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Abstract

Appropriate data rate selection at the physical layer is crucial for Wi-Fi network performance: too high rates lead to
loss of data frames, while too low rates cause increased latency and inefficient channel use. Most existing methods
adopt a probing approach and empirically assess the transmission success probability for each available rate. However,
a transmission failure can also be caused by frame collisions. Thus, each collision leads to an unnecessary decrease in
the data rate. We avoid this issue by resorting to the fine timing measurement (FTM) procedure, part of IEEE 802.11,
which allows stations to perform ranging, i.e., measure their spatial distance to the AP. Since distance is not affected
by sporadic distortions such as internal and external channel interference, we use this knowledge for data rate selection.
Specifically, we propose FTMRate, which applies statistical learning (a form of machine learning) to estimate the distance
based on measurements, predicts channel quality from the distance, and selects data rates based on channel quality. We
define three distinct estimation approaches: exponential smoothing, Kalman filter, and particle filter. Then, with a
thorough performance evaluation using simulations and an experimental validation with real-world devices, we show
that our approach has several positive features: it is resilient to collisions, provides near-instantaneous convergence, is
compatible with commercial-off-the-shelf devices, and supports pedestrian mobility. Thanks to these features, FTMRate
outperforms existing solutions in a variety of line-of-sight scenarios, providing close to optimal results. Additionally,
we introduce Hybrid FTMRate, which can intelligently fall back to a probing-based approach to cover non-line-of-sight
cases. Finally, we discuss the applicability of the method and its usefulness in various scenarios.
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1. Introduction

In IEEE 802.11 (Wi-Fi) networks, the goal of rate se-
lection is to choose the modulation and coding scheme
(MCS), prior to each data transmission, to achieve the
highest possible data rate given current radio conditions.
The design of rate selection algorithms for Wi-Fi devices is
a significant area of research because of the direct impact
on Wi-Fi performance. The need for new algorithms is due
to two factors. First, new amendments to the IEEE 802.11
standard increase the selection space with more MCS val-
ues, guard interval (GI) lengths, channel widths, etc. For
IEEE 802.11ax, Table 1 presents the available data rates
for a single spatial stream. Since 802.11ax supports up
to eight spatial streams, the number of currently available
Wi-Fi data rates increases to 1056. Second, the availabil-
ity of new tools, such as those based on machine learning
(ML) [1], can improve rate selection performance.
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We notice that most rate selection algorithms, includ-
ing those that apply ML, measure the transmission suc-
cess rate for a given MCS (Section 2). However, under
high station density (including hidden stations) and/or un-
der cross-technology interference (e.g., ZigBee, Bluetooth)
such a probing approach fails due to frame collisions, which
will be misinterpreted as erroneous rate selection. Obvi-
ously, transmitters want to adapt their rates to the signal
strength at the receiver and not to collision-causing in-
terference from other transmissions. Therefore, an alter-
native closed-loop approach is to measure channel quality
(such as the received signal strength, RSS) at the receiver
and send feedback to the transmitter.

In this vein, we have proposed FTMRate [2] – a closed-
loop, context-aware and collision-immune rate selection
algorithm, which relies not on directly measuring chan-
nel quality, but on ranging, i.e., measuring distance using
the fine timing measurement (FTM) procedure introduced
in IEEE 802.11-2016 [3] (and later extended in 802.11az).
With FTM, stations can estimate their distance from the
AP using round-trip time (RTT) measurements, predict
the expected received signal strength (RSS) at the receiver
from the distance, and finally select MCS values based on
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MCS Modulation Coding rate Data rate [Mbit/s]

0 BPSK 1/2 7.3
1 QPSK 1/2 14.6
2 QPSK 3/4 21.9
3 16-QAM 1/2 29.3
4 16-QAM 3/4 43.9
5 64-QAM 2/3 58.5
6 64-QAM 3/4 65.8
7 64-QAM 5/6 73.1
8 256-QAM 3/4 87.8
9 256-QAM 5/6 97.5
10 1024-QAM 3/4 109.7
11 1024-QAM 5/6 121.9

Table 1: 802.11ax transmission rates for a single spatial stream in a
20 MHz channel with a 3.2 µs guard interval.

the expected RSS, as we have shown in [2].
The goal of this work is twofold: (i) to further study the

performance of FTMRate and (ii) to address FTMRate’s
main limiting factor – reliance on line-of-sight (LOS) con-
ditions. Regarding the first goal, the studies that we pro-
vide in this paper show that FTMRate has three desir-
able features: (a) rapid convergence to appropriate rates
– since probing is not required, (b) compatibility with
commercial-off-the-shelf devices including support for mul-
tiple input, multiple output (MIMO) transmissions and
transmission power adaptation, and (c) mobility support
– the method operates well under pedestrian mobility set-
tings. Regarding the second goal, we introduce the Hy-
brid FTMRate algorithm, which can intelligently detect
non-line-of-sight (NLOS) conditions and switch to a clas-
sic rate selection manager to maintain high performance.

The rest of this paper is organized as follows. We first
provide a thorough review of the state of the art related
to the topic of rate selection in IEEE 802.11 networks,
with a special focus on ML-based solutions (Section 2),
and a description of FTM operation in Section 3. Then,
in Section 4, we describe the core of our unique proposal,
FTMRate, as well as its extension – Hybrid FTMRate.
Next, we present a thorough simulator-based performance
evaluation in multiple scenarios (Section 5). Results show
that in LOS scenarios FTMRate is both better than the
tested baselines and operates close to the approximate up-
per bound. The gain depends on the exact scenario, e.g.,
for a network of 10 stations we provide a 40% gain over
an existing non-ML method and a 20% gain over an ML-
based method. In NLOS scenarios, Hybrid FTMRate can
achieve performance similar to competing solutions. Next,
we provide an experimental validation using physical hard-
ware in Section 6 to show that the approach is viable in
real-world settings. We address two limitations of FTM-
Rate in Section 7 and discuss the benefits, drawbacks, and
applicability of our approach in Section 8. We conclude
the paper with a summary of our findings and outline fu-
ture work in Section 9.

This article extends our previous results in [2]. Our
new contributions include a significantly extended litera-
ture review (Tables 2 and 3), a detailed discussion of the

trade-offs between the three variants of FTMRate (Sec-
tion 4.2.2), new simulation scenarios highlighting the adapt-
ability of FTMRate in dynamic transmission power set-
tings (Section 5.2), high performance in hidden station
scenarios (Section 5.3), and low impact of overhead when
in-band signaling is used (Section 5.4). Furthermore, we
introduce and evaluate the aforementioned Hybrid FTM-
Rate (Sections 4.3 and 5.5). We provide an experimental
validation and comparison with a state-of-the-art rate se-
lection manager proving the validity of the proposed ap-
proach (Section 6), and address the outstanding challenges
(Section 7), as well as thoroughly discuss the advantages
and disadvantages (Section 8).

2. State of the Art

In this section, we review both non-ML and ML-based
rate selection methods and state the novelty of our ap-
proach.

