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Abstract—Molecular communication (MC) is getting closer
to becoming a next-generation communication technology with
many applications in life sciences and other industrial appli-
cations. Multiple techniques have been proposed on how to
design MC receivers depending on the channel characteristics.
Experimentally, first testbeds also demonstrate the potentialities
for communication using molecules as carriers. In this paper, we
focus on developing a reinforcement learning (RL)-based receiver,
targeting a realistic scenario with testbed measurements, and
addressing transmitter mobility. Leveraging on reported solutions
for machine learning (ML) methods, we demonstrate the usability
of an RL agent to synchronize the receiver to the received signal.
We evidence the learning capabilities of the agent to compensate
for the impact of mobility, achieving a low probability of missed
detection and small misalignment with the symbol time.

Index Terms—Molecular Communications, Macroscale Molec-
ular Communication Testbeds, Reinforcement Learning, Synchro-
nization

I. INTRODUCTION

Communication among nanosensors based on molecules
still feels like fiction, but today’s lab experiments already
show that science is overcoming many of the hurdles [1]. In
particular, macroscale testbeds demonstrate the capabilities of
molecular communication (MC) using information carriers
such as nanoparticles like superparamagnetic iron oxide
nanoparticless (SPIONs) [2], water droplets [3], or fluorescence
proteins [4]. Meanwhile, components like transmitters and
receivers for communications are devised with synthetic
biology compound [5], [6]. Modified proteins control the
opening and closing of gates, allowing the implementation
of various modulation schemes like concentration shift keying
(CSK).

Using such synthetic components, digital modulation
schemes are implemented in MC to connect nodes [7]. For
instance, the CSK scheme encodes bits in the amplitude of
emitted pulses, where the pulses refer to the concentration
level of the released molecules at the transmitter [8]. On the
receiver side, pulses are decoded after synchronizing with the
received symbols, i.e., the receiver needs to identify the symbol
time to decode the message.

To decode the incoming messages, synchronization mech-
anisms are critical to realizing digital modulation schemes.

Fig. 1. Molecular SISO communication testbed, see also [18].

Symbol timing, frequency, and sampling clock offset result
in the main synchronization errors preventing the decoding
of binary information. In the case of MC, synchronizing the
receiver and the emitter becomes particularly challenging due to
random propagation delays and the inherent distortion produced
by diffusion processes in MC channels [9]. Optimal receivers
operate on the assumption that symbol timing is achieved to
decode the received sequence. Furthermore, nanonetworks are
inherently mobile, as MC scenarios assume a fluid medium.
Due to such mobility, synchronization mechanisms must
operate under time-varying conditions, where the MC channel
is hard to estimate, or such estimation is just impractical.

At the same time, machine learning (ML) methods have been
successfully used in other scenarios to design very flexible
receivers, particularly in MC environments [10], [11]. ML
models have been reported for symbol detection using recurrent
neural networks (RNN) [12] or artificial neural networks
(ANN) [13], without implementing channel estimation and
equalization techniques. Also, various papers directly target
mobile scenarios and report on supervised training of RNN [14]
and neural networks (NN) models that additionally perform
low pass filtering to reduce the impact of diffusion noise [15],
[16]. Most recently, the explainability of the used models also
moved into the research focus [17].

Leveraging on the extended use of ML models, in this work,
we report implementing a synchronizer using reinforcement979-8-3503-1090-0/23/$31.00 © 2023 IEEE



learning (RL). With the appropriate data, RL is able to train
an agent especially adept at reacting to changing surroundings,
which makes it perfect for use in mobile scenarios [19]. In
this work, we target mobile scenarios where the transmitter
moves according to Brownian motion while the receiver is
static (details of the system model are presented in Section II).
As a baseline, we use a macroscale MC testbed as depicted
in Fig. 1. Although this testbed was developed for static
environments (e.g., fixed distance between the sprayer and
the sensor), we use it to generate the channel impulse response
(CIR) as a spatiotemporal grid by interpolating fixed distance
measurements. The spatiotemporal CIR enables modeling the
received molecules at the receiver’s time-varying positions in an
equivalent manner as a mobile scenario. We train an RL model,
which is deployed at the receiver, to set the proper threshold
level and detect the incoming frame for synchronization. Our
results clearly show a high probability for correct frame
detection and low symbol-time offset.

II. SYSTEM MODEL

As for the system model, we target an MC scenario where
the emitter is moving according to Brownian motion and the
receiver stays at a fixed position. Such a setting takes place, for
example, in monitoring applications, where mobile transmitters
report collected data to a stationary gateway node. Using
the testbed in Fig. 1, we artificially implement mobility by
interpolating the CIR for various distances. In the following,
we provide details on the macroscale MC testbed and the used
mobility model.

