = |θrn|ejϕrn . For a passive RIS, each element
must satisfy the unit modulus constraint, i.e., |θrn| = 1.
Accordingly, the phase given by ϕrn = arg(θrn) is the sole
optimization variable.

A Rician fading model is assumed for all links in (1), com-
prising a deterministic Line-of-Sight (LoS) mean component
and a stochastic Non-Line-of-Sight (NLoS) scattering term.

hbk = hbk + h̃bk (2)

fkr = fkr + f̃kr (3)

Gbr = Gbr + G̃br (4)

where hbk ≜ E{hbk}, fkr ≜ E{fkr}, and Gbr ≜ E{Gbr}
are the deterministic LoS components. The NLoS components
h̃bk, f̃kr, and G̃br are modeled as zero-mean Rayleigh fading
random variables.

The total average power of the channel, determined by the
large-scale fading, is ζbk. This power is split between the LoS
and NLoS components based on the Rician factor κbk. The
average power of the LoS component is:

E{||hbk||2} = ζbk

(
κbk

κbk + 1

)
(5)



The NLoS component h̃bk has a covariance matrix
Cov(h̃bk) = βbkIM , where βbk is the average power (variance)
of each NLoS element:

βbk = ζbk

(
1

κbk + 1

)
(6)

The same model applies to the fkr and Gbr channels with
their respective ζ and κ values.

C. Assumptions and Signaling Overhead

The system operates in TDD mode, relying on channel
reciprocity. Each coherence interval of τc samples is divided
into an uplink pilot training phase of τp samples and a
downlink data transmission phase of τd = τc − τp samples.
We assume a quasi-static block fading model where large-
scale statistics remain constant over multiple intervals.

Unlike instantaneous CSI-based schemes that require esti-
mating the cascaded channel for every RIS element (scaling as
τp ≥ K +N ), our framework relies solely on slowly varying
statistical covariance matrices for joint optimization. This
decouples the pilot overhead from the number of RIS elements,
requiring only τp ≥ K. Furthermore, distinct from conven-
tional two-timescale approaches [1], [4] that often overlook
channel estimation errors in their optimization objectives, our
formulation explicitly incorporates the MMSE estimation error
(beamforming uncertainty) and pilot contamination into the
sum-rate maximization. This ensures robustness against im-
perfect CSI while maximizing the data transmission duration
τd for large RIS deployments.

IV. PROBLEM FORMULATION

A. Uplink Channel Estimation

During the uplink training phase, all K UEs simultaneously
transmit their assigned pilot sequences. Let φk ∈ Cτp×1 be
the pilot sequence for UE k. The pilot sequences are assumed
to be mutually orthogonal, such that φH

k φj = δkj , where δkj
is the Kronecker delta. This orthogonality requires τp ≥ K.

Let ρp be the transmit power of each pilot symbol. The
received signal matrix at AP b, Yb ∈ CM×τp , is the superpo-
sition of all UE signals and additive noise:

Yb =

K∑
k=1

√
τpρpgbkφ

H
k +Nb

=
√
τpρpgbjφ

H
j︸ ︷︷ ︸

Desired Pilot Signal

+

K∑
k ̸=j

√
τpρpgbkφ

H
k︸ ︷︷ ︸

Inter-User Pilot Interference

+Nb

(7)

where Nb ∈ CM×τp is the additive white Gaussian noise
(AWGN) matrix at the AP, with i.i.d. entries ∼ CN (0, σ2

n).
To estimate the channel gbj for UE j, AP b projects

the received signal matrix Yb onto the pilot sequence φj .
Accordingly, the projected received signal at AP b, used for
estimating the channel of UE j, is given as:

ybj = Ybφj =
√
τpρpgbj + nbj (8)

where the orthogonality of the pilots removes the inter-user
interference. The effective noise vector nbj = Nbφj has a
covariance matrix Cov(nbj) = σ2

nIM .
Equation (8) provides a standard linear model for the chan-

nel gbj . MMSE estimation necessitates that each AP utilizes
the first and second-order channel statistics, specifically the
mean and covariance of gbk.