2.1. Non-ML-based Methods

The transmission rate selection problem has been in-
vestigated since the early days of 802.11. The two ba-
sic types of classical rate control are sampling-based (that
uses statistical knowledge of transmission success rates)
and measurement-based (that uses explicit channel mea-
surements).

We restrict our description to two prominent sampling-
based algorithms, both later used as baselines, Minstrel
[10] and Intel’s iwl-mvm-rs [11]. Minstrel, the default rate
control algorithm of the Linux kernel, calculates the trans-
mission success ratio and constructs a table with per-frame
statistics. Additionally, it performs exponential weighted
moving average calculations to process the success history
of each rate. After that, the rates with the best through-
put, second-best throughput, highest success probability,
and lowest base rate are considered for transmission (in de-
scending order, with several retry attempts per each rate).

Modern Intel chipsets, which operate using the iwlwifi
driver, use iwl-mvm-rs as the rate selection algorithm.
The available rates are divided into several groups and the
rates are selected in two interleaving phases [11]: MCS
scaling and column scaling. During MCS scaling, the al-
gorithm tries to maximize throughput by changing MCS.
During column scaling, iwl-mvm-rs looks for a better com-
bination of modes (single or multiple spatial streams), GIs,
antenna configurations. First, the lowest parameters are
used (which correspond to the lowest throughput and high-
est reliability) and then the search cycle starts (i.e., the
interleaving of the two phases begins). A decision is made
based on the success ratio. After the search cycle ends,
iwl-mvm-rs performs MCS scaling until a new search cy-
cle begins (triggered either by too many successful trans-
missions from the previous cycle, too many unsuccessful
transmissions from the previous cycle, or after 5 s since
the previous cycle has elapsed).
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Key ML
type

Year Eval.
method

Wi-Fi
type

Scenario RTS/
CTS

Novelty Improvement Input Output

[4]* NN 2013 S
(Qualnet)

802.11b Two, five,
and ten
stations.
Single AP.
Uplink traf-
fic.

Yes Apply NN for
Tx rate selec-
tion

Higher through-
put than two
SOA methods.

Number of
contending
stations, chan-
nel conditions
(indicated by
BER), traffic
intensity.

Consecutive
failed and
successful
transmission
thresholds.

[5] Random
forests

2013 S
(ns-3)

802.11p Five stations.
Uplink traf-
fic.

No Apply SL for Tx
rate selection.

Higher through-
put than three
SOA methods.

SNR, speed,
propagation
distance.

Packet suc-
cess ratio per
data rate.

[6] Random
forests

2018 E, S
(Matlab)

802.11ac Single link. N/A Apply SL for
channel classifi-
cation to sup-
port Tx rate se-
lection.

Higher spectral
efficiency

Magnitude of
reference sym-
bol, received
preamble.

Channel
classification
(residential
or office).

[7] NN 2020 E 802.11ac Five stations.
Two APs.
Uplink traf-
fic.

N/A Provide extensi-
ble rate selec-
tion framework.

Higher through-
put than three
SOA methods.

Link quality
(RSSI, sub-
frame loss
rate), features
(MCS, MIMO,
bandwidth).

Scores of
available
rates.

[8] NN 2020 E, S
(T-
SIMn)

802.11n Several de-
vices.

N/A Apply NN for
transmission
rate selec-
tion based
on effective
throughput.

Higher through-
put than two
SOA methods.

Effective
throughput
values of the
rates in the
sampling set.

Estimated
throughput
of supported
rates.

Table 2: Supervised learning-based rate selection algorithms. Evaluation methods: S – simulation, E – experiments. Papers marked with *
involve deep learning. SOA – state of the art, Tx – transmission [9].

2.2. ML-based Methods

ML-based rate control is mainly based on supervised
learning (SL) or reinforcement learning (RL) and often
uses link quality indicators (e.g., RSS, collision probabil-
ity) as input (observations). A summary of papers (in
chronological order) using supervised and reinforcement
learning to improve transmission rate selection is provided
in Tables 2 and 3, respectively. Evidently, SL-based ap-
proaches are less popular than RL-based ones.

2.2.1. Supervised Learning

Designing an SL-based solution requires defining both
an input (feature) set and an output. We discuss the var-
ious approaches in the following.

A multilayer perceptron artificial neural network (NN)
is adopted in [4] to model the correlation function between
the optimal number of consecutive failed/successful up-
link transmissions and a set of traffic metrics (number
of contending stations, channel conditions measured us-
ing the bit error rate (BER), and traffic intensity). In [5],
the random forests method is used in IEEE 802.11p net-
works to select transmission rates based on the predicted
probability of successful transmission. Signal to noise ra-
tio (SNR) samples are used to characterize the propaga-
tion environment and position information (obtained from
satellite navigation) is used to increase the prediction ac-
curacy. Furthermore, [6] uses random forests to classify
the channel type (residential or office) to select the ap-
propriate MCS, since MSC strongly depends on the prop-
agation channel quality. Furthermore, [7] implements an
ANN that learns the mutual influence of rates, through-

put, and channel quality. The data rate is selected based
on the observed congestion level (measured as data frame
service time).

2.2.2. Reinforcement Learning

In RL, agents learn by iteratively interacting with the
environment. As described below, most solutions focus on
improving throughput, though some also concentrate on
decreasing delay.

Several works implement stochastic approaches. In [12],
a stochastic learning automata-based rate adaptation al-
gorithm is proposed to guarantee a given packet success
ratio by observing successful transmission attempts. In
[13], a distributed algorithm is proposed, which is based
on the stochastic multi-armed bandit (MAB) approach.
It explores different configuration options (e.g., channel
bandwidth, MCS) and observes their impact on network
performance under varying channel conditions. The frame
success ratio is used as a reward and the optimal config-
uration (i.e., the one with the highest ratio) is used to
calculate the regret. Graphical optimal rate sampling is
proposed in [14]. The authors assume that the through-
put is a unimodal function of the selected (rate, MIMO
mode) pair. They show that graphical unimodality can
be used to efficiently learn and track the best transmis-
sion rates. In [15], Thompson sampling (TS) is used to
model the acknowledgment probability for each MCS and
maximize throughput. In [16], the transmission rate is ad-
justed based on channel quality, represented by the signal-
to-interference ratio (SINR) and the transmission power.
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Additionally, a particle filter (PF) is used to estimate chan-
nel quality (SINR). Finally, with latent TS [21] SINR is
modeled in terms of its probability distribution over a
range of SINR values, updated based on the feedback re-
ceived (ACK or NACK). Additionally, the SINR probabil-
ity distribution is relaxed in every step with a smoothing
function to adapt to fading channels.

Other works consider more complex approaches. The
authors of [23] apply Q-learning (QL) for rate adaptation
in overlapping network scenarios. In [20], packet timeouts
are used to train the agent. Choosing an MCS is an ac-
tion and the resulting contention window (CW) size is a
state. Additionally, in [26], QL is used to automatically
tune the parameters of an adaptive outer loop link adap-
tation algorithm, which selects MCS based on packet error
rate measured in a given time window. In [22], deep QL
allows adapting to the current link quality and channel
conditions. Rate selection features (MCS, MIMO mode,
channel width) are treated as different coordinates of a 3D
maze. Each 3D cell of the proposed maze represents a rate.
Then, a deep reinforcement learning (DRL) model is used,
in which the action space “includes two moving directions
along three dimensions”, the state includes six elements
(channel width, MIMO mode, MCS, sub-frame loss, re-
ceived signal strength indication (RSSI), service time ra-
tio), and the resulting goodput is treated as a reward.

