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Abstract—Multi-band splicing offers a promising solution to extend
existing band-limited communication systems to support high-precision
sensing applications. This technique involves performing narrow-band
measurements at multiple center frequencies, which are then combined
to effectively increase the bandwidth without changing the sampling rate.
In this paper, we introduce a mmWave channel sounder based on multi-
band splicing, leveraging the sparse nature of wireless channels through
compressed sensing and sparse recovery techniques for channel recon-
struction. We focus on three sparse recovery methods: the widely used
grid-based orthogonal matching pursuit (OMP) algorithm as a baseline,
our newly developed two-stage mmSplicer algorithm, which extends
the OMP method by introducing an additional stage for improving its
performance for our application, and our adaptation of sparse recon-
struction by separable approximation (SpaRSA), named Net-SpaRSA,
optimized for wireless applications. All three algorithms are integrated
into an experimental OFDM-based IEEE 802.11ac system. Our analysis
centers on evaluating the performance of these algorithms under limited
number of narrow-band measurements, demonstrating that accurate
CIR estimation is achievable even using only 50% of the full wideband
spectrum. Additionally, we analyze and compare the computational com-
plexity of these algorithms to assess their practical feasibility.

Index Terms—Channel splicing, multi-band splicing, channel sounder,
joint communication and sensing, software-defined radio, OFDM, Wi-Fi

1 INTRODUCTION

Joint communication and sensing (JCAS) is becoming more
important in different application domains, both in 6G as
well as for the internet of things (IoT) [1]–[4]. This trig-
gered ongoing discussions of appropriate waveforms, with
orthogonal time frequency space (OTFS) being considered a
possible compromise [5]. However, most existing communi-
cation systems are based on orthogonal frequency division
multiplexing (OFDM), so, integrating sensing here is impor-
tant [6]. Communication systems, like WiFi, extract channel
state information (CSI), which is also utilized for sensing
applications [7]. In traditional WiFi communication systems,
CSI is extracted primarily for equalization purposes, where
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Figure 1. Illustration of the channel splicing concept and the experimen-
tal SDR-based setup.

high-precision multipath parameter estimation is not as cru-
cial. However, for sensing applications using CSI [8]–[13], it
is essential to accurately distinguish between closely spaced
multipath components and estimate their parameters, such
as time delay and magnitude, with high accuracy.

To separate multipath components that arrive close to
each other, high delay domain resolution is required. The
resolution is determined by 1/BW , which, when multiplied
by the speed of light, gives the minimum distance between
two paths for them to be distinguishable at the receiver. For
instance, a bandwidth of 20 MHz implies that two distinct
paths must differ by at least 15 m in travel distance to be
distinguishable [14]. One promising method to increase the
effective bandwidth without modifying the device’s sup-
ported sampling rate is multi-band splicing, also referred
to as channel splicing in the literature [8]–[10], [14]–[16].
Conceptually, this involves measuring several narrow-band
channels (referred to as sub-bands in this paper) and com-
bining the results to simulate the effect of a single wideband
measurement, as illustrated in Figure 1(a).

Multi-band splicing algorithms can be divided into
three primary categories: maximum likelihood-based meth-
ods, subspace-based estimation methods, and compressed
sensing techniques [17]. The traditional approach to esti-
mating delay parameters relies on maximum likelihood-
based methods, with the space-alternating generalized
expectation-maximization (SAGE) [18] algorithm being
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widely used. These methods are robust to noise and provide
high-precision parameter estimation, though they are prone
to converging to local optima [19]. Efforts to resolve this
issue [20], [21], often result in algorithms with high compu-
tational demands. Other approaches in the literature tackle
the multi-band delay estimation problem using subspace-
based methods. For example, the classical multiple signal
classification (MUSIC) algorithm [11] or variations utilizing
multiple shift invariance structures [9], [22]–[24] in multi-
band systems have been explored. These methods offer
lower computational complexity but generally require a
large number of snapshots to perform effectively.

Compressed sensing methods, on the other hand, lever-
age the sparsity of the channel impulse response (CIR) in the
time domain—where only a few coefficients are non-zero
or near zero. Research has demonstrated that the wireless
multipath channel in an OFDM systems exhibit sparsity,
making compress sensing applicable for time-delay estima-
tion [25]. To illustrate sparsity in an OFDM system, we plot
the CIR generated from our measurements at 2.4 GHz and
60 GHz, as shown in Figure 2. For each plot, we establish a
magnitude threshold to distinguish strong multipath com-
ponents (MPCs). This threshold, represented by a dotted
black line, is set at 10% of the mean magnitude of the
strongest path, in this case the line of sight (LoS) path.
Paths with an amplitude exceeding this threshold are cate-
gorized as strong. The 10% threshold is empirically derived
from our wireless experimental data, providing a balanced
criterion for identifying significant MPCs while filtering
out less relevant components. The plots indeed indicate
that only a few components carry significant energy, and
this number decreases even further at 60 GHz. Compressed
sensing applies sparse recovery algorithms to the measured
channel frequency response (CFR) samples across multiple
sub-bands to reconstruct the wideband CIR [7][8], [14],
[26]–[29]. This approach allows to accurately reconstruct the
channel response from fewer measurements than required
by traditional sampling methods, which is efficient in terms
of bandwidth usage. However, these methods can become
computationally expensive for large-scale problems.

The developed multi-band splicing algorithms have
been applied in various fields, including localization [8], [9],
[11], [14], [22], [26], [27], [30], [31], human [7], [13] and respi-
ratory sensing [32], [33]. These applications are relevant for
IoT and next-generation wireless systems, where accurate
positioning and environmental sensing play a critical role.

Nevertheless, spectrum availability is highly dynamic,
particularly in shared bands (e.g., ISM bands) and even
in licensed spectrum due to increasing congestion. Parts
of the spectrum often experience sporadic unavailability,
and adjacent sub-bands may be occupied by other users
or applications, making contiguous wideband access chal-
lenging. As shown in Figure 3, even acquiring a single
160 MHz of contiguous spectrum over time is difficult. This
challenge has also been confirmed by a spectrum monitor-
ing study [34], which demonstrated the benefits of non-
contiguous channel bonding in dense environments such
as stadiums, highlighting its flexibility and efficiency over
contiguous bonding.

Such spectrum fragmentation poses a significant limi-
tation for next-generation wireless systems, particularly in
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Figure 2. Illustration of the sparsity of the CIR at 2.4 GHz and 60 GHz
along with the magnitude threshold to identify the strong MPCs.
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Figure 3. Illustration of the changing spectrum availability over time.

applications requiring high-resolution sensing and localiza-
tion. This challenge is especially critical for emerging 5G/6G
networks and IoT applications, where precise positioning
and environmental awareness are essential. In fact, one of
the key objectives of 3GPP 6G and future Wi-Fi standards is
to integrate wireless communication with radar sensing ca-
pabilities. However, achieving the desired centimeter-level
ranging resolution in 6G is restricted by the limited band-
width available in current communication systems [26].
As mentioned in [26], even wideband 5G-NR and IEEE
802.11ay (WiGig) channels, with bandwidths of 400 MHz
and 1.76 GHz, respectively, can only provide ranging resolu-
tions of approximately 37 cm and 17 cm. In this scope, multi-
band splicing offers a promising approach to overcome
these limitations by effectively combining non-contiguous
spectrum fragments, thus enabling high-resolution sensing
and localization in practical deployments.