The mean of the effective channel gbk is calculated as the
sum of the deterministic LoS components. Thus, using (2), (3)
and (4), it is given by:

µbk(θ) ≜ E{gbk} = hbk +

R∑
r=1

GbrΘrfkr (9)

The covariance matrix of the effective channel, Cbk(θ) ≜
Cov(gbk), is derived by summing the covariances of the
independent NLoS components in (1). This results in:

Cbk(θ) = βbkIM +

R∑
r=1

N∑
n=1

|θrn|2Ψbrn,krn (10)

where Ψbrn,krn ≜ C{gbrnfkrn} is the covariance of the
single reflected path through the (r, n)-th element, given by.

Ψbrn,krn = (βbrnβkrn + βbrn|fkrn|2)IM
+βkrngbrng

H
brn (11)

where gbrn and fkrn are the LoS components and βbrn and
βkrn are the NLoS variances of the n-th element’s channels.
The derivation of Ψbrn,krn is given in Appendix A.

Given these statistics, the AP computes the linear Minimum
Mean Squared Error (MMSE) estimate of the channel gbk

from the projected pilot signal ybk as:

ĝbk = µbk +
√
τpρpCbk(θ)(τpρpCbk(θ) + σ2

nIM )−1

×(ybk −
√
τpρpµbk) (12)

The derivation of (12) is given in Appendix B. The result-
ing estimate ĝbk is uncorrelated with the estimation error
g̃bk ≜ gbk − ĝbk. The estimate has the same mean as the true
channel, i.e., E{ĝbk} = µbk(θ). The statistical properties of
the estimate and the error are characterized by their respective
covariance matrices, Ĉbk(θ) and C̃bk(θ), the derivation which
is detailed in Appendix B. These statistical matrices are
fundamental for characterizing the downlink performance.

B. Achievable downlink data rate

Relying on TDD channel reciprocity, the downlink channel
from AP b to UE k is the transpose of its uplink counterpart,
given by gT

bk ∈ C1×M . During the downlink data phase, the
APs cooperatively transmit data to the UEs. Let sk be the
data symbol intended for UE k, with E{|sk|2} = 1. The APs
use the channel estimates to perform Conjugate Beamforming
(CB) [15]. The signal vector transmitted from AP b is:

xb =

K∑
j=1

√
pbj ĝ

∗
bjsj (13)



where ĝ∗
bj is the beamforming vector for UE j at AP b, and

pbj is the corresponding power control coefficient.
The received signal at UE k, rk, is the sum of transmissions

from all APs plus noise:

rk =

B∑
b=1

gT
bkxb + nk (14)

where nk ∼ CN (0, σ2
d) is the additive white Gaussian noise

at the UE, with variance σ2
d.

1) Downlink SINR Analysis: By substituting xb from (13)
into (14), and separating the desired user term (j = k) from
the interference, the received signal rk is expressed as:

rk = E

{
B∑

b=1

√
pbkg

T
bkĝ

∗
bk

}
sk︸ ︷︷ ︸

Desired Signal (DS)

+ nk︸︷︷︸
Noise

+

(
B∑

b=1

√
pbkg

T
bkĝ

∗
bk − E

{
B∑

b=1

√
pbkg

T
bkĝ

∗
bk

})
sk︸ ︷︷ ︸

Beamforming Uncertainty (BU)

+

K∑
j ̸=k

(
B∑

b=1

√
pbjg

T
bkĝ

∗
bj

)
sj︸ ︷︷ ︸

Inter-User Interference (IUI)