2.3. Novelty of Proposed Approach

Based on the above literature review, we conclude that
our core proposal, FTMRate, differs from other state-of-
the-art approaches based on machine learning, e.g., TS [28]
and DRL [29]. These general methods assume no knowl-
edge about how the channel behaves, and the only feed-
back comes from each frame transmission, either successful
or not. While an FTM measurement could be yet another
signal from the environment (called the ‘context’ in RL
literature) that would improve the accuracy of these meth-
ods, it also would pose some issues. In the case of TS, its
simplicity is lost when contextual bandits are introduced
since we have no simple posterior formula. Meanwhile,
a general DRL agent could exploit FTM information but
such an approach is computationally expensive and the
DRL agent needs to learn what is already known, i.e.,
have prior knowledge of how the communication channel
works. In this paper, working in the paradigm of context-
aware communication, we fully embrace knowledge of the
wireless channel to build a simple yet efficient (collision-
immune, power-adaptable, computationally inexpensive,
rapidly converging) agent based on probabilistic modeling.

3. Distance Estimation Using Fine Timing Mea-
surement

Before explaining the operation of our proposal, we
first describe FTM as a standalone procedure to estimate
the distance between communicating Wi-Fi devices. FTM

Responding station 
(AP)

Initiating station 
(station)

FTM Request (Trigger)

ACK

ACK

FTM_1 (0, 0)

ACK

FTM_2 (t1,1, t4,1)

t1,1

t4,1

t2,1
t3,1

t2,2
t3,2

Burst

Figure 1: FTM operation for the shortest possible burst [9].

is an active, point-to-point protocol for positioning, with
an accuracy exceeding that of RSS-based positioning [30].
FTM operation is based on a burst of frame exchanges
as shown in Fig. 1. First, the initiating station sends a
trigger frame (FTM Request) to the responding station to
initiate the measurement procedure. Then, a set of FTM
frames and ACKs are exchanged between the responding
station and the initiating station. The goal is for the initi-
ating station to obtain four timestamps for the i-th frame
exchange (t1,i to t4,i) so as to compute the RTT:

RTTi = (t4,i − t1,i)− (t3,i − t2,i), (1)

where t1,i is the time at which the i-th FTM frame was
transmitted by the AP, t2,i is the time at which the i-th
FTM frame was received by the initiating station, and t3,i
is the time at which the initiating station transmitted the
acknowledgment of the correct reception of the i-th FTM
frame to the AP, t4,i is the time at which the acknowledg-
ment of the i-th FTM frame was received by the AP [9].
FTM requires n frame exchanges to calculate n− 1 RTTs.
Therefore, the minimum number of the FTM frames ex-
changed within a burst is n = 2, as presented in Fig. 1,
where a single RTT is measured in the burst, and the t1,1
and t4,1 timestamps are transferred by the AP to the ini-
tiating station in the second FTM frame (FTM 2).

The i-th distance estimation (ρRTT
i ) can be calculated

from the i-th RTT as

ρRTT
i =

RTTi

2
c, (2)

where c is the speed of light.
The signaling overhead required to perform an FTM

operation depends i.a. on the size of the burst. Zubow et
al. have found that “in scenarios with strong multi-path
environments, e.g., indoors, there is no gain from using
larger channel bandwidth and higher number of measure-
ments” [31]. Thus, the airtime consumed by the shortest
possible FTM burst (Fig. 1) consists of transmitting an
FTM request frame, two FTM frames, and three ACK
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MAB Agent
(e.g., TS)

FTMRate 
data rate selection 

algorithm

Classical
data rate selection 

algorithm (e.g., TS)

Transmission 
with the selected MCS

LOS NLOS

Reward (transmission outcome)

Figure 2: Hybrid FTMRate design.

frames. A promising solution to solve the overhead prob-
lem would be to perform FTM out-of-band (since the dis-
tance remains the same regardless of radio frequency).
IEEE 802.11be will provide multi-link operation and it is
easy to envision that while the main communication be-
tween stations and APs is done in the 5 or 6 GHz bands,
FTM bursts can be relegated to the 2.4 GHz band. In the
following, we mainly focus on rate selection performance
improvements achieved by estimating the distance with
FTM but also address the signalling overhead.

Regarding localization accuracy, FTM tends to slightly
overestimate distances, with errors typically remaining un-
der 1m [31]. As shown in the following sections, these ap-
proximations are sufficient for rate selection. In addition,
we use filtering techniques to address any deficiencies re-
sulting from these approximations.

4. Hybrid FTMRate Approach

We propose Hybrid FTMRate which extends our pre-
vious contribution, FTMRate [2], by combining it with a
classical rate selection approach to mitigate one of FTM-
Rate’s drawbacks, namely reliance on LOS operation (Fig. 2).
In this section, we first describe general system settings
and assumptions, then give an overview of the core of the
proposal (i.e., FTMRate operation) and finally describe
how Hybrid FTMRate extends this concept.

4.1. System Settings and Assumptions

We consider devices equipped with single IEEE 802.11ax
radio interfaces, operating in infrastructure mode, with
fixed channel width and guard interval values, performing
FTM measurements at a rate of once every 0.5 s (2 Hz).
Furthermore, we assume the following:

• static or low-mobility (nomadic) stations,

• an exponential Gaussian error model of FTM mea-
surements based on [31],

• a log-distance path loss model and Nakagami multi-
path fading,

• perfect RSS to MCS mapping.

These assumptions allow to study (Hybrid) FTMRate per-
formance and we revisit and discuss them in Section 7.

AP

Station (FTM requestor, 
uses FTMRate)

Station (FTM requestor, 
uses FTMRate)

Station (FTM requestor, 
uses FTMRate)

Station (FTM requestor,
uses FTMRate)

Station (FTM requestor, 
uses FTMRate)

Uplink

Uplink

Uplink

UplinkUplink

FTM

FTM

FTM

FTM

FTM

Figure 3: General FTMRate scenario. Stations are FTM initia-
tors, while the AP is the FTM responder. Additionally, stations use
FTMRate for selecting their transmission rates, based on the results
of FTM ranging.

4.2. FTMRate Overview

In FTMRate, each 802.11 station runs an independent
ML agent that selects rates (MCS values). In the construc-
tion of this agent, we use probabilistic modeling, which is
crucial as FTM measurements are inaccurate and 802.11
is far from being a simple system. Probabilistic model-
ing means that every unknown is modeled as a random
variable with some probability distribution. Certain com-
plicated aspects of the system are also abstracted by sta-
tistical learning models. Under some mild assumptions,
we can reduce the measurement error by including past
measurements in the model. The net result of such an ap-
proach is the distribution of the possible rate for each MCS
at every point in time. This distribution allows the selec-
tion of the optimal MCS and control of the FTM probing
rate to reduce overhead.