Numerous studies [9], [22], [23], [30], [35] have evaluated
the effectiveness of the developed algorithms in estimating
the time of arrival (ToA) or resolution limit [36] by deriving
the Cramer-Rao lower bound (CRLB). The CRLB, calculated
as the inverse of the Fisher information matrix (FIM), repre-
sents the absolute lower bound on the variance of an unbi-
ased estimator. These studies have consistently shown that
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multi-band splicing across non-consecutive bands yields
better performance than when applied to consecutive bands.
However, according to [36], the frequency band aperture
(i.e., the separation between the center frequencies of two
consecutive bands) should remain within 20% of the carrier
frequency to avoid significant frequency-dependent effects.
Although the impact of frequency band aperture has been
primarily examined through simulations, a comprehensive
theoretical analysis is still needed.

Building on the theoretical foundations of multi-band
splicing [14], [19], [27], the concept has matured significantly
and many experimental prototypes have been presented [8],
[10], [37]. Most current work on splicing is centered at
low frequency bands (i.e., 2.4 GHz and 5 GHz). However,
as these bands become increasingly congested due to the
growing number of connected devices, recent studies are
exploring the application of multi-band splicing in the
millimiter-wave (mmWave) frequency band [26], [28], [38].
Despite the large available bandwidth, there are several
challenges related to the mmWave band, including phase
noise-where oscillators at high frequencies exhibit higher
noise power spectral density, and the increased bandwidth
contributes to phase distortion. Channel coherence time also
reduces significantly. For instance, at 60 GHz the channel
coherence time is reduced by a factor of 30× for a mo-
bility speed of just 2 m/s compared to the one at 2 GHz.
Hence, in the context of splicing this would require reducing
the number of jumps to different center frequencies and
still estimating the wide channel accurately. Beyond these
challenges specific to the mmWave frequency band, a key
issue with multi-band splicing is the phase offset caused
by transceiver impairment. This offset makes the direct
concatenation of raw CFR samples infeasible. Therefore, it is
essential to estimate and compensate for this offset in each
sub-band before applying splicing. Several existing studies
have tackled this challenge, which introduces additional
coordination overhead [8], [11], [14], [32], [39]–[41].

In this paper, we present a mmWave channel sounder
based on multi-band splicing, employing compressed sens-
ing and sparse recovery techniques for channel reconstruc-
tion. Channel sounding is a method used to acquire knowl-
edge on the properties of a communication channel. In this
process, a known reference signal is transmitted through
the channel, and the received signal is analyzed to under-
stand how the channel has affected it [42]. By extracting
metrics such as CIR (time domain) and CFR (frequency
domain) changes in the signal such as distortions, delays
and amplitude variations are examined. These parameters
provide valuable insights into the channel’s characteristics,
such as path loss, multipath propagation, and fading, which
are crucial for optimizing and designing wireless commu-
nication systems. In our previous work [37], we used the
grid-based orthogonal matching pursuit (OMP) algorithm
[14] for channel splicing, which had a good time resolution.
We extended OMP to a two-stage algorithm, mmSplicer, to
improve its applicability in wireless systems [28]. As an
alternative approach, we adapted the Sparse Reconstruc-
tion by Separable Approximation (SpaRSA) algorithm [43],
which is a well known sparse recovery techniques used
in image processing, for use in wireless communications,
labeled as Net-SpaRSA in the following.

We integrated all three algorithms into a communica-
tion system compliant with IEEE 802.11ac standard. The
channel estimation is performed according to the least
square (LS) estimation technique both in the time and
frequency domain. Our splicing-based channel sounder is
designed to work with software defined radios (SDRs),
specifically Universal Software Radio Peripheral (USRP)
X310, for transmitting/receiving the signal over the air, and
the phased array antennas for up-converting the signal at
60 GHz (cf. Figure 1(b)). We demonstrate the practical use
of the multi-band splicing technique at low frequencies
(in simulations and indoor experiments) and at 60 GHz by
applying the algorithm over narrow-band measurements
and then comparing the estimated channel towards the full
channel CIR. We deliberately use only 50% of the overall
spectrum to evaluate the algorithms’ performance in cases
where parts of the spectrum are occupied or coherence time
limits measurement across all sub-bands. Additionally, we
briefly examine how the sub-bands distribution affects the
algorithms’ outcomes. Finally, we analyze the complexity of
the algorithms in terms of execution time and computational
cost, which is crucial for comparing different approaches. In
summary, our results build the basis for OFDM-based JCAS
solutions and for low-cost channel sounding.

Our main contributions can be summarized as follows:
• The OMP channel splicing algorithm is extended to a

two-stage technique, mmSplicer, enhancing its applica-
bility in wireless systems.

• The well-known SpaRSA algorithm is adapted to work
in wireless communication scenarios and realized the
Net-SpaRSA system for channel splicing.

• A practical OFDM communication system, based on
IEEE 802.11ac, is implemented with an LS-based re-
ceiver for experimental evaluation, computing both the
CIR and CFR in an SDR-based setup.

• The performance of OMP, mmSplicer, and Net-SpaRSA
is experimentally evaluated across different frequency
bands, utilizing only 50 % of the available spectrum.

• The algorithms are analyzed in terms of execution time
and computational complexity.

The rest of the paper is structured as follows. Section 2
provides an overview of related works. Section 3 offers an
in-depth presentation of OMP, our two-stage mmSplicer,
and Net-SpaRSA. We then introduce the practical imple-
mentation used for lab experiments in Section 4. For vali-
dation, we obtained numerical results through simulations,
cables and over-the air measurements as described in Sec-
tion 5. In Section 6, we present our experimental results
for channel splicing at mmWave frequencies. The execution
time and computational complexity of the algorithms are
analyzed in Section 7. Finally, Section 8 discusses identified
challenges and Section 9 concludes the paper.

Notation: Throughout the paper, scalars are represented
by letters, vectors and matrices are indicated in bold font.

2 RELATED WORK

Multi-band splicing is a promising solution to increase effec-
tive transmission bandwidth without altering the device’s
sampling rate. Conceptually, the technique combines mea-
surements over multiple narrow bands, either sequentially
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or across different frequency bands. The state of the art in
multi-band splicing is provided in [17]. Our preliminary
work [28] introduced a 60 GHz channel sounder that lever-
ages multi-band splicing and a sparse recovery technique
for scanning the communication channel.

Channel sounding is a crucial technique for acquiring
knowledge to characterize the wireless channel within a
certain frequency band [42]. The principle of sounding is
to transmit a known baseband signal up-converted at the
frequency of interest. Subsequently, on the receiver side,
post-processing techniques are applied to extract metrics
(CIR, CFR) that provide channel information. Over the
years, several sounding techniques were developed with
the sole purpose to accurately characterize the propagation
channel. The two most common techniques are the spread
spectrum sliding correlator [44] and the OFDM-based sys-
tem [45]. Both techniques have demonstrated undeniable
success at lower frequencies, as well as at mmWave fre-
quency bands [46], [47].

In OFDM-based systems, the signal consists of multiple
subcarriers, each observing the channel as flat, which mit-
igates the frequency selectivity issues of wideband trans-
mission. Nevertheless, the system requires a large peak-to-
average-power ratio (PAPR) as well as tight receiver syn-
chronization [45]. Alternatively, the spread spectrum sliding
correlator “spreads” the signal over a large bandwidth by
mixing it with a binary pseudo noise (PN) sequence [44].
The received signal is mixed with a slower identical version
of the PN sequence, which makes the system less vulnerable
toward interference, but more complex in terms of hardware
and software implementation compared to the OFDM sys-
tem. Thus, choosing between these techniques depends on
the application’s specific robustness and complexity require-
ments.

