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Abstract—Relay mechanisms are an important part of commu-
nication systems and, therefore, naturally occurring molecular
communication (MC) links. Multiple techniques have been pro-
posed for designing MC relay-aided setups, assuming synchronous
operation and perfect timing during the decoding process. In
this paper, we propose using a reinforcement learning (RL)-
based synchronizer to continually adapt a decoding threshold
and detect transmitted synchronization frames in a dynamic MC
environment. We implement our approach in a two-hop MC link
model with mobility and show its advantages compared to filter-
based maximum likelihood (ML) synchronization. Thereby, we
utilized a macroscale, air-based MC testbed for the experimental
determination of the channel impulse response (CIR) for a
more realistic channel model. Our simulation results exhibit
the potential of an RL-based synchronizer with a similarly high
detection rate, a false positive rate one order of magnitude lower,
and a misalignment several bit times lower compared to the state
of the art.

Index Terms—Molecular Communications, Air-based Com-
munication, Testbeds, Reinforcement Learning, Synchronization

I. INTRODUCTION

Relay mechanisms are naturally conveyed in molecular
communication (MC) links as part of biochemical processes.
For instance, the insulin secretion of artificial beta cells can be
modeled as an amplify and forward (AF) relay mechanism [1].
A similar model is derived for spreading viral infection
processes, where infected subjects are studied as store-and-
forward relays in [2]. For the purpose of communications, the
main motivation to encompass relay-aided setups with two
hops [3], [4] or multiple ones [5] is to extend the limited
communication range of MC networks. Reporting amplify-
and-forward and decode-and-forward mechanisms, research
studies evaluate the optimal location of nodes and decision
thresholds in fluid mediums [6], as well as the optimal number

Lisa Y. Debus, Jorge Torres Gómez, and Falko Dressler are with the School
for Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany,
email: {debus, torres-gomez, dressler}@ccs-labs.org.

Pit Hofmann and Frank H.P. Fitzek are with the Deutsche Telekom Chair of
Communication Networks, Technische Universität Dresden, Dresden, Germany;
F. Fitzek is also with the Centre for Tactile Internet with Human-in-the-Loop
(CeTI), Dresden, Germany, email: {pit.hofmann, frank.fitzek}@tu-dresden.de.

This work was supported in part by the project IoBNT funded by the
German Federal Ministry of Education and Research (BMBF) under grant
numbers 16KIS1986K & 16KIS1994 and by the project NaBoCom funded by
the German Research Foundation (DFG) under grant number DR 639/21-2.
This work was also supported by DFG as part of Germany’s Excellence
Strategy—EXC 2050/1—Cluster of Excellence "Centre for Tactile Internet
with Human-in-the-Loop" (CeTI) of Technische Universität Dresden under
project ID 390696704 and BMBF in the program of "Souverän. Digital.
Vernetzt." Joint project 6G-life, grant number 16KISK001K.

Transmitter ReceiverChannel

top view

side view

drift

drift

x

z

x

y

chemical sensor
single board 

computer
reservoir

single board computer

Fig. 1. Air-based macroscale molecular SISO communication testbed, cf.
[15]; first presented in [16]. The green triangle denotes the propulsive release
mechanism of the molecules [17].

of relay nodes to minimize communication delay in bacteria
colony setups [7]. In the more realistic case of mobile scenarios,
theoretical formulations for the detection threshold and symbol
error rate probability are derived for one hop [8] and multiple
hops [9], where the two communication nodes and the relay
node follow a Brownian motion pattern. In vessel-like scenarios,
the optimal threshold and amount of released molecules are
also evaluated for multiple-hop links, like in [10], [11].

However, previous works assume that nodes operate syn-
chronously and information is decoded with perfect timing. In
practice, receivers require a synchronization mechanism with
the symbol time, enabling data decoding. Otherwise, the impact
of symbol time offset (STO) will degrade the communication
performance, preventing data transmission. Prior research
contends the conception of symbol time synchronizers in MC
links using a maximum likelihood approach [12], [13]. Yet,
synchronization mechanisms in MC relay-aided links, including
the mobility of nodes, are missing.