(15)

where the Beamforming Uncertainty (BU) term represents the
self-interference power of the desired signal sk that arises
due to the mismatch between the true channel (gbk) and
the estimated channel (ĝbk), which the user’s receiver cannot
coherently decode. To derive a tractable expression for the
achievable sum rate, the powers of these components must
be computed. First, based on the channel statistics derived in
Section IV, the following key terms are defined:

ubk(θ) ≜ E
{
gT
bkĝ

∗
bk

}
= trace(Ĉbk(θ)) + ||µbk(θ)||2 (16)

vb,kj(θ) ≜ E
{
gT
bkĝ

∗
bj

}
= µT

bk(θ)µ
∗
bj(θ), for k ̸= j (17)

d2b,kj(θ) ≜ E
{
|gT

bkĝ
∗
bj |2
}

(18)

where ubk(θ) represents the average desired gain, vb,kj(θ) is
the average interference coupling, and d2b,kj(θ) is the average
squared magnitude of the cross-gain. The detailed derivation of
the cross-gain term d2b,kj(θ) in (18) is provided in Appendix
B. This derivation utilizes the fourth-order moment expansion
of complex Gaussian vectors. Using these definitions and
assuming uncorrelated user symbols with unit power, the
effective SINR for user k is given by SINRk = Sk/(Ik + σ2

d)

where Sk is the signal power and Ik is the total interference
power. As derived in Appendix B, these are given by:

Sk =

∣∣∣∣∣
B∑

b=1

√
pbkubk(θ)

∣∣∣∣∣
2

(19)

Ik =

B∑
b=1

pbk
(
db,kk(θ)

2 − |ubk(θ)|2
)

︸ ︷︷ ︸
Beamforming Uncertainty Power

+

K∑
j ̸=k

∣∣∣∣∣
B∑

b=1

√
pbjvb,kj(θ)

∣∣∣∣∣
2

+

B∑
b=1

pbjσ
2
b,kj(θ)


︸ ︷︷ ︸

Inter-User Interference Power

(20)

where σ2
b,kj(θ) ≜ d2b,kj(θ)−|vb,kj(θ)|2 represents the variance

of the interference link. The derivation of (20) is provided in
Appendix B.

Finally, the achievable downlink data rate for UE k is:

Rk =
τd
τc

log2(1 + SINRk) (21)

V. PROPOSED JOINT OPTIMIZATION
FRAMEWORK

Our objective is to maximize the sum rate Rsum =
∑

k Rk,
by jointly optimizing the downlink AP power control coeffi-
cients, P ≜ {pbj} ≥ 0 for all b, j, and the passive phase-shift
matrices of all RISs, Θ ≜ {Θr} for all r.

A. Problem Formulation

The sum rate maximization problem can be formulated as:

P1 : max
P,Θ

K∑
k=1

log2(1 + SINRk(P,Θ)) (22)

s.t.
K∑
j=1

pbjubj(θ) ≤ Pmax
b , ∀b (23)

|θrn| = 1, ∀r, n (24)

where log2(1 + SINRk) is the achievable data rate for UE
k, and Pmax

b is the maximum transmit power of AP b. The
MMSE estimate satisfies E{∥ĝbj∥2} = ubj(θ), due to the
orthogonality between the estimate and the estimation error.
Hence, the power constraint (23) is expressed in terms of
ubj(θ). Problem P1 is a highly non-convex due to two factors:
the objective function (22) is non-convex due to the coupling
of the optimization variables P and Θ, and the RIS phase
constraint (24) is a non-convex unit-modulus constraint. To
address this, a joint AO framework is proposed to decompose
the original problem into two manageable sub-problems.

B. Power Control Optimization

For a fixed set of RIS phases Θ = Θ(i−1) (from the
previous iteration), the problem reduces to finding the optimal
power coefficients P. This sub-problem, denoted by P2, is
formulated as:

P2 : max
P≥0

K∑
k=1

log2(1 + SINRk(P,Θ(i−1))) (25)

s.t. (23)

Problem P2 is still non-convex. This is solved using the
WMMSE algorithm, which finds a locally optimal solution for



TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Total Complexity
Proposed AO O

(
Imax(K3.5 + IGAKLN2)

)
PSO Benchmark O

(
IPSO · S ·KLN2

)
sum rate maximization [1]. The convex sub-problem in each
WMMSE iteration is solved using CVX tool. The algorithm is
initialized with an Equal Power Control (EPC) solution where
the power at each AP is divided equally among all UEs.