Propagation information is provided in the delay and
frequency domain through the computation of the CIR
and CFR, respectively, using various channel estimation
techniques. Among these methods, the LS estimation is
the most common method characterized by low compu-
tational complexity. Yet, in a few application scenarios,
this technique yields inferior performance. Another well-
known estimation method is the minimum mean square
error (MMSE) [45], which minimizes the channel estima-
tion error. However, MMSE leads to high computational
complexity and requires prior channel statistic information,
which sometimes is not available. Beside these traditional
techniques, new models based on machine learning are be-
ing developed [48], [49], leading to an improved estimation
performance.

Nevertheless, choosing the right channel estimation
technique is also a function of the utilized hardware. For
instance, low-resolution analog to digital converters (ADCs)
require different estimation techniques due to the distor-
tion they introduce to the original received signal. Em-
ploying low-resolution ADCs with large antenna arrays
has drawn significant attention in mmWave systems. The
authors in [50] propose a grid-less quantized variational
Bayesian channel estimation algorithm, which has demon-
strated optimal results in simulations. Grid-less estimation
approaches are also explored in other works, such as [51]
and [52]. In [51], the authors jointly estimate the channel, the

carrier frequency offset (CFO), and perform data decoding,
while in [52], the focus is on estimating and detecting line
spectra in noisy environments.

In some OFDM systems, a combined approach using
a PN sequence with OFDM has been adopted to im-
prove channel characterization and synchronization. This
approach, seen in the time domain synchronous OFDM
(TDS-OFDM) system inserts a known PN sequence in the
time domain before the data symbols, serving both as a
guard interval for multipath channels and as a training
sequence for synchronization and channel estimation [53]–
[55]. Unlike conventional OFDM, TDS-OFDM does not re-
quire pilot subcarriers in the frequency domain, leading to
improved spectrum and energy efficiency. Several studies
have explored the combination of TDS-OFDM with com-
pressed sensing to enhance channel estimation. For instance,
the authors in [53], exploit the sparse nature of the under-
water acoustic channel to apply the sparse recovery greedy
algorithm of look-ahead backtracking orthogonal matching
pursuit algorithm to estimate the channel. In [54] the au-
thors propose a new channel estimation technique that uses
the time-frequency training form. The PN sequence (time
domain training) is used only for coarse channel path delay
estimation, while pilots within the OFDM block are used
for precise CIR estimation. Using the sparse nature of the
channel, the number of pilots required is very small 1% of
the total subcarrier number. In [55] the authors focus on
TDS-OFDM combined with structured compressed sensing.
This study used multiple small, inter-block-interference-
free regions to perform multi-channel reconstruction, taking
advantage of both channel sparsity and the observation that
path delays change more slowly than path gains.

In this work, we focus on the traditional cyclic prefix
OFDM (CP-OFDM) system, which utilizes a cyclic prefix
as a guard interval, and leverage existing commodity WiFi
devices to support sensing applications. These applications,
however, require high-resolution CIR, a capability that can-
not be achieved with WiFi devices due to their limitations
in supported bandwidth.

Prior work exploited the sparse nature of the CIR in
OFDM systems, applying compressed sensing and sparse
recovery techniques to reconstruct wideband channels from
sub-band measurements [7],[8], [14], [26]–[29], [37], [38],
[56]. These works target mostly localization/ranging ap-
plication [7],[8], [14], [26], [27] and channel sounding [28],
[37]. For instance, Chronos [8] is an indoor positioning
system that leverages compressed sensing techniques to
estimate sub-nanosecond time of flight (ToF) across multiple
frequency bands, focusing only on ToF rather than full CIR
estimation. In [27], a localization technique is presented that
overcomes hardware phase offsets through a phase retrieval
scheme using CSI magnitude values alone for CIR estima-
tion, with an enhanced version described in [14]. This ver-
sion applies atomic norm denoising to estimate and remove
per-band linear phase distortions before concatenating sam-
ples and using OMP to estimate high-resolution CIR, re-
solving ambiguity via a handshaking protocol. HiSAC [26],
is a JCAS system utilizing multiple technologies (e.g., 5G-
NR and WiGig) and non-contiguous bands. Unlike the
aforementioned works operating at low frequencies (2.4–
7.1 GHz), HiSAC operates at 60 GHz, achieving a 20-fold
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improvement in resolution compared to single-band sce-
narios. Most recently, CCS-FI [7] is proposed as a system
that sparsely samples the channel in the frequency domain,
and uses compressive sensing to widen the effective sensing
bandwidth of Wi-Fi. The authors propose a deep-learning-
based approach for sparse recovery of the channel, which
improves ToF and angle of arrival (AoA) estimation. This
enhancement enables higher accuracy in distance measure-
ment and spatial resolution, facilitating applications such as
multi-person differentiation.

Many of the cited works address hardware distortions
within their algorithms, which remains a core challenge in
multi-band splicing; hardware imperfections yield to a time
and phase offset in each sub-band, which requires to be
estimated and compensated before concatenating the data
from different sub-bands. However, none of the works to
date have analyzed the performance of their algorithms
under varying spectrum loads or considered coherence time
impacts especially at high frequencies.

In this paper, we present a multi-band splicing based
channel sounder, which builds upon existing hardware for
scanning the bandwidth at 60 GHz. We adapt the sparse
recovery algorithm SpaRSA [43] for our channel splicing
application, referring to it as Net-SpaRSA throughout. Fur-
thermore, we integrated OMP, our newly developed two-
stage mmSplicer and Net-SpaRSA in an OFDM commu-
nication system. Our setup is validated in simulation and
indoor experiments, at sub-6 GHz and 60 GHz. Deliberately,
we try to assess CIR using only 50 % of the overall spectrum,
considering the possible impact of the channel coherence
time and spectrum load. Additionally, we briefly examine
the effect of spectrum fragmentation on the performance
of each algorithm and analyze their execution time and
computational complexity. This allows to obtain completely
new insights into the behavior of splicing techniques. Our
implementation of the algorithms, along with the experi-
mental data collected in this study, is publicly available to
the research community.1

3 ALGORITHMS

This section provides an overview of the sparse recovery
algorithms used to reconstruct the sparse CIR from a set of
narrowband measurements that together represent 50% of
the estimated bandwidth (cf. Figure 1). We deliberately fo-
cus on compressed sensing over maximum likelihood-based
and subspace-based estimation methods due to its ability to
estimate the complete channel response by sampling only
a few frequency bands, rather than requiring the entire
spectrum. This advantage aligns with our goal of accounting
for channel coherence time and spectrum load when deter-
mining the number of narrowband measurements that can
be performed.

3.1 Two-Stage Spectrum Splicing Architecture for
Multi-band Delay Estimation
The two-stage multi-band splicing algorithm (mmSplicer)
builds upon the well-known sparse recovery OMP method,
which is a computational efficient algorithm compared to

1https://github.com/tkn-tub/sparse-recovery-channel-sounding
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formation is used to initialize the OMP algorithm across all the collected
CFR samples, enabling accurate reconstruction of the wideband CIR.

more complex iterative algorithms in the literature [57].
However, the OMP model requires a predefined stopping
condition (signal sparsity), which is often unknown in prac-
tical scenarios and is prone to errors [58]. To mitigate these
limitations in real communication systems, an additional
stage is introduced. This stage establishes a dynamic stop-
ping condition, considering only estimated paths within a
specified interval. An illustration of the algorithm is pre-
sented in Figure 4, and each stage of the algorithm is briefly
described below.