The general FTMRate scenario is illustrated in Fig. 3.
Each station estimates its distance from the AP at time t
using the FTM procedure illustrated in Fig. 1. The true
distance is denoted as ρt and its noisy estimation as ρRTT

t .
This noise is caused by imprecision inherent in the FTM
procedure and caused by the wireless chipset, multi-path
propagation effects, channel bandwidth, etc. The channel
model is assumed to be known and has the form of a condi-
tional distribution of RSS given the distance between the
sender and the receiver1: pθc

(γ|ρ), where γ is the RSS and
θc is a vector of the channel model (c) parameters. In the
following, the subscript denotes parameters of a function,
e.g., pθc(·) := p(θc, ·). A frame transmission is successful
with probability ξ = sθs

(γ, µ), where µ is the MCS used
for the transmission and sθs

is the CDF of the sinh-arcsinh
distribution (s). Since distance measurements are noisy,

1Channel model estimation and prediction is left for future study.
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ρt−1 ρt ρRTT
t

σν σρ τ

γ

θc

mobility
dynamics

rate
inference

ξ

λ

µ

λtx
µ θs

Figure 4: Graphical representation of the proposed model that re-
lates distance observations with a hidden state and the rate achiev-
able at a given MCS. Each arrow represents the statistical depen-
dence between the random variables (circled) and the parameters
(not circled). The graph comprises two parts: station mobility dy-
namics (top) and rate inference (bottom).

a smoothing filter is applied to obtain a more accurate
estimate of the actual distance.

The graphical model we use is depicted in Fig. 4: the
top part represents mobility dynamics (used to smooth
the noisy FTM readings), and the bottom part represents
MCS inference. In the following, we describe both parts
in detail. The notation is summarized in Table 4.

4.2.1. Mobility Dynamics

Upon each measurement at discrete time t, the agent
obtains a noisy reading ρRTT

t of the true distance between
the transmitter and the receiver. We may reduce the dis-
tance uncertainty by the sequential filtering of observa-
tions. In particular, we assume that the true distance ρ
evolves with the local linear trend ν and both obey the
following stochastic differential equations [32]:{

dν = σνdW1

dρ = νdt+ σρdW2,
(3)

where dW1 and dW2 are independent Wiener processes
and the observations are assumed to be the true distance
with noise ϵt: ρ

RTT
t = ρt + ϵt, whose distribution could be

either centered normal with known variance or exponen-
tially modified Gaussian, also with known parameters [31].
Furthermore, σν ∈ R+ is the variation in velocity and
σρ ∈ R+ is the variation in distance.

This approach is inspired by the physics of Brownian
motion. We assume that each station has a latent radial

Name Definition
α level exponential smoothing weight
β trend exponential smoothing weight
γ RSS
∆ difference between default and current trans-

mission power
δt trend transition noise
ϵt distance measurement error
εt level transition noise
θc channel model parameters
θs parameters of sinh-arcsinh normal distribu-

tion
pθc (γ|ρ) channel model

λ expected rate
λtx
µ transmission rate for the µ-th MCS
µ current MCS
ν radial velocity
νt trend (velocity like) at discrete time t
ξ probability of successful transmission
ρ true distance

ρRTT
t noisy reading of true distance from the AP
ρt distance from the AP at discrete time t
σν variation of velocity
σρ variation of distance
τ time between measurements or the time since

the last measurement
sθs CDF of the sinh-arcsinh distribution

Table 4: Notation used.

velocity ν that is subject to random changes. The varia-
tion of these changes is controlled by σν and setting σν = 0
gives us the dynamics of [16]. As in physics, the infinites-
imal change of distance ρ depends on the current value of
ν, however, since this is just an approximation, we cap-
ture other effects, which change ρ, as additive noise. The
amount of this noise is controlled by the σρ parameter.

The particular choice for random processes represent-
ing noise is also an approximation, as it allows for nega-
tive distances. In practice, this is not a problem, and the
analytical solution is a great advantage of such a model;
however, an exact model is also proposed and described in
the Appendix.

The solution to (3) is known as the Ornstein–Uhlenbeck
process, a continuous-time stochastic process. In prac-
tice, the process is observed (sampled) at discrete times
t = t2,i+1, which yields the following discrete linear dy-
namical system:

νt+1 = νt + δt,

ρt+1 = ρt + νtτ + εt,

ρRTT
t = ρt + ϵt,

(4)

where τ is either the time between measurements τ =
(t2,i+2 − t2,i+1) or the time since the last measurement,
and both process (transition) noises, δt and εt, have a
joint multivariate normal distribution:[

δt
εt

]
∼ N

([
0
0

]
,

[
σ2
ντ

σ2
ντ

2

2
σ2
ντ

2

2 τ
(

σ2
ντ

2

3 + σ2
ρ

)]) . (5)

If FTM were costless and instantaneous, an agent could
trigger it upon each frame transmission. However, since
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it introduces overhead, we must keep the measurement
rate as low as possible to protect link capacity. The key
to achieving high throughput is a discretized continuous-
time model that can be used at a random time while being
updated at discrete times. This necessitates an inference
procedure, which we outline in the next section.

4.2.2. Ranging Inference

The internal state (ρ, ν) of (3) can be inferred from
observations at discrete time points, while a continuous
model extrapolates dynamics of frame transmission times
that occur between measurements. We observe that the
uncertainty increases with time and that a new measure-
ment makes the estimate more certain. The trend com-
ponent ν increases the inertia of the model, thus allowing
longer times between measurements if the object moves
without sudden acceleration. Inference can be done us-
ing any of the popular methods, such as the Kalman fil-
ter (KF) or particle filter (PF). The selected method is
dictated by the assumption about the distribution of the
measurement error. For a normal distribution, we have a
linear Gaussian state space model and the Kalman filter
is an analytical solution for posterior inference [33]. Any
other distribution requires a more general or approximate
method, and in this case, we use a particle filter [34]2.
Note that it is important to correctly estimate distance
uncertainty, as the subsequent transformations are highly
non-linear. A Taylor series expansion (not shown here)
confirms that the variance of distance transforms into a
bias in the expected rate. Thus, by measuring and re-
ducing distance uncertainty, we obtain more accurate es-
timates of the expected rates.

Having said that, we also use double exponential smooth-
ing (ES) with linear trend [35] as the third method of in-
ference, serving as a baseline. ES3, being a Holt linear
model [35], estimates ρ as ρt = lt−1 + τst−1, where the
state (decomposed into trend s and level l) is estimated
with simple filtration [35]:{

lt+1 = αρRTT
t + (1− α)(lt + vt),

st+1 = β(lt+1 − lt) + (1− β)st,
(6)

where α, β ∈ (0, 1) are the model parameters. This ap-
proach is simple and fast; however, it requires a constant
sampling rate.

Having introduced several inference methods, we now
discuss the advantages and disadvantages of using them.
Exponential smoothing is extremely simple and lightweight,
but has several strict requirements: a constant sampling
rate (non-uniform sampling is not uniquely defined), the
probabilistic interpretation has a single source of error
(which correlates measurement and movement noises with-
out any physical reason), and finally, the method adds

2This is also required for 2D dynamics, as stated in Section 7.
3Note that in the special case of random walk plus noise this is

equivalent to a Kalman filter [36].