A. Macroscale MC Testbed

We make use of the macroscale single-input single-output
(SISO) MC testbed as introduced in our previous work [18]. All
used devices and sensors in the testbed setup are commercial
off-the-shelf products: The Inoxi Air Atomizer for the sprayer,
the MQ-3 Gas Sensor as the chemical sensor at the receiver,
and two single board computers (Raspberry Pi) to control the
sprayer electronically and for forwarding the electrical signal
from the chemical sensor to a local PC.

The transmitter consists of a sprayer for the mechanical
release of molecules and a reservoir of Ethanol. We employ
on-off keying (OOK) modulation for data transmission while
controlling the sprayer electronically. Transmission of a bit-1
activates the sprayer to release molecules (about 3.9 × 1021

in total) and bit-0 accounts for no emissions. The molecules’
propagation from the sprayer to the sensor is also subject to
additional drift.1 The receiver consists of an electrochemical
sensor measuring the concentration level of molecules with a
sampling frequency of 5Hz.

B. Mobility Model

To introduce mobility into our macroscale MC environment,
we consider three components: The emitter’s mobility model,
the spatiotemporal CIR, and the sampling of the CIR according

1To generate drift, we use a commercial off-the-shelf fan, see [18].

Fig. 2. Mobility model. The emitter moves within a given radius while the
receiver remains static. The change in distance results in a change of CIR.

to the emitter’s position to evaluate the total number of received
molecules.

1) Emitter Movement: We simulate mobility in our system
by moving the emitter according to Brownian motion. A
schematic of the approach is shown in Fig. 2. By changing
the position, we change the distance to the receiver and, thus,
the CIR of the MC channel. In the Brownian motion model,
we set a diffusion coefficient for the emitter, denoted as DTx,
which defines the distance it can move within a given time
step as δ =

√
2DTx∆t [9].

2) Spatiotemporal Channel Impulse Response: The
random motion produced by the emitter changes the
CIR with time. To evaluate the spatiotemporal CIR,
we collect testbed measurements for fixed distances of
0.5m, 0.75m, 1.0m, 1.25m and 1.5m and then interpolate
the measured CIR values to approximate the CIR for any
distance between the recorded steps.2 We chose the given
distances to cover the range achievable with our testbed in equal
steps. For each distance, the number of received molecules over
20 s was measured 10 times at a rate of 5 measurements per
second. We then calculated the average of all measurements per
distance. For the interpolation, we used the spline interpolation
interp2 provided in Matlab. The interpolation is performed
with a grid relating its step size to the step width possible
to be taken by the emitter. Fig. 3 shows the resulting surface
of the CIR for a distance range of 0.5−−1.5m and a time
interval of 0−−20 s. This surface renders the spatiotemporal
representation of the CIR we use to evaluate the total of
received molecules at the receiver.

3) CIR Sampling: Using the spatiotemporal CIR surface
in Fig. 3, we sample it with the varying distance between
the emitter and the receiver for the given simulation time.
Each time the emitter changes its position, we evaluate the
distance to the receiver and accordingly read the sample on
the surface. We use this reading to calculate the total of the
received molecules at the receiver, accounting for the emitter’s
mobility.

4) Frame emission strategy: The frame emission is in-
tegrated into the movement of the emitter in a way that
avoids the influence of the Doppler Effect on the performed

2The minimum distance of 0.5m is due to the propulsive release of the
molecules influencing the achievable communication range within the testbed
setup in Fig. 1.



Fig. 3. Average CIR of the testbed created by interpolating the recorded
measurements.

transmissions. This means that the emitter has to stop to
perform the transmission of a frame. Only after all molecules
for the current synchronization frame are emitted does the
emitter start moving again in our scenario.

III. RL-BASED SYNCHRONIZER

To implement and study RL-based threshold setting for our
MC receiver, we implemented the setup as an environment in
Matlab/Simulink. In the following, we will describe the general
structure of the RL procedure, the implemented environment
and agent, and we explain the training process and results.

A. Reinforcement Learning-Loop

Fig. 4 shows the training loop we used to train RL-based
threshold setting. In each loop, a new emitter position is
calculated based on its last position. The distance between the
new emitter position and the static receiver is provided to the
channel model, where it is used to look up the CIR (based on
the measured and interpolated testbed results). Based on this
time series, the number of received molecules per symbol (here
one bit is encoded in one symbol) is calculated and forwarded
to the decoder. The decoder uses the threshold set by the RL
agent to decode the number of molecules into a received bit
sequence.