3.1.1 Stage I: Clusters identification

The first stage of the algorithm analyzes the estimated CIR
from a single sub-band to identify clusters of strong MPCs.
These clusters are formed by grouping peaks that are both
closely spaced (within two samples) and have magnitudes
exceeding a threshold set at the 90th percentile (as shown
in Figure 4). The reason behind this step is that although a
narrowband signal offers limited resolution, it still captures
the dominant paths. When a wider-band signal is used in
the second stage, it can potentially reveal additional MPCs
within these same time intervals, that is, it can resolve finer
structure within clusters already seen in the narrowband.
If no significant path is observed at a given delay in the
narrowband CIR, then it is unlikely that a strong MPC exists
there, because such a component would already have been
visible, even at lower resolution. Therefore, this step allows
us to pre-select the time regions of interest where dominant
MPCs may reside. The number of identified clusters then
determines the sparsity level used in the second stage of the
algorithm, where multi-band splicing is performed using
OMP.
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3.1.2 Stage II: Multi-band splicing
The second stage of the mmSplicer algorithm performs
sparse recovery to reconstruct the wideband CIR by merg-
ing measurements from several narrow bands. Multi-band
splicing enhances delay resolution by effectively increasing
the measurement bandwidth. For a single band, the delay
resolution is given by(∆τ)1 = 1/Nfs, where: N - the
number of the subcarriers and fs - subcarrier spacing. When
measurements are taken across M frequencies bands the
resolution is improved to (∆τ)1 = 1/MNfs. Considering
that the CIR is sparse, we adopt a compressed sensing
approach similar to [14], using OMP to recover the CIR
over the aggregated bandwidth. The OMP signal can be
represented in the following form [14]:

ỹ ≈ Dh0 + z̃ (1)

where
1) ỹ is a vector containing the CFR samples for all the

bands, ỹ = [ỹ(1)T , ..., ỹ(M)T ]T ∈ CMN . In the case
when only a set of sub-channels are used, then the rest
of the entries are defined as zero.

2) a uniform grid of size G is defined over the delay
domain as G = {0, 1/G, ..., G − 1/G}/fs, and a dic-
tionary D as D = [d(0), ...,d(G− 1)] ∈ CMN×G, where
G = MN and each column d(i) ∈ CMN given as

d(i) =
1√
MN

[e
−j2π[f]1(

i

G
)/fs

, ..., e
−j2π[f]MN (

i

G
)/fs

]T ,

(2)
where i = 0, 1, ..., G− 1.

3) z̃i represents the additive white Gaussian noise
(AWGN)

4) h0 ∈ CG is the estimated CIR using the OMP sparse
recovery method and the given ỹ samples.

The OMP method is a greedy iterative algorithm, that
selects a column of the dictionary D, at each iteration, such
that it has the highest correlation with the current residual
and it repeats until a convergence condition is met. For each
selected column, the non-zero coefficients are computed
using the least-square method, such that they approximate
the measurement vector ỹ. This step defines the matching
part of the OMP algorithm. The effect of each selected
column has to be removed from the residual, such that it
can not be selected again, and this defines the orthogonality
of the OMP method [57]. The algorithm terminates once
the number of the selected dictionary columns reaches the
sparsity order of h0, which is given as input. In our context,
the sparsity order is defined as the number of clusters
identified after the 90th percentile in the first stage. Since
the precise number of multipaths is typically unknown,
we utilize the count from the first stage as a reference
to estimate additional paths within the clusters that are
indistinguishable in the narrow-band signal due to the low
time-domain resolution.

3.2 Net-SpaRSA
Net-SpaRSA is an adaptation of the SpaRSA algorithm
presented in [43], which is developed to solve sparse signal
recovery problems2. Leveraging the sparse nature of the

2www.lx.it.pt/ mtf/SpaRSA
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Figure 5. Block diagram of the Net-SpaRSA algorithm [43].

CIR, meaning only a few components are significantly non-
zero, we apply Net-SpaRSA to reconstruct high-resolution
CIR from narrowband measurements (cf. Figure 1). The ap-
proach is applicable to problems containing complex data,
which is very relevant to our application. In its standard
form, the algorithm solves optimization problems as fol-
lows:

min
x

1

2
||y −Ax||22 + λ||x||1 (3)

where:
• x is the sparse CIR to be recovered,
• A is the sensing matrix, containing Fourier coefficients,
• y is the estimated CFR from the received signal,
• || · ||2 denotes the ℓ2-norm (Euclidean norm),
• || · ||1 denotes the ℓ1-norm (absolute value norm),
• λ is a regularization parameter controlling the trade-off

between data fidelity and sparsity.
Unlike Net-SpaRSA, both OMP [14], [37] and the two-stage
multi-band splicing algorithm [28] do not use an optimiza-
tion formulation. Net-SpaRSA follows an iterative approach,
with each iteration involving an optimization subproblem
consisting of a quadratic term with a diagonal Hessian and
a sparsity-inducing regularizer. The algorithm terminates
once a stopping criterion convergence, and a final de-biasing
post-processing step adjusts the solution, counteracting any
magnitude attenuation from the regularization. The dia-
gram of the algorithm according to [43], is given in Figure 5.

In summary, the selected sparse recovery algorithms
are all grid-based and have been frequently chosen in the
literature due to their proven effectiveness. Sparse recovery
algorithms can be broadly categorized into grid-based and
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grid-less methods [59]. Grid-based algorithms discretize
the parameter space into a finite grid, assuming that the
parameters will approximately lie on the grid. This group of
algorithms is characterized by simplicity in implementation
and computational efficiency. However, the true parameters
might not lie exactly on the defined grid, leading to mis-
matches and reduced accuracy. On the other hand, grid-less
sparse methods operate in a continuous parameter space,
avoiding discretization, which results in higher accuracy,
particularly in high-resolution applications. Nevertheless,
grid-less methods typically require higher computational
complexity and pose greater challenges in implementation.
In this work, we focus only on grid-based methods due to
their low computational complexity, and we consider the
evaluation of grid-less algorithms as future work.

The widely used OMP algorithm is well-known for its
simplicity, making it easy to implement and computation-
ally feasible for real-time or near-real-time applications.
However, OMP is also sensitive to noise, which can lead
to incorrect solutions.

In contrast, the Net-SpaRSA algorithm, is optimization-
based and performs sparse recovery by minimizing a ℓ1-
regularized objective function. It does not require an explicit
sparsity level, instead, the trade-off between sparsity and
reconstruction accuracy is controlled via a regularization pa-
rameter. While effective in producing globally sparse solu-
tions, SpaRSA does not incorporate prior information about
the likely positions of MPCs. This approach tends to be
robust to noise and achieves higher accuracy. Nonetheless,
the iterative nature of this optimization makes it computa-
tionally expensive, particularly for large-scale CFR data.

Finally, our mmSplicer algorithm is designed as a two-
stage enhancement of the standard OMP to improve its
performance in the context of multiband channel splicing.
The first stage leverages a single narrowband CFR to esti-
mate the locations of the dominant MPCs by transforming
it to the time domain, applying thresholding, and grouping
peaks into clusters. The number of clusters determines the
sparsity level, which is then used to initialize OMP in the
second stage. This targeted use of prior information allows
mmSplicer to focus the reconstruction on time intervals
where MPCs are most likely to occur, increasing robustness
while maintaining low computational complexity.

4 SYSTEM SETUP

In the following, we describe the system architecture and
the estimation technique used for generating the CIR and
CFR. The SDR-based channel sounder builds upon USRP-
components (i.e., X310, with an ADC resolution of 14 bits)
to perform the over-the-air communication, and MATLAB
for the software implementation (cf. Figure 1(b)).

The OFDM transmitter is implemented according to
the 802.11ac standard, which supports the signal band-
widths of 20, 40, 80 and 160 MHz. Over the different signal
bandwidths, the OFDM subcarrier spacing is kept fixed to
312.5 kHz, whereas the number of the subcarriers changes
accordingly, following the standard. We conduct over-the
air-experiments both at sub-6 GHz and 60 GHz. To up-
convert and transmit the signal at 60 GHz, we use the sivers

(a) Phased array antenna and
USRP X310.