Extending our previous work in [14], we investigate a
reinforcement learning (RL) method to realize synchronization
in a two-hop link. We are mainly driven by the flexibility
of machine learning models, which allows us to deal with
the uncertainty of mobility and threshold detection levels
for incoming symbols. We realized two agents to enable
synchronization in the relay node, operating as decode-and-
forward, and on the final destination mobile node. Accounting
for a realistic setup, we perform the training using data from
the air-based testbed illustrated in Fig. 1. We use this point-to-
point testbed to emulate a two-hop link with mobility on the
receiver side in the form of Brownian motion. Results indicate
the superiority of the two agents’ threshold adaption process,
overestimating the end-to-end channel model and transmission
parameters, as in the case of maximum likelihood formulations.
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Fig. 2. Mobility model. The emitter and relay remain static while the receiver
moves within a given range. This mobility results in a change of CIR.

II. SYSTEM MODEL

As the system model, we address a relay-aided link as a
two-hop connection. We assume static relay and emitter nodes
and the receiver node moving randomly according to Brownian
motion. This scenario occurs in monitoring applications where
a mobile fusion node collects data from a static sensor node.
Addressing realistic channels, we use measurements from the
air-based macroscale testbed in Fig. 1 to implement a more
realistic end-to-end channel.

A. Macroscale MC Testbed

For the experimental determination of the channel impulse
response (CIR) we utilize the macroscale SISO MC testbed,
see Fig. 1, as initially presented in our earlier work [15]. All
components in the experimental setup are commercially avail-
able off-the-shelf products. Specifically, an atomizer functions
as the propulsive release mechanism of the molecules [17],
and the MQ-3 gas sensor serves as the chemical sensor at
the receiver side. Two Raspberry Pi single-board computers
are utilized for electronic control of the mechanical release
mechanism and the transmission of the electrical signal from
the chemical sensor to a local PC for post-processing. The
transmitter comprises a sprayer for the mechanical release
of the molecules, here ethanol molecules, and a reservoir
for the molecules. The reservoir contains an ethanol solution
diluted in a mass ratio 1/4, i.e., four parts distilled water
and one part 99.99 % ethanol by mass. As the modulation
technique, we use on-off keying (OOK). The activation of the
mechanical release of the molecules, representing a 1, releases
approximately 1.5 g diluted ethanol [15], which corresponds
to a total number of 3.92 × 1021 released molecules, while a 0
signifies no emissions. The propagation of the molecules from
the transmitter to the receiver is supported by an additional
drift of average speed v = 3.5m/s.1 The receiver incorporates
an electrochemical sensor that measures the concentration level
of the molecules with a sampling frequency of 5 Hz. Using the
described setup, we collect measurements and approximate the
testbed’s CIR as described in Section II-B2 to be used in the
simulated relayed communication system. The experimental
setup consists of a transmitter and a receiver, following Fig. 1.
The relay only exists in the simulation model. The reception and
relay process for the simulation model follows Section II-B3.

B. Mobile Communication Model

We emulate a mobile communication link by evaluating the
CIR in a time-space grid. The number of received molecules is
computed by reading the CIR in the corresponding time-space
coordinates following the time-varying receiver’s position. We
devise the following components to carry out this calculation
and model a mobile communication link.

1An anemometer Airflow Instruments LCA301 was used for measuring the
velocity of the airflow.

Fig. 3. Average CIR of the testbed created by interpolating the recorded
measurements.

1) Receiver Mobility: We simulate 1D mobility for the
receiver according to Brownian motion. We define the receiver’s
diffusion coefficient with DRx, which also provides the
distance δ it can move within a given time step ∆t as
δ =

√
2DRx∆t [18]. The receiver moves by δ after every

5 bits. It can therefore receive a full synchronization frame if
one was transmitted without moving during its transmission.
It can move within a distance range of 0.5 m to 1.5 m from
the relay. All communication participants are aligned along
the direction of their sprayer. A schematic of the approach is
shown in Fig. 2.