C. RIS Phase-Shift Optimization

For a fixed power allocation P = P(i) (from the previous
step), the problem reduces to finding the optimal RIS phases
Θ. Then, the optimization problem P3 is formulated as:

P3 : max
Θ

K∑
k=1

log2(1 + SINRk(P
(i),Θ)) (26)

s.t. (24)

Problem P3 remains non-convex due to the objective function
and the unit-modulus constraint in (24). This is solved using
the computationally efficient PGA method. The algorithm
iteratively updates the phases in two steps:

1) Ascent Step: The gradient of the sum rate with respect
to the phases is computed using the chain rule, this is
given by:

Gθ = ∇θ∗Rsum (27)

The proof of (27) is shown in Appendix C. A step is
then taken in this direction using a step size η to get an
unconstrained update Θunproj:

Θunproj = Θ(i) + η ·Gθ

2) Projection Step: The unconstrained update Θunproj is
projected back onto the non-convex feasible set by
forcing its magnitude to 1 while preserving its phase:

θ(i+1)
rn = exp(j · arg(θ(i+1)

unproj,rn))

D. Overall Algorithm and Convergence

The overall algorithm, summarized in Algorithm 1, alter-
nates between solving P2 and P3. The sum-rate is guaranteed
to be non-decreasing in each step, and thus the algorithm is
guaranteed to converge to a locally optimal solution.

Complementing this theoretical stability, Table I highlights
the proposed framework’s efficiency. While the PSO bench-
mark scales with the swarm size S as O(S ·KLN2), the
proposed AO is dominated by gradient calculations, scaling as
O(IGAKLN2). Since typically S ≫ IGA, the deterministic
AO offers significantly lower computational overhead.

Proposition 1: The sequence of achievable sum-rates
{Rsum(P

(i),Θ(i))} generated by the proposed Joint AO Al-
gorithm is non-decreasing and converges to a locally optimal
solution.

Proof: Convergence is guaranteed by the monotonic im-
provement of the alternating sub-problems. First, the WMMSE

Algorithm 1 Joint AO for Sum-Rate Maximization

1: Initialize: Set Θ(0) with random phases.
2: Calculate EPC P(0) based on Θ(0).
3: Set iteration i = 1, max iterations Imax, tolerance Rtol.
4: repeat
5: // Fix RIS, Optimize Power (Solve P2 in (25))
6: Calculate EPC Pepc using Θ(i−1).
7: P(i) ← Solve P2 via WMMSE, initialized with Pepc.
8: // Fix Power, Optimize RIS (Solve P3 in (26))
9: Calculate gradient Gθ = ∇θRsum using Eq. (27).

10: Update phases: Θstep = Θ(i−1) + η ·Gθ.
11: Project to unit-modulus: Θ(i) ← exp(j∠Θstep).
12: Calculate R

(i)
sum = Rsum(P

(i),Θ(i)).
13: if i > 1 and |R(i)

sum −R
(i−1)
sum | < Rtol then

14: break
15: end if
16: i← i+ 1.
17: until i > Imax

step (P2) ensures a non-decreasing power allocation via block
coordinate descent [1]. Second, the PGA step (P3) guarantees
ascent for the phase configuration. Consequently, the com-
bined sequence {R(i)

sum} is non-decreasing and, being upper-
bounded by finite transmit power limits, must converge to a
stationary point.

VI. SIMULATION RESULTS

In this section, numerical results are provided to evaluate
the performance of the proposed AO algorithm. All results
are averaged over 200 random user, AP, and RIS layouts.

Simulations are conducted over a 200×200 m2 area, where
all APs, UEs, and RISs are uniformly distributed. To create
a challenging benchmark, a favorable downlink scenario is
simulated using the 3GPP UMi LoS Rician model [16]. The K-
factor is defined by κdB = 13−0.03d, where d is the distance
between the transmitter and receiver for the corresponding
link. This dominant LoS component establishes a rigorous
baseline, compelling the algorithm to improve upon an already
robust system configuration.