(b) Basic TX board inside the
USRP X310 for splitting the signal
into I/Q components.

Figure 6. Lab setup: Phased array antennas connected to USRP X310
using the BasicTx board.

 20MHz 802.11a

Figure 7. Illustration of the recurring pattern in the 160 MHz L-LTF of the
802.11ac frame.

semiconducter phase array antennas3, which are connected
to the USRPs through the BasicTX/BasicRX boards (cf. Fig-
ure 6 ). We utilize MATLAB to generate and post-process the
data, and UHD drivers to transmit and receive the signal.

The captured signal is down-converted, and the raw data
is stored into a binary file for further post-processing on the
host computer. During post-processing, the time and carrier
frequency offset are estimated and compensated per each
received packet. The channel is estimated using the LS esti-
mation technique, and the obtained CIR and CFR are stored
into files. The estimation is performed using either the very
high throughput long training field (VHT-LTF) or the legacy
long training field (L-LTF). Finally, the signal is decoded
and demodulated, and the transmitted payload message is
recovered. The collected CFR samples over multiple narrow
frequency bands are used as input to the spectrum splicing
technique for estimating the wideband channel.

For the rest of the paper, the estimation is performed on
the L-LTF. This field is characterized by a repetitive pattern
of the IEEE 802.11a long training field (LTF). For instance,
as depicted in Figure 7, the 802.11ac 160 MHz L-LTF is
comprised of eighth repetitive copies of the 20 MHz IEEE
802.11a LTF. The plot shows the magnitude (in db) for each
subcarrier, where the subcarriers with the lowest magnitude
are the null subcarriers. This characteristic is leveraged to
emulate the L-LTF of narrow-band signals within the wider

3https://www.sivers-semiconductors.com/sivers-
wireless/wireless-products/evaluation-kits/
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160 MHz L-LTF, which is subsequently utilized in algorithm
validation within the paper, temporarily disregarding the
issue of hardware distortions.

Channel estimation is performed using LS estimation
time or frequency domain approach [45]. The time-domain
approach computes the CIR as

ĥ = X†y, (4)

where y are the received samples, ĥ is the CIR and X† is the
Moore-Penrose (pseudo) inverse of the Toeplitz matrix X .
Likewise, the frequency-domain approach acquires the CFR
as

Ĥ[k] =
Y [k]

X[k]
, (5)

where Y [k] denotes the received symbols at subcarrier k,
Ĥ[k] is the estimated CFR at subcarrier k, and X[k] are
the transmitted symbols at subcarrier k. Both CIR and CFR
can be computed from each other using the fast Fourier
transformation (FFT) and inverse FFT (IFFT).

5 GOING BEYOND THEORY: PRACTICAL CHANNEL
SPLICING FOR OFDM SYSTEMS

Multi-band splicing concatenates the CFR samples obtained
from narrow-band measurements taken across multiple fre-
quency bands. This approach increases the effective band-
width and, consequently, the time-domain resolution. Over
the years, various algorithms have been developed, be-
coming even more complex but leading to more accurate
results. We specifically focus on multi-band splicing using
compressed sensing, which offers a significant advantage
by allowing the estimation of a wide channel from samples
collected over just a few frequency bands. This reduction in
the number of required measurements is essential for ad-
dressing the challenges posed by channel coherence time in
the mmWave frequency band. We concentrate on two well-
known grid-based sparse recovery algorithms, along with
an extended method, and compare their performance in a
controlled simulated environment, in an ideal case (using
wires) and real-world scenarios, exploiting the flexibility of
the developed tool to switch between theory and practice.
This step is crucial for gaining insights into the behavior of
the algorithms when integrated into a real communication
system, enabling us to identify both their strengths and
weaknesses.

To validate the models, we leverage the repetitive pat-
tern of the L-LTF in the 802.11ac standard, to replicate
8 × 20MHz narrow-band channels within wide-band sig-
nals. An illustration of the experimental procedure is pre-
sented in Figure 8. This approach effectively mimics the
concept of multi-band splicing, under the assumption that
the input data is free from hardware-induced distortions.
In this way, we neglect at the moment the issue of the
hardware distortions, as our primary focus is on validating
the models. However, addressing these distortions remains
a crucial step before combining narrowband measurements
at different center frequencies, which we will investigate
in future work. For all algorithms, we set the grid size to
G = 1MN . While many existing algorithms [59] have ver-
ified that a dense grid (G >> MN ) can enhance estimation

accuracy by mitigating grid mismatch, this benefit does not
apply in our specific measurement setup. Since our system
has a total bandwidth of BW = 1MN , the time resolution
1/MN . As a result, the multipath components can only
be distinguished at discrete time instances separated by
1/MN . Increasing the grid density beyond G = 1MN (e.g.,
G = 2MN , or G = 3MN ) would introduce additional
dictionary elements that do not correspond to actual mul-
tipath delays, thereby increasing computational complexity
without improving accuracy.

In order to fairly compare the algorithms, we make the
following assumptions:

• OMP algorithm: The stopping condition is set equal to
the total number of the subcarriers of the 160 MHz
signal (i.e., 512).

• mmSplicer: The number of clusters in the first stage in
set equal to the number of the subcarriers of the narrow-
band signal 20 MHz (i.e., 64).

• Net-SpaRSA: The regularization parameter λ, is set to 0.
We executed the algorithms on 4 × 20MHz sub-bands

(from a total of 8 × 20MHz) exploring the following sub-
band distributions: A. all available sub-bands are consec-
utive; B. the available sub-bands are non-consecutive, but
the gaps in between are small, i.e., 40 MHz; C. the available
sub-bands are widely spaced, with 80 MHz gap in between.
These configurations are illustrated in Step 3 in Figure 8..
This approach allows us to analyze the impact of sub-
band positioning on performance. The splicing techniques
were applied across 40 packets. A slight amplitude variation
is noticeable across the packets due to clock synchroniza-
tion issues between the transmitter and receiver. For each
method, we present the range of magnitudes, including
the average (marked), minimum, and maximum values.
Each plot illustrates the amplitude range across all packets
of the reference 160 MHz signal alongside the estimated
magnitude ranges for different configurations (Step 5 in
Figure 8). It is important to note that the true channel
is not directly observable under experimental conditions,
particularly due to its time-varying nature. In this paper, we
define the "reference" as a snapshot of the CIR estimated
using a 160 MHz signal in different scenarios. This snapshot
serves as a baseline for comparison throughout our analysis.
To enhance clarity, only the initial sets of taps are displayed,
with results for each configuration slightly offset to prevent
overlap and improve visibility.

5.1 Simulations
Firstly, we present the numerical outcomes obtained from
our simulations, wherein the algorithms undergo validation
at a center frequency of 5 GHz, utilizing a 160 MHz signal.
Signal up/down-conversion is implemented in MATLAB,
and the real communication channel is model using the
Rayleigh channel. This channel model allows defining the
number of the MPCs and the time delay for each path.
Our objective is to validate the algorithms under conditions
wherein the MPCs are closely spaced, making them indis-
tinguishable from narrow band signals. To achieve this, we
construct a scenario comprising of K = 2 MPCs, with delays
set at {0, 6.25}ns. The channel estimation at the receiver is
performed using the LS estimation techniques, utilizing the
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Figure 8. Illustration of the experimental procedure.