2) Spatio-Temporal Channel Impulse Response: We render
a spatio-temporal surface for the CIR using the testbed
measurements for the total number of received molecules as
represented in Fig. 3. To compute this surface, we collect
sequences with testbed measurements for distances between
0.5m and 2.5m in steps of 0.25m and normalize these
sequences with the total number of released molecules. We
later interpolate these sequences to approximate the CIR for
the distances between the recorded steps.2 For each transmitter-
receiver-distance in the testbed setup between 0.5m and 2.5m,
we measure the alcohol concentration at the receiver side over
40 s with a sampling frequency of 5 Hz. A total number of ten
measurements is considered per distance and the average is
calculated over all measurements per distance. The averaged
values are interpolated using the spline interpolation interp2
provided in Matlab with a grid relating its step size to the
minimum step width possible to be taken by the receiver, i.e.,
as given by δ. Fig. 3 shows the resulting surface of the CIR
for a distance of 0.5 to 2.5m and a time interval of 0 to 40 s.
In the simulation, we add Poisson noise to our CIR [19]. The
resulting signal has a signal to noise ratio (SNR) of 30 dB.

3) Reception and Relay Process: We calculate the number
of expected molecules at the relay and receiver node with the
CIR-surface in Fig. 3 after scaling it with the total number
of released molecules. The relay node uses a decode-and-
forward strategy, aiming to deploy the same receiver structure
at the relay and receiver nodes. The relay node uses the
same detector and synchronizer as the receiver. Frames are
detected and forwarded to the receiver, irrespective of their
correctness. Furthermore, at the relay node, we consider only
the molecules released by the emitter, and at the receiver node,
we superpose the emitter and the relay emissions. We also
include the retransmission delay produced by the decode-and-

2The minimum distance of 0.5m is due to the propulsive release of the
molecules influencing the achievable communication range within the testbed.
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forward mechanism at the relay node. To compute the number
of received molecules, we sample the CIR-surface in Fig. 3
with the actual distance to the emitter over time. Each time
the receiver changes its position, we evaluate the distance to
the emitter and relay in the simulation and read the sample
on the CIR surface accordingly.

We use the same CIR-surface on both the relay and the
receiver side. This means that the relay node placed between
the transmitter and the receiver is considered transparent in
the transmission between these two nodes. In practice, placing
the relay node between the transmitter and the receiver would
reduce the number of molecules reaching the receiver side,
as most of them would already be received by the relay.
The relay’s inclusion in the CIR of the receiver node would,
therefore, reduce the interference produced by the transmitter’s
original transmission on the transmission from the relay to the
receiver node. We assume that the reduction of interference
would likely improve the transmission quality from the relay
to the receiver. In our simulation, we assume the worst case
scenario by evaluating the maximum possible interference with
the relay node acting as a transparent receiver.

III. RL-BASED SYNCHRONIZER

We realize an RL-based synchronizer for the described
relayed MC system in a Matlab/Simulink environment. Fig. 4
depicts the block diagram for the synchronizer. The modeling of
the channel, including node mobility, is implemented with three
blocks, in which the receiver position is evaluated, the CIR is
sampled, and the expected number of molecules based on the
transmitted frame sequence is calculated. The synchronizer is
made up of a threshold detector and a correlator block. The
threshold detector uses the threshold τ to decode the expected
number of molecules mrx at sample time x into a 0, i.e.,
τ > mrx, or a 1, i.e., τ ≤ mrx. The correlator compares the
decoded bit sequence with the expected synchronization bit
sequence according to the state diagram shown in Fig. 5 and
outputs the resulting synchronization clock if a synchronization
frame is detected. Additionally, the sample time offset shifter
block shifts the sampling time offset to the maximum of the
first bit in the detected synchronization frame. The RL agent is
integrated with the threshold decoder. Based on observations
of the current number of molecules and threshold and a reward
evaluating its ongoing performance, the RL agent continuously
adapts the used threshold τ . In the following, we explain the
structure of the RL loop and the implemented RL agents with
their training process.

A. Reinforcement Learning-Loop

The RL-loop used to train the adaptive threshold setting is
based on three values: observations, reward, and actions. The
observations must represent the system’s current state to the
RL agent. In the presented approach, we use

observation = mi − τi (1)

to define the observation, where mi denotes the number of
observed molecules and τi is the detection threshold at the
current sampling time i. In our system, we expect a spike in

Fig. 4. Block diagram of the RL-based synchronizer performing threshold
setting in a relayed setup in the presented testbed.