The reward is calculated by comparing the decoded bit
sequence and the original synchronization frame. It is passed
on to the agent, while the number of received molecules and
the currently used threshold are forwarded to it in parallel as
the observation for the current environment state. Using the
reward and the observations, the RL agent then decides how
to adapt the threshold for the next run of the training loop
and forwards the change of the threshold via its action to the
environment. By repeatedly interacting with the environment
in this fashion, it learns to set a fitting threshold for the correct
decoding of the synchronization frame.

B. Simulink Environment Model

Based on the training loop described in Section III-A, the
simulation model implements the testbed as an environment
for RL. One execution of the simulation loop implements the
transmission of the defined synchronization frame via an MC

Fig. 4. Training loop used for the training of RL-based threshold setting
with a mobile emitter in the presented testbed.

link. In the environment, the new emitter-receiver distance is
calculated based on the emitter’s position. With the distance,
the CIR for this distance is sampled from the interpolated
experiment values (using the surface in Fig. 3). The number
of molecules per time step recorded in the channel is then
calculated based on the CIR and the number of molecules
remaining in the channel from the last transmission. With this
value and the threshold set by the RL agent, the transmitted
bits are decoded. The values of the decoded bits are compared
to the originally transmitted values, and a reward describing
the success of the decoding process is produced.

The reward is calculated by comparing the decoded and
the source synchronization frame. Using the frame error rate
(FER) defined as

FER =
number of incorrectly received frames

total number of transmitted frames
, (1)

and a bonus set to

bonus =

{
1 FER = 0

0 FER ̸= 0,
(2)

we calculate the reward as

reward = (1− frame error rate) + bonus, (3)

which resolves to reward ∈ [0, 2].
By subtracting the FER from 1 in Eq. (3), we get the

success rate of the transmission, aiming to reward the Agent
with increasing synchronization success. Additionally, we add
a bonus of 1 if the FER equals 0. By adding the bonus, we
introduce an additional reward, which lets the agent distinguish
more easily between right and wrong actions. The calculated
reward is forwarded to the agent together with the number of
received molecules and the used threshold as an observation.
Based on those values, the agent decides the next threshold
for the MC link.

To make it possible for the agent to learn to fit the threshold
to the emitter mobility accurately, the setting of matching
simulation parameters is crucial. In our setup, we use the
synchronization frame [11001] (as follows from [20]) with



TABLE I
SIMULATION PARAMETERS USED FOR THE TRAINING OF RL-BASED

THRESHOLD SETTING WITH A MOBILE EMITTER

Parameter Value

Synchronization frame [11001]

Total number of transmitted frames 700
Bit rate 0.25Hz

Emitter start distance 1m

Emitter diffusion coefficient DTx = 8.4× 10−5 m2/s

Molecule diffusion coefficient D = 8.4× 10−10 m2/s

Total number of emitted molecules 3.9 × 1021

Sampling rate 5Hz

a bit time of 4 s aiming to reduce the impact of inter-symbol
interference (ISI) (as follows from our observations on the
CIR). Additionally, important parameters for the simulation
environment concern the movement of the emitter. The start
distance of the emitter in our setup is set to 1m. The speed
with which it moves is defined by its diffusion coefficient.
To make it possible for the agent to learn a fitting threshold,
the diffusion coefficient has to be appropriately low so that
the agent is able to react to the changed position. Based on
our experiments, we were able to determine that a diffusion
coefficient of DTx = 8.4×10−5 m2/s or lower would give the
agent enough time to react to the changed channel behavior.
With this diffusion coefficient, the emitter is able to move up
to around 4 cm between transmissions. The used parameters
are shown in Table I.

C. Matlab RL Agent

The RL agent is implemented in Matlab using the RL
Toolbox. Based on the received reward, the agent evaluates the
current threshold and decides on the necessary change to it
based on the observed number of received molecules. For our
experiments, we implemented a proximal policy optimization
(PPO) agent with an RNN to learn the setting of the threshold
with a mobile emitter.

We implemented the PPO RL agent using a rlPPOAgent
with a rlValueRepresentation for the critic and an
actor created by a rlDiscreteCategoricalActor in
Matlab. Both the actor and the critic network include a long
short-term memory (LSTM) layer as a recurrent neural network
layer, which supports the learning of long-term dependencies.
We realized during our experiments that the inclusion of this
layer lets the agent adapt more dynamically and accurately to
the changing environment.