L-LTF, characterized by a recurring pattern (802.11a LTF).
We exploit this advantage, and emulate 8×20MHz narrow-
band signals. Subsequently, the algorithms are executed
over half of these sub-bands, and the resultant estimates
are compared against the 160 MHz CIR, which serves as
reference or baseline. Employing a sub-set of the 20 MHz
bands offers the flexibility in exploring the impact of dif-
ferent sub-band placements. Specifically, we examine the
following three configurations: A. all available sub-bands
are consecutive (conf. A); B. the available sub-bands are non-
consecutive, but the gaps in between are small, i.e., 40 MHz
(conf. B); C. the available sub-bands are widely spaced, with
80 MHz gap in between (conf. C); as illustrated in Step 3 in
Figure 8.

The results for the three algorithms across these con-
figurations are depicted in Figure 9. Each tap’s magnitude
range (maximum and minimum values) over 40 packets,
alongside the average value, is showcased. However, since
simulations are not affected by hardware distortions, there
are no magnitude variations across packets. Additionally,
the plots include the 160 MHz CIR, illustrating the presence
of two strong paths: the LoS and the second component at
6.25 ns, as defined in the Rayleigh channel model.

Generally, all the algorithms have the tendency to under-
estimate the strong MPCs and over-estimate the low-energy
spikes. This trend is expected since a decrease in the number
of observations results in a smoothing effect, where strong
MPCs are underestimated, while weaker ones are overes-
timated to maintain consistency. Surprisingly, mmSplicer
and Net-SpaRSA algorithms yield very similar results, with
negligible difference. Both methods, estimate a weaker CIR
compared to the reference reference one but exhibit the
same pattern. In contrast, OMP generates a wide range of
amplitudes for each tap. Due to the very large stopping con-
dition value, occasionally the algorithm estimates multiple
magnitude values for the same tap some of which may be
close to zero. This behavior is not observed in the mmSplicer
outcomes, despite the fact that the method is based on OMP,
as the stopping condition is significantly lower.

Regarding sub-band space, mmSplicer and Net-SpaRSA
algorithms exhibit optimal performance in terms of the aver-
age values with consecutive bands (conf. A), closely aligning

0.00 6.25 12.50 18.75 25.00 31.25 37.50
Time [ns]

0.00

0.02

0.04

0.06
M

ag
ni

tu
de

cir-160MHz
conf. A
conf. B
conf. C

(a) OMP estimation results.

0.00 6.25 12.50 18.75 25.00 31.25 37.50
Time [ns]

0.00

0.02

0.04

0.06

M
ag

ni
tu

de

cir-160MHz
conf. A
conf. B
conf. C

(b) mmSplicer estimation results.
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(c) Net-SpaRSA estimation results

Figure 9. Validation using simulation. Markers show the average values,
together with the variance.
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with the reference 160 MHz CIR. Performance deteriorates
as the spacing between sub-bands increases (particularly
to 80 MHz) (conf. C), making it more challenging to dis-
tinguish the two strong paths. In the case of OMP, due to
the algorithm performance, the maximum value proves to
be a better indicator for distinguishing strong paths. Once
again, the consecutive bands configuration (conf. A) yields
superior outcomes.

5.2 Cable Experiments

We now study the performance of the multi-band splicing
techniques under an ideal scenario by emulating multipath
components utilizing RF splitters, combiners, and coaxial
cables. The RF splitter is connected to the output port of
the USRP X310 transmitter and splits the output signal
into two copies, which go through different cable lengths
(multipath components). On the other side, the RF combiner
combines the two signals coming from the two paths, and
it is connected to the input port of the USRP X310 receiver.
The cable lengths are 2 m and 10 m respectively. The speed
of the RF signal in the coaxial cable depend on the dielectric
constant, typically ranging between 66% to 85% of the speed
of light in the vacuum. We transmit a 160 MHz signal which
translates to a resolutions of 6.25 ns. To validate the algo-
rithms we estimate the CFR using the L-LTF in the 802.11ac
frame. Exploiting the pattern of the L-LTF, which consists of
multiple copies of the 802.11a legacy preamble, we emulate
in it 8 × 20MHz signal legacy preamble. As the resolution
of a single 20 MHz signal is 50 ns, it cannot distinguish the
two paths.

The outcome from each algorithm are depicted in Fig-
ure 10. The 160 MHz CIR reveals two strong MPCs (the LoS
path and the reflection at 31.25 ns). Additional low energy
spikes in between the two MPCs might be a consequence of
hardware components.

A common pattern across all algorithms is the underes-
timation of the two strong MPCs and the overestimation of
low-energy spikes. This behavior aligns with the expected
smoothing effect, where a reduced number of observations
causes stronger MPCs to appear weaker, while weaker
components are amplified to preserve overall consistency.
Interestingly, the two-stage and Net-SpaRSA algorithms
yield very similar results, with negligible differences in
estimated magnitude changes. In contrast, the performance
of the OMP algorithm with respect to the average value is
inferior, displaying a larger range of magnitude values. This
behavior can be attributed to the large stopping condition
value, leading the method to estimate magnitude values
close to zero (or zero).

In terms of different sub-bands distributions, drawing
clear conclusion presents a challenge. Overall, a sub-band
space of 80 MHz (conf. C) results in weak CIR estimation,
making it very difficult to distinguish the strong paths.
Looking at the average value, the consecutive bands (conf.
A) and 40 MHz apart bands (conf. B) yield relatively to
better results. The total estimated CIR is weaker in these
cases, but a similar pattern to the reference CIR can still
be observed. This observation does not hold for the OMP
method, where focusing on the maximum value of consec-
utive bands can lead to better results.
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(b) mmSplicer estimation results.
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Figure 10. Cable experiments. Markers show the average values, to-
gether with the variance.

5.3 Sub-6GHz Indoor Lab-Experiments

After validating the algorithms in an ideal scenario con-
sisting of cables emulating the multipath components, we
start conducting measurements in real-world at the 2.4 GHz
frequency. These experiments were conducted indoor using
a 160 MHz signal at a communication distance of 7.5 m.
The 160 MHz bandwidth resolution enables differentiating
paths coming relatively close, to a distance difference of
1.8 m. Considering the signal propagation characteristics at
2.4 GHz and the crowded indoor environment were the
measurements were conducted, we anticipated a CIR with
multiple strong paths. Similar to the previous experiments,
the channel is estimated based on the L-LTF, and 8×20MHz
narrow-band signals are emulated to analyze the perfor-
mance of the considered algorithms.

The full 160 MHz estimated CIR and the algorithms
outcomes are presented in Figure 11. The plots illustrate
the range of amplitudes across 40 packets for each config-
uration and tap, showing the reference CIR and estimated
values, along with the average (with markers), minimum,
and maximum values. As expected, the 160 MHz CIR shows
the presence of several spikes in the proximity of each other
(LoS and 6.25 ns; 18.75 ns, 25 ns, and 31.25 ns).
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(b) mmSplicer estimation results.
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Figure 11. Sub-6GHz indoor lab-experiments. Markers show the aver-
age values, together with the variance.

Overall, the algorithms tend to underestimate the strong
spikes and overestimate the low-energy ones, which aligns
with the expected smoothing effect that occurs when the
number of observations decreases, causing stronger MPCs
to be underestimated while weaker ones are overestimated
to maintain consistency. The mmSplicer and Net-SpaRSA
generate very similar results, with a very slight negligible
difference in amplitude. Both algorithms follow the same
CIR pattern as the reference 160 MHz CIR. In contrast the
range of the amplitudes estimated by OMP is very wide,
leading to difficulty in distinguishing the strong paths when
looking at the average values. This is a consequence of
the very large stopping condition, resulting sometimes in
estimated values close to zero for each tap.