Fig. 5. State diagram of the RL-based synchronizer’s correlator. By moving
through the states according to the decoded bit value, the correlator detects
synchronization frames at state S5.

the number of molecules to occur for the transmission of a
1 and not for the transmission of a 0. With the threshold τi
set correctly to decode both possible bit values, the observed
difference is negative for the transmission of a 0 and positive
for the transmission of a 1. The given value, therefore, enables
the agent to deduct the last transmission and use this knowledge
to adapt the next threshold τi+1 to the state of the system.

The agent is rewarded for the system’s current state at the
end of each run through the RL-loop. As the current state
results from the agent’s last action, it implicitly judges the
agent’s performance. We base our reward

reward = 0− (mi − τi)
2 · 1

c
(2)

on a quadratic cost for the difference between the number of
molecules mi and the threshold τi at the current sampling time
i. The reward is scaled with factor c. The farther the threshold
from the number of molecules at time i, the higher the cost for
the agent’s action. As the agent strives to minimize the cost
in the long term, it reduces the distance between the threshold
and number of molecules for transmitted 0s and 1s. During
the training, the value of the next transmitted bit is chosen at
random, and the RL agent must develop a threshold adaption
strategy that will minimize the cost produced by the distance
in case of both possible bit values.

Over time, this reward formulation pushes the agent to
maximize the noise margin between the possible transmission
of a 0 and a 1 by setting the threshold to the expected minimum
cost, which is in the middle of the two possible molecule
levels. This minimum cost and, therefore, maximum reward is
visualized in Fig. 6. The reward scaling factor c is tuned for
the RL agent during its hyper-parameter tuning. In our system,
the tuned value for c is 1000.

Based on the observations and the reward, the agent
adapts the current threshold by passing the action δth to the
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Fig. 6. The RL agent’s reward maximizes the noise margin between the
potentially received number of molecules in case of a 1 or a 0. The sampling
interval between point i and i− 1 equals the bit time.

environment. The value δth is added to the current threshold τ ,
and the result is used in the next loop. The range of possible
action values must be high enough to enable accurate threshold
adaption while still enabling efficient learning.

B. Implementation and Training of the RL Agents

We implement the presented RL approach using a proximal
policy optimization (PPO) agent each for the relay and the
receiver node. The two agents include a long short-term
memory (LSTM) layer to facilitate the continuous adaption of
the threshold, and their hyperparameters are tuned separately.

As the performance of the receiver node relies on the
forwarding performed by the relay node, we train the relay
node first. For the training process, 375 000 random bits are
transmitted at the distance of 1m. Following its successful
training, we deploy the relay node RL agent for the training
process of the second agent. The RL agent at the receiver node
is trained for 375 000 random bits at a distance varying from
0.5 to 1.5m. For both agents, we experimentally evaluated
longer training times and found that training times longer than
375 000 bits lead to no further detectable improvements in the
agents’ performance.

IV. RESULTS

We evaluate the performance of the RL-based synchronizer
regarding the true positive rate (TPR) and false positive rate
(FPR) of its frame detection capabilities and the achieved STO.
As a baseline, we use the filter-based maximum likelihood
synchronizer at the relay and receiver nodes [12, Eqs. (7)
and (8)]. Similar to the RL implementation, the relay node in
the filter-based approach retransmits the synchronization frame
in case of detection; otherwise, it transmits an empty frame.
The detection threshold of the filter-based ML estimator was
adapted by hand by minimizing the overall frame error rate
(FER). We comparatively illustrate results for the filter-based
synchronizer and RL mechanisms with the TPR and FPR for
the detection of synchronization frames, and the STO.

A. Evaluation Setup

We simulate 105 frame transmissions in total, of which half
are synchronization frames with the bit sequence [11001]
and the other half are frames with random bit sequences. The
bit rate during the evaluation is 0.25Hz. The distance between
the emitter and the relay node is static at 1m. In contrast,

Fig. 7. Detection rates at the relay and receiver nodes: TPR and FPR of the
synchronization frames for the filter-based ML and RL synchronizers.