Exponential
smoothing

Kalman
filter

Particle
filter

Low computational
complexity

+ + –

Easily tunable – – +
Probabilistic inter-
pretation

+/– + +

Analytical solution +/– + –
Extensible – – +

Table 5: Comparison of the inference variants

α and β as two additional hyperparameters to configure.
Kalman filter is more sophisticated, but still rather light-
weight. KF returns the result as a distribution that allows,
e.g., adaptive measurements, and has an analytical solu-
tion for posterior inference [33]. Its underlying assump-
tions include a linear Gaussian model of the system and a
Gaussian distribution of error. Additionally, KF requires a
priori knowledge of sensor noise. Particle filter can model
any distribution of error (e.g., exponential Gaussian) and
also returns the result as a distribution. However, the dis-
tribution is approximated by discrete samples (particles).
This makes PF computationally heavy (depending on the
number of particles): more particles result in a better ap-
proximation, yet a higher computational demand. Having
said that, this method is accelerator friendly, and we ob-
served improved performance on graphics processing units.

In summary, we study FTMRate in three inference
variants: Kalman filter, particle filter, and exponential
smoothing. Such inference allows us to estimate the state
of the system at the measurement time which then allows
for continuous extrapolation and evaluation at a random
time. All these methods remain conceptually simple and
should be possible to implement even on embedded de-
vices with low computing power. Table 5 compares the
key features of the approaches we use.

4.2.3. Rate Selection

In the following, we explain in detail how rates are se-
lected in our scheme. Formally, the problem we are dealing
with is a Markov decision process because the dynamics
of (3) form a Markov process. However, since the state
transition is independent of the action taken by the agent
(i.e., the chosen MCS), in our proposal, the MCS is se-
lected according to

µ∗(ρ) = argmax
µ

Eγ∼pθc (γ|ρ)λ
tx
µ sθs

(γ, µ), (7)

where λtx
µ is the transmission rate for the µ-th MCS. This

selection process includes multiple steps detailed below.
First, we measure and smooth the distance. Then we

map the distance ρt to RSS γt using the following log-
distance channel model:

γ(ρ) = γ0 − (L0 + 10E log10(ρ)) + ∆, (8)

where E is the path loss exponent, γ0 – the reference RSS,
L0 – a reference path loss measured at a distance of 1m,
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and ∆ – the difference between the default and currently
used transmission power. Therefore, the parameters of
the channel model used are θc = (γ0, L0, E) ∈ R2 × R+.
The ∆ variable allows to instantly adjust to transmission
power changes. Next, we compute the probability of suc-
cessful transmission ξ modeled with a CDF of the sinh-
arcsinh normal distribution [37] whose four parameters
θs ∈ R2 × R+

2 are estimated from simulations. Then, we
scale the rate at each MCS (λtx

µ ) by the successful trans-
mission probability ξ to obtain the expected rate. Finally,
we choose the MCS value that maximizes the expected
value of the data rate distribution.

Each of these steps could be considered a trainable
parametric model, so it introduces an error. Therefore,
we represent the intermediate values as random variables
in the graphical model (Fig. 4). Nevertheless, we observe
that the errors are small and can be omitted in the first
approximation. Since all transformations are bijective, so
is their composition, as shown in [2]. Thus, the approxima-
tion mentioned above allows us to directly map the distri-
bution p(ρt|ρt<) to the rate distribution at each MCS. The
main benefit is to map the distance uncertainty ρ to the un-
certainty of the selected rate. Since this transformation is
highly non-linear, the variance of distance measurements
shifts the expected rate. This may cause a suboptimal
MCS to be selected when operating close to the crossing
point of two curves. The expectation in (7) is computed
after non-linearities as an average of multiple samples be-
cause, to the best of our knowledge, this non-linear trans-
form has no known analytical result for expectation.

4.3. Hybrid FTMRate Overview

To address the challenge of obstacles such as walls that
can impact FTM-based rate selection, we propose Hybrid
FTMRate (Fig. 2). We introduce a latent binary variable
zt which has a value zt = 1 if we are operating in a LOS
environment and FTMRate gives the correct rates. Oth-
erwise, for the NLOS case, we have zt = 0, FTMRate is
biased and a classical agent (e.g., probing-based) is ex-
pected to perform better.

The introduction of the latent variable brings a hier-
archy to the problem, because now the probability of a
successful transition is a mixture of distributions condi-
tioned on zt. Since z is hidden, we cannot marginalize
it, and thus the probability distribution must be learned.
As this is a binary variable, an MAB agent can be used
for this task. In the proposed hybrid approach, the MAB
agent chooses the rate selection algorithm, either FTM-
Rate or a classical one. Once the algorithm is selected, it
chooses the rate and the information about the transmis-
sion outcome (reward) follows up through all agents up
to the MAB agent, providing online learning. With the
MAB’s ability to explore, the agent can quickly adapt to
the environment. As MABs are efficient and in the pro-
posed solution there are only two arms, the computational
overhead of this method is minimal.

AP Station 1…n

distance …

(a) Stations are placed at a fixed distance from the AP.

AP

Station

Station

Station

Station

Station
Station

Station

40
 m

40 m

Station

Station

(b) Stations move according to the RWPM model and the AP
is placed in the corner of a square area.

AP Station 2, 4, … n

40 m …

Station 1, 3, … n-1

40 m…

(c) Stations are placed in hidden clusters, 40 m from the AP.

Figure 5: Topologies of the (a) equal distance, (b) mobile stations,
and (c) hidden stations scenarios.

5. Performance Evaluation

We conduct a performance evaluation of first FTM-
Rate and then Hybrid FTMRate. For the simulation en-
vironment, we use the ns-3.36.14 network simulator. We
compare our proposal in its three inference variants (i.e.,
exponential smoothing, Kalman filter, and particle filter)
with the following baseline rate selection protocols:

• Minstrel – the default rate selection method in Linux
systems, also available in ns-3,

• Thompson sampling (TS) – an ML-based rate selec-
tion method available in ns-3 [16],

• oracle – a hypothetical rate selection method that
uses perfect location knowledge to calculate RSS us-
ing (8) and selects MCS based on this knowledge. It
does not consider multi-path fading effects, so it is
an approximation of the upper bound.

The FTMRate algorithm is implemented in Python,
using the JAX library [38]. It is connected to ns-3 using the
ns3-ai interface [39]. We provide the complete code used
in this study with detailed instructions as open source5.

4https://www.nsnam.org/
5https://github.com/ml4wifi-devs/ftmrate
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Parameter Value

Band 5 GHz
PHY/MAC IEEE 802.11ax
Channel width 20 MHz
Spatial streams 1, SISO
Guard interval 3200 ns
Frame aggregation A-MPDU aggregation
Loss model Log-distance w/ Nakagami fading
Path loss exponent E 3
Reference RSS γ0 ≈ 110 dB
Reference path loss L0 ≈ 46.6 dB
Per-station traffic load Uplink, 125 Mb/s UDP
Packet size 1500 B

Table 6: General simulation parameter settings

We consider both static and mobile scenarios with full-
buffer stations transmitting to a single AP (which under
our network configuration settings amounts to 125 Mb/s
per-station offered load). We also assume no outside in-
terference, i.e., no overlapping Wi-Fi networks. The gen-
eral simulation settings are given in Table 6, while the
scenario-specific settings are given in Table 7. To decrease
simulation time, we use only 20 MHz channels (in the ab-
sence of overlapping networks, the results are qualitatively
identical to using wider channel widths) and single spatial
stream (SISO) transmissions. In each figure, we provide
99% confidence intervals for the mean of the approximate
throughput, represented as bands around the data points,
unless stated otherwise.