Next we focus on analyzing performance across different
sub-band spacing. Drawing conclusions in such scenario
with multiple spikes proved to be more challenging. While
various configurations tended to approximate better the
pattern and values of different paths, we can still see that
results obtained from the sub-bands spaced 80 MHz (conf.
C) are the ones furthest from the baseline, in terms of the
average value, and the maximum value for the OMP.

6 CHANNEL SPLICING IN ACTION AT MMWAVE
FREQUENCIES

After validating the sparse recovery algorithms in the con-
text of multi-band splicing, our focus now shifts to the
mmWave frequency band – in the scope of this paper,
we specifically use the 60 GHz ISM band. Measurements
were conducted in the laboratory at a distance of 7.5 m,
employing the Sivers Semiconductors phased array anten-
nas and specifically, the BFM06009 module consisting of a
8x2x2 antenna array, supporting steering both in elevation
and azimuth. Given the phased array antenna’s narrow
beam width (about 10°), to facilitate testing the algorithms
two mirrors were added to the setup. The first mirror is
positioned behind the receiver antenna, while the second
one was placed in the proximity of the communication link,
approximately 1.5 m from the receiver.

Following a similar methodology as in previous scenar-
ios, a 160 MHz signal is transmitted over the air, and the
channel is estimated at the receiver using the LS estimation
technique and the L-LTF. Exploiting the repetitive nature
of the L-LTF, 8 × 20MHz signals are emulated and the
algorithms were executed for different sub-band spacing as
illustrated in Figure 8. The results of the algorithms are pre-
sented in Figure 12, depicting the range of the magnitudes
along with the average (represented by markers), minimum
and maximum values, for the reference (160 MHz CIR) and
the estimated results. The 160 MHz CIR shows the present
of two strong MPCs: the LoS path and the component
at 6.25 ns. In contrast to previous scenarios, the range of
the amplitude values for these two strong paths is slightly
larger, indicating that the 60 GHz channel is more sensitive
to small changes in the environment.

Across the sparse recovery algorithms, the two strong
MPCs tend to be underestimated, while the low-energy
spikes are overestimated, which aligns with the expected
smoothing effect that occurs when the number of obser-
vations decreases, causing stronger MPCs to be underes-
timated and weaker ones to be overestimated in order
to maintain consistency. Similar to the previous scenarios,
the mmSplicer and Net-SpaRSA algorithms yields to very
similar results with a negligible difference in the estimated
amplitudes. Both algorithms accurately capture the CIR
pattern observed in the reference one, especially when con-
secutive bands (conf. A) or sub-bands spaced 40 MHz (conf.
B) were utilized. The performance degrades as the spacing
between sub-bands increases, emphasising the influence of
band selection on the generated outcomes. Regarding the
OMP algorithm, it struggles to capture the CIR pattern,
irrespective of the selected sub-bands. This comes as a con-
sequence of the very large stopping condition used, which
deteriorates the algorithm performance.

7 COMPLEXITY

Multi-band splicing is a powerful technique that has re-
cently gained significant attention in extending the com-
munication systems to support sensing applications. This
method allows for the use of existing hardware to perform
extensive channel measurements efficiently. While a few
channel splicing approaches have already been developed,
they are either known for their computational complexity
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(c) Net-SpaRSA estimation results

Figure 12. mmWave channel splicing at 60 GHz. Markers show the
average values, together with the variance.

or for low accuracy. We contribute to the field with two
approaches: (1) we extended the OMP-based multi-band
splicing technique [14] to a two-stage algorithm, called mm-
Splicer, and (2) we tuned the SpaRSA algorithm [43] to work
in a communications scenario, resulting in Net-SpaRSA. In
this section, we focus on comparing these algorithms in
terms of their computational complexity and their system-
dependent execution time, abstracting away hardware and
implementation details. Analyzing complexity is crucial due
to the impact of channel coherence time on performance.

7.1 Execution Time
The first parameter we consider when comparing the com-
plexity of the algorithms is the execution time. Execution
time refers to the total duration required for a computer to
execute an algorithm, typically measured in seconds [60]. It
depends on several factors, including the algorithm design,
implementation efficiency, input data size, and most impor-
tantly, the hardware specifications of the system, such as
CPU speed, memory, and system load at the time of execu-
tion. As a result, the execution time varies depending on the
computing environment and external system conditions. We
measured the execution time of the three algorithms using

Table 1
Average execution time and standard error of OMP, Net-SpaRSA, and

mmSplicer across different scenarios.

Frequency OMP (s) Net-SpaRSA (s) mmSplicer (s)

simulations 3.595 ± 0.001026 0.124 ± 0.000013 0.234 ± 0.000184
cable 5 GHz 3.692 ± 0.002139 0.123 ± 0.000012 0.235 ± 0.000060
2.4 GHz 3.690 ± 0.002489 0.122 ± 0.000037 0.260 ± 0.000210
60 GHz 3.699 ± 0.002190 0.127 ± 0.000027 0.231 ± 0.000060

a system with the following specifications: AMD Ryzen 9
7950X 16-Core processor and 128 GB RAM.

To compute execution time in MATLAB we utilized the
built-in tic and toc functions. The tic function records the
current time, while toc returns the elapsed time since the
last tic call. However, as stated in the MATLAB documen-
tation, if an algorithm’s execution time is less than 0.1 s,
the precision of tic and toc may be insufficient. To ensure
reliable execution time measurements, each algorithm was
executed 100 times in a loop, and the total elapsed time was
recorded and divided by 100. This procedure was repeated
1,000 times and the average execution time was computed
across these runs in order to compensate for random fluctua-
tions. The algorithms were executed for each scenario while
maintaining the same system configuration (conf. A: all
available sub-bands are consecutive, as shown in Figure 8),
ensuring that the input data size remained consistent across
all runs. Furthermore, the execution time was evaluated
under the same conditions as the experimental process.
Specifically, the number of iterations in the OMP algorithm
was set equal to the number of subcarriers in the 160 MHz
signal, while for the mmSplicer algorithm, it was set to the
number of subcarriers in the narrowband signal (i.e., 64
subcarriers). Additionally, the regularization parameter of
the Net-SpaRSA algorithm was set to 0.

The final results are presented in Table 1, where each
entry includes the mean execution time along with the
standard error of the mean to quantify the measurement
uncertainty. The results show that, under the given condi-
tions, the Net-SpaRSA algorithm has the shortest execution
time, followed by the mmSplicer algorithm, and then the
OMP algorithm. However, it is important to note that the
assumed condition for the OMP algorithm represents the
worst-case scenario. In practice, the number of iterations
would be significantly lower, given the sparsity of the CIR.

As mentioned earlier, execution time refers to the total
wall-clock time required for a computer to execute an algo-
rithm. It depends on various factors, including implemen-
tation efficiency and, most notably, the system’s hardware
specifications. Therefore, in addition to the execution time,
we also analyze the computational complexity of the algo-
rithms to provide a system-independent measure of their
performance.

7.2 Computational Complexity
The computational complexity of an algorithm describes
how its execution time scales with the input size, typically
expressed in Big O notation. This notation characterizes
the worst-case performance of an algorithm, abstracting
hardware and implementation details [61]. We analyze the
computational complexity of our three algorithms based on
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the key operations performed during execution, particularly
matrix-vector multiplications and iterative updates.