In order to learn successfully, the observations and actions
of the agent have to be defined in a way that they describe the
environment accurately and fit together. In our experiments,
we pass two observations per loop to the agent. The current
threshold and the number of molecules received during the
transmission are used to describe the state of the system. The
threshold can be set to values between 200 and 2500 in steps
of 100 units and is passed to the agent as is. The number
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Fig. 5. Distance between the emitter and the receiver over the first 700
transmissions of the simulation.

of received molecules is rounded to the interval between 100
and 2900 in steps of 100 for the observation. The rounding
happens because of restrictions on the computation capacity
of the machine used for the training.

The agent interacts with the environment via actions. The
implemented PPO agent produces action values in the form of
integers in the interval [−8, 8]. The action chosen by the agent
is then multiplied by 100 and added to the current threshold.
In each loop, the agent can therefore increase or decrease the
threshold by up to 800 molecules. The resulting threshold is
then passed as an observation to the agent in the next simulation
loop.

D. Training of the RL Agent

The RL agent was trained for 450 episodes in which a total
number of 9 × 104 transmissions of the 5-bit synchronization
frame was performed at changing distances between the emitter
and the receiver. The starting distance and the number of
transmissions per episode varied from training episode to
training episode, while the agent parameters defining the
learning behavior of the agent were left the same.

Fig. 5 shows the changing distance between the emitter
and the receiver over the simulation time of 700 times 5-bit
transmissions. The emitter’s movement shown in Fig. 5 changes
the CIR of the MC channel, as we can see in Fig. 6. The figure
shows the number of received molecules for the transmitted
synchronization frame for three example distances. The number
of molecules reaching the receiver side of the system varies
significantly. Fig. 6 shows the threshold set by the trained
agent for a distance of 1m, 0.5m and 1.5m. As expected, the
threshold varies and is adapted by the RL agent to the changing
CIR. These results show the success of the training process,
supported by Fig. 7 showing the erroneous decoded bits in
the frame of the performed transmissions. While it is obvious,
that the FER could still be well improved, it already regularly
reaches 0 for several transmitted synchronization frames in a
row. The RL agent was therefore trained to set the decoding
threshold correctly.

The reliability of the agent setting the correct threshold can
be further increased by longer training. As this work only
provides a first view on the usability of RL in setting the
threshold in MC links with emitter mobility, the training was
aborted at this point.
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Fig. 7. Number of erroneous decoded bits during the first 700 transmissions.

IV. RESULTS

In the following, we analyze the performance of the RL
method for threshold settings. We comparatively evaluate its
performance with the filter-based ML synchronizer as an
ideal receiver (see [20, Eqs. (7) and (8)]). We plot results
for the probability of correct and missed detection of the
synchronization frame, as well as the misalignment on the
recovered clock signal.

A. Evaluation Setup

We performed our evaluation on a Linux computer (AMD
Ryzen 7 3700U, 16 GB RAM) using the trained PPO agent
to set the threshold in a simulation of 700 transmissions. The
simulation parameters used for the evaluation are listed in
Table I.

B. Probability of Missed and Correct Detection of the Syn-
chronization Frame

Averaged over all performed transmissions, the agent
achieves a bit error rate (BER) of 0.067. This means that
on average, well over 90% of the received bits in the
frames are decoded correctly. The probability of correctly
decoding the sent synchronization frame on the contrary is
72.16%. The collected values are shown in Fig. 8 with the
confidence intervals. The implemented RL scheme is still
subject to improvements as upon evaluating the synchronization
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Fig. 8. BER for all transmitted bits and probability of correct or missed
detection of synchronization frame achieved by the RL agent in 104

transmissions.

capabilities of the filter-based ML, we find that with this
method all synchronization frames are detected correctly. This
indicates that the system is performing in a high signal to
noise ratio (SNR) environment, which may account for the
lower FER.

In our results, we see one of the major challenges for
correctly setting the threshold for the whole synchronization
frame. The emission of molecules for a 1 does not only mean
an increase in the number of molecules received for this bit but
also influences the number of molecules received over the next
bits. In our experiments, we found, that especially the decoding
of the 0 in the third position of the used synchronization
frame 11001 presents a problem for the threshold setting.
The remaining molecules from the first two bits in the current
frame and the last bit in the last frame increase the number
of molecules received during this bit. They are all 1s and
the ISI with the first 0 in the current frame means that the
threshold must be set as high as possible while still decoding
all other bits correctly in order to decode the first 0 correctly.
This problem is amplified in the case of a bigger distance
between the emitter and receiver. As the CIR curve flattens
with increasing distance, the ISI increases and leads to even
higher numbers of molecules received during the first 0 of a
synchronization frame. This can be observed when comparing
Fig. 7 showing the FER and Fig. 5 showing the distance
between the emitter and the receiver. The smaller the distance,
the higher the probability of an FER of 0.