The average sum-rate of three main schemes is compared,
each with both optimized WMMSE power control and stan-
dard EPC:

• No RIS: The baseline cell-free system.
• Random RIS: The RIS elements have random phases

with unit amplitude.
• Optimized RIS: The proposed joint AO in Algorithm 1,

which jointly optimizes P and Θ.

The key simulation parameters are summarized in Table II.
Fig. 2 plots the average sum-rate versus transmit power

Pmax
b , comparing the proposed AO with a standard PSO

benchmark [5], [13]. The AO scheme consistently yields
superior rates; at Pmax

b = 10 dBm, it achieves ≈ 550 Mbit/s
versus ≈ 520 Mbit/s for PSO, indicating that gradient-based



TABLE II
SIMULATION PARAMETERS

Parameter Value
Simulation area 200× 200 m2

Number of APs (B) 30
Number of UEs (K) 5
Number of RISs (R) 10 (for RIS schemes)
Number of RIS elements (N ) Varied (10 to 120)
Antennas per AP (M ) 2
System bandwidth (B0) 20 MHz
Noise figure (NF) 9 dB
Noise power (σ2

n, σ2
d) -92 dBm

Downlink Tx power (Pmax
b ) Varied (-50 to 30 dBm)

Uplink pilot power (ρp) 1.0 W (30 dBm)
Coherence interval (τc) 200 samples
Pilot length (τp) 5 samples (K)
Max AO iterations (Imax) 20
AO tolerance (Rtol) 10−3
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Fig. 2. Average Sum-Rate vs. AP Transmit Power Pmax
b (N = 40).

optimization locates better optima than heuristic search. Ad-
ditionally, both schemes significantly outperform the ‘Ran-
dom’ and ‘No RIS’ baselines. Finally, saturation occurs for
Pmax
b > 10 dBm aas the system transitions from a noise-

limited to an interference-limited regime.
Fig. 3 shows the Energy Efficiency (EE), defined as

EE =
∑K

k=1 Rk

Ptotal
[Mbit/s/W] where Ptotal includes both the

AP transmit power and the static circuit power. The EE for all
schemes increases at low power, peaks, and then decreases.
This is because at high Pmax

b , the sum-rate saturates due to
interference, while the linear increase in power consumption
causes the EE to drop. The proposed optimized RIS scheme
achieves the highest EE peak, reaching ≈ 2.5 Mbit/s/W at
10 dBm. This is about ≈ 47% over the ’Random RIS’ peak
(≈ 1.7 Mbit/s/W) and ≈ 56% over the ’No RIS’ peak,
demonstrating that the algorithm improves both spectral and
energy efficiency.

Fig. 4 investigates the sum-rate scalability as the number of
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Fig. 3. Energy Efficiency vs. AP Transmit Power Pmax
b (N = 50).
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Fig. 4. Average Sum-Rate vs. N (Pmax
b = −10 dBm).

RIS elements N increases. The No RIS scheme (solid red
line) is constant at ≈ 340 Mbit/s, as it is independent of
N . The ’Random RIS’ scheme (solid blue line) shows only
marginal gains, increasing from ≈ 350 to ≈ 400 Mbit/s as N
grows from 10 to 120. In contrast, the proposed optimized RIS
scheme (solid green line) scales exceptionally well, rising from
≈ 400 Mbit/s to over 570 Mbit/s. This demonstrates that the
proposed algorithm effectively deploys the additional elements
to create coherent beamforming gains.