With respect to [2], we repeat only the basic scenario
(Section 5.1) to illustrate how FTMRate’s performance
differs from classical rate selection algorithms. Then, we
analyze the impact of dynamic power settings (Section 5.2),
hidden stations (Section 5.3), and signaling overhead (Sec-
tion 5.3). Next, we analyze the performance of Hybrid
FTMRate (Section 5.5). Meanwhile, we refer the reader
to [2] for results related to mobility where we show that
(a) the selected rate of performing ranging measurements
(once every 0.5 s) is enough for FTMRate to provide sat-
isfactory performance in low-mobility scenarios and (b)
FTMRate outperforms two baseline algorithms in scenar-
ios with random station mobility.

5.1. Equal Distance

We begin with a scenario in which the stations are im-
mobile and placed at a given distance from the AP, iden-
tical for each station (Fig. 5a). We analyze two distances
ρ = 1m and ρ = 20m. The former setting involves sta-
tions located close to the AP. This leads to excellent chan-
nel conditions, but collisions can still happen. To address
this, stations should always opt for the highest MCS and
avoid confusing collisions with weak channel conditions. In
the latter setting, both collisions and channel errors caused
by weak signals happen, although there are no hidden sta-
tions involved. At this distance, according to (7), an MCS
value of 7 is optimal.

The results shown in Fig. 6 confirm the well-known
effect that the aggregated network throughput decreases
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Figure 6: Aggregate network throughput in the equal distance sce-
nario (Fig. 5a): ρ = 1 m (top) and ρ = 20 m (bottom). Note that all
three FTMRate curves overlap.

with the number of transmitting stations. Additionally,
both Minstrel and TS suffer from the impact of collisions
on the probability of successful transmissions. This is be-
cause they cannot discriminate between frame loss due
to weak signal (poor channel conditions) and a collision.
Therefore, they treat every packet loss equally and reduce
the MCS, which is, however, incorrect in case of collisions,
since lower MCS will not decrease the contention level.
Our approach is resilient to this problem because it does
not consider whether transmissions are successful or not,
but only considers FTM measurements. Therefore, FTM-
Rate, in all its inference variants, can reach the approxi-
mate upper bound (the oracle).

5.2. Dynamic Power Settings

In previous scenarios, we assumed fixed transmission
power settings. However, FTMRate also performs well
when the transmission power changes. To illustrate this,
we analyze a scenario where a single station transmits
frames to the AP while the transmission power randomly
alternates between two levels, differing by ∆ = 5dB or
∆ = 15dB. The power switches follow an exponential dis-
tribution with a mean period of constant power 1/λ = 4 s
or 1/λ = 8 s. We selected the above parameters only
for illustrative purposes: the power levels reflect a clear
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Scenario Equal distance Dynamic power Mobile stations
(RWPM)

Hidden stations

Stations {1, 2, 4, ..., 16} 1 10 {2, 4, 6, ..., 16}
Distance from AP Fixed distance Fixed distance Random walk in a square

area (40 m × 40 m)
Fixed distance

Velocity 0 m/s 0 m/s 0 − 1.4 m/s with 0 − 20 s
pause

0 m/s

Start position {1, 20} m 5 m Random 40 m
Simulation time No. of stations

×10 + 50 s
55 s 1000 s No. of stations

×10 + 50 s
FTM signaling Out-of-band or in-

band
Out-of-band In-band Out-of-band

Table 7: Simulation parameter settings for each scenario
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Figure 7: Throughput in the dynamic power scenario with a single
station transmitting to the AP. The power level difference ∆ = 5 dB,
mean constant power period 1/λ = 4 s (top) and ∆ = 15 dB, 1/λ =
8 s (bottom). Only one FTMRate variant is presented as all three
exhibit similar performance.

data rate change of several MCS values and λ to show
the convergence properties of the algorithms. Indeed, this
scenario is inspired by the study in [16]. The obtained
results (Fig. 7) clearly indicate that our method adapts
rapidly, outperforming both baseline rate selection algo-
rithms, across various power level differences and switch-
ing frequencies. This is due to the indirect estimation of
the RSS value in (8), which allows to immediately change
the transmission power and thus adjust MCS accordingly.
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Figure 8: Aggregate network throughput in the hidden station
scenario with stations grouped in hidden clusters (Fig. 5c), with
ρ = 40 m.

5.3. Hidden Stations

Since FTMRate is not affected by collisions, it should
perform well in scenarios with hidden stations. We set up
station clusters on opposite sides of an AP at a distance
of ρ = 40m (Fig. 5c). In this analysis, we compare per-
formance for both RTS/CTS enabled and disabled, but
restrict the rate managers to TS and FTMRate with KF.
The former serves as the baseline due to its previous good
performance, while all FTMRate’s variants perform simi-
larly so we choose the one which balances complexity with
extensibility (Table 5).

The results in Fig. 8 clearly show that FTMRate out-
performs TS. Even with RTS/CTS disabled, FTMRate’s
performance matches TS with RTS/CTS. This is a direct
result of FTMRate’s design (transmission rates are not
downgraded on account of collisions).

5.4. Signaling Overhead (In-Band FTM)

In this section we measure the signaling overhead of
both the proposed FTMRate algorithm and the FTM pro-
cedure itself, by comparing their operation with the oracle
as well as with other rate selection algorithms.

We conduct tests with in-band measurements, i.e., when
both ranging and data communication are done over the
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Figure 9: Evaluation of FTM overhead in the equal distance scenario
(for ρ = 1 m): throughput loss caused by switching to in-band FTM
measurements or by switching to another rate selection manager.

same channel. This evaluation is carried out in two sce-
narios: equal distance (for the FTM procedure evaluation)
and mobile stations (for the FTMRate algorithm evalua-
tion), with settings as in Table 7. Both scenarios have a
large number of stations where the impact of overhead is
most significant. For this in-band analysis, we use FTM-
ns3 [40] (which extends ns-3.35 with the FTM procedure
and its signaling overhead) and not the Python-based out-
of-band FTM implementation used in the previous sub-
sections. We use the default configuration of FTM for the
20MHz channel. FTM measurements are performed, in-
dependently for each station, every 0.5 seconds and if the
measurement fails, it is immediately repeated until it is
successful.

We evaluate FTM overhead for the equal distance sce-
nario (Fig. 9) by calculating the throughput loss, defined as
the difference in achieved throughput between the oracle
manager and an oracle manager that performs FTM mea-
surements and selects MCS knowing the exact distance.
For Minstrel and TS, the throughput loss is defined as the
difference between the throughput achieved with the oracle
and when switching to the respective manager. The FTM
overhead is the smallest in comparison to other algorithms,
which suggests that this advantage can be exploited by the
FTMRate algorithm.