The performance in the probability of correctly detecting
the sent synchronization frame is already adequate but shows
that some adaptions will still be necessary to improve the
performance of this method to a level usable in real-world
systems. We can already see its potential, though. The RL
agent, even after only this short training, already learned to
set the threshold according to the changing dynamics of the
system.

C. Misalignment

To see how well the implemented RL agent learns to adapt
the threshold to the changing distance between the emitter and
the receiver, we consider the misalignment of the synchroniza-
tion frame. For the misalignment of the synchronization frame,
we measure the time offset when the first bit of the sent frame



Fig. 9. Histogram of the misalignment of 700 transmissions for the proposed
RL-based method and the filter-based ML scheme.

is detected correctly. A histogram showing the misalignment
using the proposed RL-based approach compared to the filter-
based ML scheme can be seen in Fig. 9.

Compared to the results for the filter-based ML scheme, our
approach achieves a lower misalignment. The histogram shows
that a majority of the transmissions have a misalignment of
0.25 s, which approximately represents the 6% of the bit time
of 4 s. This is a very short misalignment and means that in
most cases the threshold is set low enough to detect the start
of the frame immediately after its transmission starts.

A second spike for the misalignment is located at 1.25 s,
which represents 31% of the bit time. In CIR measured in
the testbed, we observe a steep incline in the number of
received molecules at this point. Due to the increased number of
molecules reaching the receiver at this point in the transmission,
a threshold set to a higher value can be crossed at this point.

Even though it is a good result that most of the transmissions
have a very short misalignment, this behavior adds to the
problem of miss-detection of the complete synchronization
frame. To detect the complete frame correctly, the threshold
has to be set high enough to detect the transmitted 0s
correctly. Setting the threshold to slightly higher values where
necessary and with this, introducing a longer misalignment
might therefore be better for a lower overall FER. A possible
future improvement to solve this problem will be discussed in
the following section.

D. Further Discussion

The implemented RL agent already shows the potential of
using RL for threshold setting in MC links with a changing
distance between the emitter and the receiver. However, the
system can be further improved with the following adjustments,
we plan for future work.

During our experiments, we found that the agent has prob-
lems setting the threshold correctly for all values, especially
for higher distances between the emitter and receiver. In order
to improve upon this, a possible adjustment is the extension of
the observations passed to the agent by another measurement.
Currently, the observations include the current threshold and
the number of detected molecules during the first bit. Because
the third bit in the used synchronization frame 11001 posed
a major challenge to the setting of the correct threshold in our
experiments, the addition of the number of molecules counted

during this bit as a third observation could lead the agent to set
the threshold more accurately. In this case, the misalignment
of the synchronization frame might be increased slightly, but
at the same time, the probability of correct frame detection
could be increased.

In order to further improve the performance of the presented
RL agent we consider transferring the agent to a different
framework. While Matlab provides basic implementations
of well-known RL algorithms, a more evolved and detailed
framework such as Tensorflow could enable a more finely tuned
agent. With an RL agent better tuned and better able to react to
dynamic environments, we can extend the presented scenario to
incorporate different channel models, more complex mobility,
and more elaborate modulation schemes. We additionally intend
to include the concept of relayed transmissions in our future
work.

In our experiments, we trained the agent to detect a
synchronization frame correctly. Additionally, as an extension
of this process, it would be possible to train the agent not only
in detecting the suitable threshold for a whole frame but for a
single bit. In preliminary experiments, we found that the agent
might be trained to change the threshold for each bit. This
agent could then be used not only to detect one synchronization
frame for the synchronization process but for the detection of
the transmitted information as well.

V. CONCLUSION

In this work, we have shown the usability of reinforcement
learning-based threshold setting for MC links with varying
distances between the emitter and the receiver to decode a
synchronization frame. We implemented our real-world testbed
as a simulated environment with an emitter moving around
in this environment based on Brownian motion. The trained
agent is able to set the threshold in a way that on average,
almost three-quarters of all transmitted synchronization frames
can be decoded correctly. Overall, we see in this research
the possibilities RL can offer when included in MC. While
we pointed out future possible improvements to make RL a
possible option in real-life deployments, we can already see
its potential in this project.
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