Fig. 8. Symbol time offset at the receiver node: STO of the detected
synchronization frames of the filter-based ML and RL approach.

the distance between the relay and the receiver starts at 1m
and changes according to a receiver diffusion coefficient of
DTx = 8.4×10−5 m2/s. The total number of evaluated frames
is split into 100 evaluation runs consisting of 1000 frames each.
In each evaluation run, the receiver moves randomly in 1D
based on DTx.

B. Misdetection Rate

To evaluate the detection performance of our approach, we
evaluate the TPR, i.e., the detection rate if a synchronization
frame was sent, and the FPR, i.e., the misdetection rate if no
synchronization frame was sent. The results at the relay and
the receiver node for the filter-based ML and the RL-based
synchronizers are shown in Fig. 7.

Both approaches achieve TPR values of 80% or higher at
both nodes. The filter-based ML synchronizer generally detects
slightly more synchronization frames correctly. While both
approaches correctly detect approximately the same amount of
synchronization frames, their FPRs are very different. The RL
agent always achieves an FPR below 5%. The filter-based ML
approach, on the other hand, regularly has an FPR of more
than 50% at the relay node and more than 65% at the receiver
node.

The difference in the performance can be explained by
the different concepts of the two approaches. The RL agent
looks at each bit separately and rarely detects a whole
synchronization frame where none was sent. On the other
hand, the filter-based approach uses a simple threshold to
define the synchronizer’s sensitivity for the whole frame. With
a sensitivity set high enough to detect enough synchronization
frames, the FPR increases. The difference in the FPR shows
the better adaptability and accuracy of the RL approach in
high inter-symbol interference dynamic surroundings.

C. Symbol Time Offset

Fig. 8 shows the STO of the correctly detected synchroniza-
tion frames for the evaluated RL and filter-based ML approach.
The results clearly show the better adaptability of the presented



5

RL approach to the simulated system. While the filter-based
ML approach only considers full frames and regularly ends
up with several bit times STO, the RL-based synchronizer
achieves an STO much nearer to the actual start time of the
synchronization frame. The agent works on a bit-by-bit basis
and, as it must detect the first bit correctly to detect the whole
frame correctly, it keeps the STO at under 4 s and in most
cases, even at under half a bit time.

D. Further Discussion
The presented results show that the relayed setup from

transmitter via relay to receiver node does not significantly
impact the detection rates compared to the direct transmission
between the transmitter and the relay node. We only observe
slight changes in the performance between the receiver and
the relay node for both synchronization approaches. The TPR
rises slightly for the RL-based synchronizer, and the FPR rate
rises by a few percent for the filter-based maximum likelihood
synchronizer as shown in Fig. 7. Overall, these changes are
minor, though, and we do not observe a big difference in the
results. The relay node, which receives only one transmission
at a static distance, and the receiver node, which receives
the transmissions from the transmitter and the relay node at
changing distances, perform similarly.

While our results show a first step towards intelligent
synchronization in dynamic MC systems, our approach does not
perform well enough to use it for combined synchronization
and decoding. With a median bit error rate (BER) of 9%,
the RL agent is not yet reliable enough. The performance of
the RL-based synchronizer could be improved by employing
the following measures. Currently, only one observation is
used. This offers the agent a very limited view of the current
environment state. Including additional values, e.g., threshold
τi or minimum and maximum value over the last sampling
interval, could improve the threshold adaptation’s accuracy. The
extended description of the environment state could particularly
improve the agent’s performance for CIR cases in which
the distinction between a transmitted 0 and a transmitted 1
becomes more complicated. Additionally, the shifting of the
sampling offset could be added to the agent’s actions space.
This would enable the agent to adapt its sampling offset to
the point where the best distinction between the transmitted
symbols is possible.

In addition to changes to the RL agent’s setup that could
improve its performance, we plan to explore more complex
setups in our future work. We will extend the given setup to
multi-link scenarios, including multiple transmitters and relays.
Regarding the movement, we will explore the cases with the
receiver moving nearer to the relay than 0.5 m.

V. CONCLUSION

This work shows the immense potential of RL-based
threshold adaption in a relay-based MC system with mobility.
After training, our approach exhibits a high TPR of the sent
synchronization frames while at the same time keeping the
FPR and STO low. In future work, we intend to extend our
approach to more robust system models and implement it
directly in the testbed.
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