In the mobile stations scenario we evaluate FTMRate
overhead. The obtained results (Fig. 10) are pnly marginally
inferior to those obtained through out-of-band measure-
ments [2]. However, FTMRate still outperforms Minstrel
and is no worse than TS.

5.5. Hybrid FTMRate Performance

We implement a Hybrid FTMRate agent in which a
TS agent is responsible for selecting the appropriate man-
ager (as the MAB in Fig. 2). This top-level TS agent
has two arms, corresponding to the selection of FTMRate
and TS rate selection managers, respectively. Depending
on its decision, either FTMRate or TS rate selection man-
ager is responsible for selecting MCS for data transmission.
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Figure 10: Aggregate network throughput with mobile stations de-
ployed randomly around the AP (Fig. 5b) when FTMRate operates
in-band.

Fig. 11 presents a case in which the station moves away
from the AP with a speed of 0.5m/s and every 5m en-
counters a point where the signal strength drops by 3 dB
(which represents a wall). In this scenario, the perfor-
mance of the basic FTMRate suffers from NLOS, which
causes the success probability estimate to be inflated. The
hybrid approach enables intelligent detection of this case
and switching to MCS selection through a classical man-
ager. We can expect that Hybrid FTMRate will be no
better than TS and indeed observe that this is the case:
Hybrid FTMRate performs equal to or only slightly worse
than TS, ensuring high performance throughout the run.

The second scenario, presented in Fig. 12, is analogous
to the case discussed in Section 5.1 for ρ = 1m. The results
confirm that even with an additional MAB agent, which
introduces a small overhead for exploration and continuous
testing of the condition of both agents (FTMRate and TS),
the performance of hybrid FTMRate is superior to other
probing-based solutions.

The presented cases demonstrate that hybrid FTM-
Rate is not only efficient in dense scenarios with multiple
collisions, but can also be a versatile data rate manager.

6. Experimental Validation

Having performed extensive simulation studies, we now
conduct an experimental validation which focuses on the
performance of FTMRate. We assess whether FTMRate
can select rates correctly in real-world conditions. Be-
low, we first describe the testbed and necessary calibra-
tion steps. Then, we discuss results for two experimental
scenarios: static and mobile.
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Figure 11: Station throughput in a scenario with a moving station,
walls, and a hybrid FTMRate agent.
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Figure 12: Aggregate network throughput in the equal distance sce-
nario (ρ = 1 m) with a hybrid FTMRate agent.

6.1. Testbed

We set up a testbed composed of an access point and a
single client, both with Intel Joule 570x compute modules
and Intel Dual Band Wireless-AC 8260 Wi-Fi adapters.
They run Ubuntu 16.04 servers with default kernels, iwlwifi
backports, and FTM enabled [41]. Additionally, the AP
runs hostapd. Table 8 provides the parameter settings
used in the experiments.

We use iwl-mvm-rs as the baseline rate selection al-
gorithm, which is the rate selection algorithm of the Intel
Linux wireless driver (iwlwifi) [42]. For FTMRate, we
select the KF variant because it balances complexity and
extensibility.

The measurements were taken in a large sports hall
(17× 54× 10.5 m), with little interference from neighbor-
ing networks. The station used in our testbed is presented
in Fig. 13. Attenuators, visible in the figure, are used to
limit the maximum transmission range of the station. This
allows us to observe more transmission rate changes over
the same distance compared to a setting without attenua-

Parameter Value

Antenna gain 2 dBi
Attenuator loss (total) 35 dB
Band 2.4 GHz
PHY/MAC IEEE 802.11n
Channel width 20 MHz
Spatial streams 1 (SISO), 2 (MIMO)
Guard interval 800 ns
Frame aggregation A-MPDU aggregation
Path loss exponent E ≈ 1.31
Reference RSS ≈ 67.82 dBm
Per-station traffic load Uplink, ≈ 11.4 packets per second, UDP
Packet size 1000 B

Table 8: General experiment parameter settings

Figure 13: An Intel Joule 570x board serving as a station in our
testbed. The attenuators used to limit the range are clearly visible.
A similar board (without attenuators) served as the AP.

tors.

6.2. FTMRate Calibration

Calibration is necessary before using FTMRate in a
new channel environment. The channel model, given in
(8), which consists of the path loss exponent E, the ref-
erence RSS γ0 and the reference path loss L0 parameters
is fitted to the data (obtained by sending frames from the
station and measuring RSS at the AP, cf. Fig. 14). This
task reduces to exponential curve fitting, where γ0, L0,
and ∆ are treated as a single shift parameter which is es-
timated in addition to the exponent parameter E.
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The second step is necessary to estimate the trans-
mission success probability for each MCS value. This
probability function is modeled by the CDF of a sinh-
arcsinh normal distribution which consists of four param-
eters, well described in the literature [37]. For each MCS,
these parameters can be obtained by first measuring the
ratio of successful frame transmissions (for each measured
distance) and then by fitting the CDF curve. It may help
to restrict the model by substituting the sinh-arcsinh CDF
with a simpler normal CDF.

The Kalman filter method necessitates the estimation
of an additional parameter, the sensor noise, represented
by the standard deviation of a normal distribution that
models measurement errors. This parameter can be pre-
determined a priori ; however, we determine it by iden-
tifying the normal distribution that minimizes the Kull-
back–Leibler divergence which in this case reduces to the
mean of the squared differences between the corrected FTM
distances and uncorrected ones.

6.3. Static Scenario

We first evaluate the performance of FTMRate in a
basic static configuration, where a stationary station is
positioned at a distance of 2m from the AP (Fig. 5a).
This test allows us to assess the convergence time of the
algorithm and validate the operation of our solution in a
scenario with few collisions. The data is gathered from 10
independent repetitions, each lasting 25 s, and the approx-
imate throughput is based on arrival times and the data
rate of received packets.

The results presented in Fig. 15 indicate that FTMRate
immediately selects a high MCS value, in contrast to the
default manager, which takes approximately 5 s to find the
optimal value. This scenario highlights the advantage of a
closed-loop solution over a probing-based approach, which
is the close-to-zero time convergence to the appropriate
MCS value.

6.4. Dynamic Scenario

We also evaluate the performance of FTMRate in a
dynamic scenario, in which a team member held a tripod
with a station mounted on top (Fig. 13) and walked away
from a stationary AP at an approximately constant speed
for 10 s, traveling from 2m to 12m away from the AP.
The beginning of the movement was triggered by an audio
signal to synchronize with the start of the measurements.
We repeated the experiment 15 times.

The measured data rate is per-frame and is estimated
as the theoretical value based on the frames received by
the AP (Fig. 16). Due to hardware deficiencies, the system
has limitations which preclude a full saturation through-
put experiment. We present these per-frame data rate
results as an initial performance indicator. The results in-
dicate that FTMRate outperforms iwl-mvm-rs, especially
at the beginning of the experiment, when the station is
still close to the AP. In the latter part of the experiment,

FTMRate selects a single (optimal) value of MCS, hence
the lack of deviation. The baseline manager, which uses
a probing-based approach, fails to select the highest MCS
values, whereas FTMRate, thanks to its closed-loop solu-
tion, selects them properly.