Fig. 5 compares the fairness index of the different schemes
using Jain’s Fairness Index [17], defined as:

J =

(∑K
k=1 Rk

)2
K
∑K

k=1 R
2
k

, (28)

The ‘No RIS’ and ‘Random RIS’ baselines exhibit poor
fairness performance, yielding indices of ≈ 0.58 and ≈ 0.59,



No RIS Random Proposed PSO
0

0.2

0.4

0.6

0.8

1

J
a

in
's

 F
a

ir
n

e
s

s
 I

n
d

e
x

0.58 0.59

0.77

0.69

Fig. 5. Comparison of Jain’s Fairness Index across different schemes.

respectively. This low performance indicates a significant dis-
parity in user data rates, where users suffer from a weak signal
strength. In contrast, the proposed AO algorithm significantly
improves the fairness index to ≈ 0.77, demonstrating its
ability to effectively mitigate path loss and enhance the user
experience. Crucially, the proposed method outperforms the
PSO benchmark (≈ 0.69), confirming that the AO provides
a more robust solution for balancing system throughput and
user equity compared to the meta-heuristic approach.

Finally, the reliability and stability of the proposed algo-
rithm are validated. Fig. 6 plots the Cumulative Distribution
Function (CDF) of the sum-rate. The proposed optimized RIS
scheme (solid green line) is stochastically dominant, providing
a higher sum-rate at all probability levels. For example, the
median (50-percentile) sum-rate for the Optimized RIS scheme
is ≈ 470 Mbit/s, compared to ≈ 370 Mbit/s for Random
RIS and ≈ 310 Mbit/s for No RIS. More importantly, the
10-percentile rate shows a massive improvement, rising from
≈ 100 Mbit/s (No RIS, EPC) to ≈ 380 Mbit/s with AO.

Fig. 7 validates the rapid convergence of the proposed AO
algorithm. The ’Optimized RIS (AO)’ scheme starts at ≈ 250
Mbit/s, which is the performance of random phases before
any power optimization. After just one iteration, the algorithm
achieves a sum-rate of ≈ 440 Mbit/s. The rate increases
monotonically, achieving over 90% of its total gain within
3-4 iterations and converging by iteration 10, confirming the
non-decreasing rate guarantee from Section V.

VII. CONCLUSION

In this paper, the downlink sum-rate of a passive RIS-
assisted Cell-Free MIMO system was investigated. A frame-
work was proposed to solve the non-convex problem of jointly
optimizing the AP power control and RIS phase shifts. The
algorithm efficiently optimizes power using WMMSE and RIS
phases using PGA. Numerical results demonstrated that the
proposed joint optimization scheme provides substantial gains
in spectral efficiency, energy efficiency, and system reliability
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over the benchmarks. Future work will address strict minimum
rate constraints and the mitigation of non-ideal hardware
impairments.

APPENDIX A
PROOF OF CHANNEL STATISTICS

A. Proof of RIS Channel Covariance (11)

The term Ψbrn,krn is the covariance of a single reflected
path, x = gbrnfkrn, where gbrn ∼ CN (gbrn, βbrnIM ) and
fkrn ∼ CN (fkrn, βkrn) are independent. The covariance is
defined as C{x} = E{xxH} − E{x}E{x}H .

The mean term is E{x} = E{gbrn}E{fkrn} = gbrnfkrn.



The correlation term E{xxH} is:

E{gbrng
H
brn}E{|fkrn|2} = (E{g̃brng̃

H
brn}+ gbrng

H
brn)

× (E{|f̃krn|2}+ |fkrn|2)
= (βbrnIM + gbrng

H
brn)

× (βkrn + |fkrn|2) (29)

Finally, substituting these two results back into the covariance
definition and simplifying gives the result in (11):

Ψbrn,krn = (βbrnIM + gbrng
H
brn)(βkrn + |fkrn|2)

− (gbrnfkrn)(gbrnfkrn)
H

= (βbrnβkrn + βbrn|fkrn|2)IM + βkrngbrng
H
brn

(30)

B. Proof of MMSE Statistics

The objective of the MMSE channel estimation is to find
the estimator ĝbk of the true channel gbk from the received
signal ybk that minimizes the Mean Squared Error (MSE). To
facilitate a tractable derivation, we assume that the pilot se-
quences are mutually orthogonal (τp ≥ K) to eliminate inter-
user interference, and that the NLoS scattering components
are independent. Furthermore, we approximate the aggregate
effective channel gbk as a complex Gaussian vector, which is
a standard approach in RIS analysis to enable closed-form
LMMSE formulations [18]. The minimization problem is
defined as:

min
ĝbk

E
{
∥gbk − ĝbk∥2

}
(31)