OMP: The time complexity of the OMP algorithm de-
pends on the number of iterations K , which corresponds to
the sparsity level of the recovered signal. In each iteration,
the algorithm first computes the inner product between the
residual (of size 1 × MN in our case) and all dictionary
columns to identify the column most correlated with the
residual. This involves a matrix-vector multiplication with
a complexity of O(M2N2). Once the most correlated col-
umn is selected, an operation with complexity O(MN), the
nonzero coefficients are computed using the least squares
method. This requires solving a K×K system of equations,
which has a complexity of O(K3) per iteration. Finally, the
residual is updated, requiring a matrix-vector multiplication
with complexity O(MN). Summing these operations over
K iterations and keeping only the dominant terms, the total
complexity of OMP is given as

O(KM2N2 +K4) (5)

Net-SpaRSA: The complexity of Net-SpaRSA depends
on the number of iterations required for convergence. The
initialization phase, which includes the initial computation
of the residual and gradient, consists of a matrix-vector
multiplication with complexity O(M2N2). The algorithm’s
main loop then runs until it converges to a solution. In each
iteration, the soft thresholding operation is applied element-
wise with complexity O(MN), and the gradient update
involves a matrix-vector multiplication with complexity
O(M2N2). Considering K number of iterations, the total
complexity is O(KM2N2) The debiasing phase employs
the conjugate gradient method to solve the least squares
problem iteratively, where each iteration involves a matrix-
vector multiplication with complexity O(KMN), leading
to an overall complexity of O(K2MN) over K iterations.
Thus, the total complexity of the Net-SpaRSA algorithm is
given as

O(K2MN +KM2N2) (6)

mmSplicer: The mmSplicer algorithm extends the OMP
method by introducing an additional stage to automatically
determine the number of iterations K , which is required
for the second stage where OMP is applied. In the first
stage, the algorithm takes as input the CFR samples from
a single narrowband measurement (1×N size). The IFFT is
then applied to obtain the CIR, which has a computational
complexity of O(NlogN). Next, the magnitude values are
computed by taking the absolute value, and sorted, with a
threshold set at the 90th percentile. The sorting operation
has a complexity of O(NlogN). Finally, nearby magnitude
values exceeding the threshold are grouped into clusters.
The number of clusters determines the sparsity level K for
the subsequent OMP step, and this clustering process has
a complexity of O(N). Combining both stages, the total
complexity of the mmSplicer algorithm is given as

O(NlogN +KM2N2 +K4) (7)

Table 2
Computational complexity of OMP, mmSplicer, and Net-SpaRSA.

Algorithm Complexity

OMP O(KM2N2 +K4)

mmSplicer O(NlogN +KM2N2 +K4)

Net-SpaRSA O(K2MN +KM2N2)

Table 2 presents the time complexity of the three al-
gorithms, indicating that OMP is the most efficient. The
mmSplicer algorithm, which includes an additional prepro-
cessing step, is slightly more computationally expensive
than OMP but remains more efficient than Net-SpaRSA.
Net-SpaRSA has the highest complexity due to its iterative
updates in both the main loop and the debiasing phase.

Given the above, a trade-off must be made between algo-
rithm performance and complexity. Indeed, mmSplicer adds
an additional stage on top of the classical low-complexity
OMP algorithm, thereby increasing the complexity. How-
ever, this first stage enables mmSplicer to automatically
determine the required number of iterations for the second
stage to recover the CIR. In contrast, pure OMP requires the
user to specify the number of iterations as input—a require-
ment that is impractical in real-world scenarios, where this
information is not available beforehand. Compared to Net-
SpaRSA, mmSplicer achieves similar performance but with
lower overall complexity.

8 DISCUSSION

We explored three grid-based sparse recovery methods: the
standard OMP algorithm, along with our two new contri-
butions: mmSplicer, which extends OMP into a two-stage
approach to enhance its applicability in wireless systems,
and Net-SpaRSA, an adaptation of the SpaRSA algorithm
for wireless applications. These algorithms were integrated
into an experimental setup using SDRs in our lab. Specifi-
cally, they were embedded in an IEEE 802.11ac-based com-
munication system, with CIR and CFR estimated using the
LS estimation technique.

A series of lab experiments were conducted to demon-
strate the feasibility of spectrum splicing in real-world
environments. We focused particularly on the ability to
obtain wideband channel properties using only a subset of
sub-bands. This is significant, especially when considering
the issue of coherence time in mmWave systems and the
influence of spectrum load from other applications or users
sharing the same spectrum. Both simulations and indoor ex-
periments yielded highly accurate estimations of multipath
components, particularly in terms of time delay. In terms of
magnitude, we observed a common trend across all sparse
recovery algorithms: strong MPCs tended to be underesti-
mated, while low-energy components were overestimated.
This effect aligns with the expected smoothing behavior that
occurs when the number of observations decreases, causing
stronger MPCs to appear weaker and weaker MPCs to ap-
pear stronger to maintain overall consistency. Nevertheless,
for sensing applications, exact magnitude reconstruction
may not be as critical as accurate path detection. As long
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as strong MPCs are correctly identified as such, and no
negligible component is misclassified as a strong path, the
algorithms remain effective for path detection tasks. Overall
the results depict that the two-stage mmSplicer and Net-
SpaRSA algorithms produce nearly identical results, with
negligible magnitude differences. In contrast, OMP per-
forms worse on average, showing a wider magnitude range
due to its high stopping condition, which leads to estimates
near or at zero.

Additionally, we analyzed the execution time and com-
putational complexity of the algorithms, as these are critical
factors when comparing different approaches. Our results
showed that mmSplicer and Net-SpaRSA produced very
similar results in terms of recovering the CIR, regardless
of the scenario or sub-band distribution. When it came to
execution time, Net-SpaRSA proved to be faster. However,
it is essential to note that the assumptions made for the
OMP algorithm and mmSplicer represent the worst-case
scenario. In practice, the number of iterations is expected
to be much lower, since the signal is sparse, especially
in mmWave frequency bands. Moreover, execution time is
heavily dependent on hardware and implementation; for
example, the algorithms’ execution time could be further
optimized for real-time systems by using FPGA or C++
implementations. On the other hand, while Net-SpaRSA
showed faster execution, it is computationally more com-
plex due to the presence of iterations in both the main loop
and the debiasing process. OMP, on the other hand, has the
lowest computational complexity but requires the channel
sparsity to be input as a parameter, which is not known
beforehand.

This makes mmSplicer the best trade-off, as it offers a
balance between execution time and computational com-
plexity while not relying on prior knowledge of channel
sparsity.

9 CONCLUSION

Following the key concepts of joint communication and
sensing, we explored multi-band splicing to extend com-
munication systems for high-accuracy sensing applications.
Multi-band splicing combines multiple narrow-band mea-
surements, taken at different (not necessarily consecutive)
center frequencies, to achieve precise wideband measure-
ments. We evaluated three grid-based sparse recovery al-
gorithms: the standard OMP algorithm and our two novel
contributions—mmSplicer, which introduces a two-stage
approach to enhance OMP’s applicability in wireless sys-
tems, and Net-SpaRSA, an adaptation of the SpaRSA algo-
rithm tailored for wireless applications. Through extensive
simulations and experimental validation, we assessed their
performance in reconstructing wideband channel properties
using only a subset of subbands with different distribution
patterns. Additionally, we analyzed execution time and
computational complexity to compare their practical fea-
sibility. Overall, our findings indicate that mmSplicer pro-
vides the best trade-off between performance and complex-
ity, offering robust multipath estimation without requiring
prior knowledge of channel sparsity.

Future work will involve experiments in more dynamic
scenarios to investigate how sub-bands width and spacing

affect the splicing accuracy across the frequency spectrum.
Additionally, we plan to explore a grid-less approach and
assess its potential advantages over our existing mmSplicer
algorithm in wireless scenarios. Furthermore, we aim to
expand the application of multi-band splicing, currently
implemented in single-input single-output (SISO) systems,
to multiple-input multiple-output (MIMO) setups.
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