7. Challenges

In this section, we discuss two key challenges of the
core FTMRate proposal: NLOS operation and the linear
dynamics of the station.

7.1. Alternative Approaches for NLOS

We have shown that NLOS conditions are detrimental
to FTMRate performance. Our proposal, Hybrid FTM-
Rate, can alleviate these issues, although not perfectly.

Operation in NLOS conditions may alternatively be ad-
dressed by knowledge transfer from the FTMRate agent to
a classic agent. For example, TS maintains a simple model
of the success probability for each MCS in the form of a
collection of beta distributions. To this end, we also main-
tain the success probability distributions in the form ξ, so
it is easy to add prior knowledge from FTMRate to the
TS agent. The parameters of the beta distribution can
be set to minimize the divergence to ξ. In particular, the
Kulbak-Leibler divergence can be chosen and minimized as
follows. First, sample from ξ, and fit the beta distribution
to the samples. This procedure is a single-shot bootstrap
of TS and allows knowledge transfer between agents. Al-
though promising, this may still pose some issues, as the
TS agent cannot exploit the dynamics of the system.

Other approaches can also be considered such as data
fusion (i.e., relying not only on range measurements) [43]
or detection of LOS paths before the actual distance mea-
surement [44].

7.2. Exact Dynamics in 2D

The dynamics of (3) is an approximation, neglecting
an additional degree of freedom in the circular position
for a given distance. In this section, we propose an exact
probabilistic model of the dynamics.

The extension is quite simple and follows (3), with one
exception. The dynamic is duplicated for two orthogo-
nal planar dimensions and the measurement gives a noisy
distance. Mathematically, such a model is described as
follows: {

dν = σνdW1

dx = νdt+ σρdW2,
(9)

where σν and σρ are diagonal matrices and W1,W2 ∈ R2

are two dimensional Wiener processes. The aforemen-
tioned measurement is ρRTT

t = |xt| + ϵt, where |xt| =√
x2
t,1 + x2

t,2.
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Figure 14: Examples of RSS values measured at the AP during the experiments. The five points indicate station placement during transmission:
the central point is at the designated distance from the AP while the four other points are offset by approximately half a wavelength (6 cm).
The area of the circles denotes the variance of the results. The high dispersion of results is caused by multipath propagation.
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Figure 15: Approximate throughput in a static scenario using real
hardware.
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Figure 16: The average per-frame data rates observed at the receiver
in a dynamic scenario (station moving away from the AP) using real
hardware.

Equation (9) contains two independent dynamics (3)
for each dimension. After discretization, a transition noise
distribution is derived for both dimensions exactly as in (4).

The main reason we opt for approximate dynamics in
throughout the paper, rather than the above-mentioned

2D dynamics, is that (9) is nonlinear, or can be made lin-
ear at the cost of losing normal distributions, thus efficient
Kalman filtering cannot be used here. Still, for complete-
ness, we propose here an exact model that can be used
with a particle filter.

8. Discussion and Impact

We see from all the presented results that in LOS sce-
narios FTMRate has two main features which provide an
advantage over existing solutions. First, it is collision-
immune, which is beneficial when collision rates are high,
e.g., on account of hidden stations or simply increased sta-
tion density. The benefits of FTMRate are visible even for
a low number of stations (Fig. 6). The additional use of
RTS/CTS only increases the gain in hidden station sce-
narios (Fig. 8). We are also confident that these gains can
be found in cross-technology coexistence scenarios, where
sporadic transmissions in unlicensed bands by Bluetooth,
ZigBee, or other devices may result in collisions but not
lead, in the case of FTMRate, to a rate decrease.

Second, FTMRate has a lower convergence time com-
pared to the dominant probing-based approach. Since
most communication is bursty and sporadic in nature, user
applications can benefit from the low convergence time.
Additionally, network scenarios with a high turnover rate
can also benefit. Consider a massive Internet of Things
deployment, where sensors send traffic infrequently, with
not enough frames for a probing-based method to con-
verge. Another scenario is a subway train moving be-
tween hotspots located at stations – as the train arrives,
all its passengers want to transmit simultaneously (using
a probing-based approach would waste resources).

However, FTMRate also has some drawbacks. First, it
requires signaling overhead, but we have shown that this
does not offset the gains, even when done in-band (Fig. 9).
The multi-band operation of future Wi-Fi devices will fa-
cilitate moving signaling (including FTM measurements)
to other bands. Second, FTMRate requires adjustment to
NLOS scenarios. We propose Hybrid FTMRate in Sec-
tion 4.3 which reverts to classic algorithms in NLOS sce-
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narios and we outline other approaches in Section 7. The
final drawback of FTMRate is that it requires training.
The FTM procedure itself requires establishing an offset,
but this can be done automatically [44]. Meanwhile, the
channel model parameters can either be estimated based
on knowledge of the environment type or estimated online
(which we leave as future work). Finally, the accuracy of
FTMRate can be influenced by the delay (or loss) of FTM
frames, which can be countered by optimizing the FTM
burst size (to perform repeated measurements), as well as
sending FTM frames with the most robust MCS and with
the highest priority.

9. Conclusions

FTMRate is a new data rate selection algorithm for
IEEE 802.11 networks. Its novelty lies in the use of FTM-
based distance measurements and the application of sta-
tistical learning to these measurements to (a) estimate the
distance from the AP, (b) estimate channel quality (RSS),
and (c) map RSS to MCS (and thus the transmission rate).
Through simulations, we have shown that our collision-
immune design leads to the following desirable features:

(a) FTMRate performs better in dense scenarios in com-
parison to standard rate selection approaches (Sec-
tion 5.1).

(b) Changing transmission power levels does not inter-
rupt the performance of FTMRate (Section 5.2).

(c) FTMRate provides superior performance in hidden
station scenarios (Section 5.3).

(d) FTMRate’s high throughput results are not offset by
in-band FTM signaling and remain no worse than
that of probing-based managers which unnecessarily
decrease rates under high contention (Section 5.4).

(e) Hybrid FTMRate can be part of a versatile data rate
manager for NLOS and mixed LOS/NLOS scenarios
(Section 5.5).

Finally, our experimental analysis confirms that FTM-
Rate works in commercial-off-the-shelf devices, is compat-
ible with MIMO, exhibits rapid convergence times (Sec-
tion 6.3), and is also capable of selecting the correct data
rates in dynamic scenarios (Section 6.4).

We note that by observing any random variable on
the rate inference path in Fig. 4, we can transform the
problem into channel inference. Therefore, as future work,
we consider investigating methods to estimate channel pa-
rameters as well as optimize measurement frequency and
study cases where interference from far-away transmissions
should lead to lowering the MCS. Furthermore, we want to
design a dedicated retransmission chain for FTMRate and
find scenarios where our rapidly converging, probing-free
approach can be particularly beneficial, such as in millime-
ter wave (mmWave) bands, which are inherently LOS.
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