The resulting optimal MMSE estimator is the conditional mean
ĝbk = E{gbk | ybk}. Since the channel components follow
a Rician distribution, which is based on complex Gaussian
processes, this optimal MMSE estimator is equivalent to a
linear estimator (LMMSE). This allows us to express the
estimate in the following tractable closed form:

ĝbk = E{gbk}+ Cov(gbk,ybk)Cov(ybk)
−1(ybk − E{ybk})

(32)

To verify the final expression in (12), the required statistical
terms are computed as follows:

1) The mean of the channel:

E{gbk} = µbk(θ) (33)

2) The mean of the received signal vector:

E{ybk} = E{√τpρpgbj + nbj} =
√
τpρpµbk(θ) (34)

3) The cross-covariance between the channel and the re-
ceived signal:

Cov(gbk,ybk) = E
{
gbk(ybk − E{ybk})H

}
=
√
τpρpCbk(θ) (35)

4) The covariance of the received signal vector:

Cov(ybk) = E
{
(ybk − E{ybk})(ybk − E{ybk})H

}
= τpρpCbk(θ) + σ2

nIM (36)

Substituting these terms back into (32) gives (12).
The covariance matrices for the estimate (Ĉbk) and the

estimation error (C̃bk) are then derived. The covariance of the
estimate, Ĉbk(θ), is given by the general LMMSE identity:

Ĉbk(θ) = Cov(ĝbk(θ)) = Cov(gbk,ybk)Cov(ybk)
−1Cov(ybk,gbk)

(37)
Substituting the statistical terms from (35) and (36) into this
definition yields:

Ĉbk(θ) ≜ Cov(ĝbk)

= τpρpCbk(θ)(τpρpCbk(θ) + σ2
nIM )−1Cbk(θ)

H

(38)

C̃bk(θ) ≜ Cov(g̃bk) = Cbk(θ)− Ĉbk(θ) (39)

APPENDIX B
DERIVATION OF TRACTABLE SINR EXPRESSIONS

The derivations for the signal and interference powers in
(19)-(20) are provided here.

1) Desired Signal Power: We first derive ubk(θ):

E
{
gT
bkĝ

∗
bk

}
= E

{
(ĝT

bk + g̃T
bk)ĝ

∗
bk

}
= E

{
ĝT
bkĝ

∗
bk

}
= E

{
trace(ĝbkĝ

H
bk)
}

= trace(E{ĝbkĝ
H
bk})

= trace(Ĉbk(θ) + µbk(θ)µbk(θ)
H)

= trace(Ĉbk(θ)) + ||µbk(θ)||2 ≜ ubk(θ) (40)

By assuming independent channels across APs, the signal
power Sk becomes the squared coherent sum of ubk terms,
as given in (19).

2) Beamforming Uncertainty Power: This term is

E
{∣∣∣∑B

b=1

√
pbkqbk

∣∣∣2}, where qbk ≜ gT
bkĝ

∗
bk − ubk(θ) is a

zero-mean variable.

E{|BUk|2} = E


∣∣∣∣∣

B∑
b=1

√
pbkqbk

∣∣∣∣∣
2


=

B∑
b=1

pbkE{|qbk|2}+
B∑

b̸=b′

√
pbkpb′kE{qbkq∗b′k}

(41)

Assuming qbk and qb′k are uncorrelated for b ̸= b′, the cross-
terms are zero. The remaining term is:

E{|qbk|2} = E{|gT
bkĝ

∗
bk|2} − |ubk(θ)|2 (42)

For the first term, x = gbk ∼ CN (µbk,Cbk) and y =
ĝbk ∼ CN (µbk, Ĉbk) are approximated as independent com-
plex Gaussian vectors. Using the 4th order moment identity:

E{|xTy∗|2} = |E{xTy∗}|2 + trace(C{x}C{y}∗)
+ E{x}TC{y}∗E{x}∗ + E{y}HC{x}E{y}

(43)



Substituting the specific channel statistics yields:

E{|gT
bkĝ

∗
bk|2} = |ubk(θ)|2 + trace(Cbk(θ)Ĉbk(θ)

∗)

+ µbk(θ)
T Ĉ∗

bk(θ)µ
∗
bk(θ)

+ µbk(θ)
HCbk(θ)µbk(θ) ≜ d2b,kk(θ) (44)

Substituting this back gives E{|qbk|2} = d2b,kk(θ)−|ubk(θ)|2,
which matches the first term in (20).

3) Inter-User Interference Power: From the IUI term:

E


∣∣∣∣∣

B∑
b=1

√
pbjg

T
bkĝ

∗
bj

∣∣∣∣∣
2
 =

B∑
b=1

pbjE
{
|gT

bkĝ
∗
bj |2
}

+

B∑
b̸=b′

√
pbjpb′jE

{
(gT

bkĝ
∗
bj)(g

T
b′kĝ

∗
b′j)

∗} (45)

Assuming independence across APs:

E
{
(gT

bkĝ
∗
bj)(g

T
b′kĝ

∗
b′j)

∗} = E
{
gT
bkĝ

∗
bj

}
E
{
(gT

b′kĝ
∗
b′j)

∗}
= vb,kj(θ) · vb′,kj(θ)∗ (46)

The first term, E
{
|gT

bkĝ
∗
bj |2
}

, is computed using the same
fourth-order moment identity as above, yielding d2b,kj(θ).
Rearranging the sums yields the final IUI expression in (20).

APPENDIX C
PGA GRADIENT DERIVATION

The gradient Gθ = ∇θ∗Rsum is derived using the chain rule.
The sum-rate is Rsum =

∑
k

τd
τc

log2(1 + SINRk). Let θ∗rn be
the conjugate of the (r, n)-th phase shift. The element-wise
gradient is:

∂Rsum

∂θ∗rn
=

K∑
k=1

τd
τc ln(2)(1 + SINRk)

∂SINRk

∂θ∗rn
(47)

Using the quotient rule on SINRk = Sk/(Ik + σ2
d):

∂SINRk

∂θ∗rn
=

(Ik + σ2
d)

∂Sk

∂θ∗
rn
− Sk ∂Ik

∂θ∗
rn

(Ik + σ2
d)

2
(48)

The terms Sk and Ik depend on ubk(θ), vb,kj(θ), and d2b,kj(θ).
We derive the derivatives of these building blocks. Recall
that the channel mean can be expanded element-wise as
µbk(θ) = hbk +

∑
r,n θrngbrnfkrn, where gbrn and fkrn

are the deterministic LoS components associated with the n-
th element of the r-th RIS.

The derivatives with respect to θ∗rn are:

∂ubk(θ)

∂θ∗rn
= trace

(
∂Ĉbk(θ)

∂θ∗rn

)
+

∂(µH
bk(θ)µbk(θ))

∂θ∗rn

= θrntrace(Ψbrn,krn) + (gbrnfkrn)
Hµbk(θ) (49)

∂d2b,kj(θ)

∂θ∗rn
= vb,kj(θ)

∂v∗b,kj(θ)

∂θ∗rn
+ µT

bk(θ)Ĉ
∗
bj(θ)(gbrnfkrn)

∗

+ (gbrnf jrn)
HCbk(θ)µbj(θ)

+ θrn

(
trace(Ψbrn,krnĈ

∗
bj(θ))

+trace(Cbk(θ)Ψ
∗
brn,jrj)

)
(50)

Substituting these partial derivatives back into the expressions
for Sk and Ik results in Gθ required for the PGA step.
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[18] Özdogan, E. Björnson, and E. G. Larsson, “Massive mimo with spatially
correlated rician fading channels,” IEEE Transactions on Communica-
tions, vol. 67, no. 5, pp. 3234–3250, 2019.


