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Abstract

AI and ML emerge as pivotal in overcoming the limitations of traditional network optimization techniques and conventional
control loop designs, particularly in addressing the challenges of high mobility and dynamic vehicular communications
inherent in the domain of connected and autonomous vehicles (CAVs). The survey explores the contributions of novel
AI/ML techniques in the field of CAVs, also in the context of innovative deployment of multilevel cloud systems and edge
computing as strategic solutions to meet the requirements of high traffic density and mobility in CAV networks. These
technologies are instrumental in curbing latency and alleviating network congestion by facilitating proximal computing
resources to CAVs, thereby enhancing operational efficiency also when AI-based applications require computationally-
heavy tasks. A significant focus of this survey is the anticipated impact of 6G technology, which promises to revolutionize
the mobility industry. 6G is envisaged to foster intelligent, cooperative, and sustainable mobility environments, heralding
a new era in vehicular communication and network management. This survey comprehensively reviews the latest
advancements and potential applications of AI/ML for CAVs, including sensory perception enhancement, real-time traffic
management, and personalised navigation.
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1. Introduction

Vehicular communication technology has been around
for almost two decades, and yet the integration of Artificial
Intelligence (AI) and Machine Learning (ML) with the
next-generation wireless networks, 5G and forthcoming 6G,
figures to transform the way in which research, industry
and regulators alike look at Connected and Autonomous
Vehicles (CAVs). By leveraging AI and ML, and their
potential to significantly enhance the operational efficiency,
vehicles can make smarter decisions, predict and adapt
to dynamic road conditions in real-time, and optimize
vehicular communication.

However, the application of AI/ML in CAVs is not
without its challenges. Strengths such as the ability to
process and analyze in real-time vast amounts of data
coming from on-board and road-side sensors, learn from
past experiences, and adapt to new situations, are offset
by weaknesses including the need for extensive data for
training, potential biases in decision-making processes, and
the vulnerability to adversarial attacks. Additionally, the
reliance on high-quality, diverse datasets for training ML
models poses a significant challenge, especially in scenarios
that have not been encountered during the training phase.

Another challenge is the interoperability among different
communication systems and technologies, which is crucial
for the successful deployment of CAVs. CAVs must commu-
nicate seamlessly with each other (V2V, Vehicle-to-Vehicle)
and with infrastructure (V2I, Vehicle-to-Infrastructure), re-

quiring the development and adoption of universal commu-
nication standards [1]. The European Telecommunications
Standards Institute (ETSI), 3GPP and other international
bodies like the Institute of Electrical and Electronics En-
gineers (IEEE) and the Society of Automotive Engineers
(SAE) are working towards harmonizing these standards
to ensure global interoperability. However, achieving this
on a global scale remains a formidable challenge due to the
varying technological and regulatory landscapes (particu-
larly as regards spectrum sharing issues) across different
regions.

The advent of 5G and the outlook to 6G technolo-
gies offer a promising solution by providing ultra-reliable,
low-latency communication essential for the seamless oper-
ation of CAVs. These technologies facilitate the real-time
exchange of vast amounts of data between vehicles and in-
frastructure, enabling advanced applications such as coop-
erative driving, enhanced sensory perception, and real-time
traffic management. The enhanced bandwidth and reduced
latency of 5G and 6G networks are crucial for supporting
the computationally intensive tasks required by AI appli-
cations, from sensory data processing to decision-making
algorithms.

As technology transitions from 5G to 6G, one must
consider the evolving use cases and their unique demands
on vehicular networks. The integration of AI/ML in this
context not only promises to enhance the capabilities of
CAVs but also introduces new challenges in terms of net-
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work design, data management, and security. The journey
towards fully autonomous and intelligently connected ve-
hicles is complex and multifaceted, requiring a concerted
effort from researchers, engineers, and policymakers to re-
alize the full potential of AI and ML in the context of 5G
and 6G technologies.

Finally, although beyond the scope of this paper, there
are economic implications. The initial investment required
for research and development, infrastructure upgrades, and
the integration of advanced technologies for CAVs is sub-
stantial [2]. Additionally, ongoing operational costs, such
as maintenance of the infrastructure, must be considered.
However, the long-term benefits of CAVs, including re-
duced accidents, lower fuel consumption, and improved
traffic efficiency, are expected to outweigh these initial ex-
penses. From a market perspective, the introduction of
CAVs will disrupt existing automotive and transportation
industries [3]. Traditional automotive manufacturers will
need to adapt to new technologies and business models,
while new players specializing in AI and ML may gain
prominence. Furthermore, the employment landscape will
shift, with new job opportunities emerging in the develop-
ment and maintenance of CAV technologies, while tradi-
tional driving jobs may decline. A thorough cost-benefit
analysis is crucial for stakeholders to understand the eco-
nomic impact and to develop strategies that maximize the
benefits while mitigating the costs.

In this survey paper, we critically evaluate the inte-
gration of Artificial Intelligence and Machine Learning
technologies in enhancing sensing operations, cooperative
maneuvering and enabling beyond-Day-2 Applications for
Connected and Autonomous Vehicles within the emerging
5G and 6G network infrastructures.

The rest of the paper is organized as follows: in Sec-
tion 2 we explore how AI and ML enhance vehicle sensor
data interpretation. Section 3 discusses ML applications in
autonomous driving tasks like adaptive cruise control and
cooperative lane changing, underlining the significance of
AI in vehicular decision-making processes. Section 4 intro-
duces the concept of vehicular microclouds, detailing their
role in resource management and mobility prediction to
enhance vehicular network efficiency. Section 5 highlights
the hurdles in applying AI/ML for vehicular technologies,
focusing on scalability, security, and adaptability in diverse
driving conditions. Section 6 concludes the paper with
future research directions, emphasizing the need for inter-
disciplinary collaboration to fully realize AI/ML’s potential
in advancing CAV technologies.

2. Sensory Perception Enhancement

Autonomous vehicles are designed to leverage sensor
perception to collect information from the external world.
Environment perception data can be generated by different
sources, such as LiDAR scanners, radars, GPS, inertial
measurements, video cameras or a combination of any of
them.

2.1. Sensor fusion
To achieve a vision as complete as possible of the en-

vironment around the vehicle, it is necessary to merge
the different features extracted from the sensors. This
procedure, known as sensor fusion, strives to generate a
comprehensive perspective of the world surrounding the
vehicle. Its objective is to optimize the control system’s
decision-making processes, ensuring precise, effective ac-
tions for the vehicle. Namely, the procedure involved in
constructing a map of the surrounding environment and
determining the positions of elements within it is referred
to as simultaneous localization and mapping (SLAM).

The overview in [4] presents different approaches for
the processing of data generated by sensors. All the inputs
are crucial in sensor fusion since they bring different kinds
of information that can then be combined. The camera
can clone human vision, but, in order to know the distance
between obstacles, a radar or LiDAR is fundamental. The
different sources are complementary to each other and
their fusion provides a complete, more precise vision of
the environment. Often sensor fusion is divided into two
groups, the so-called “low-level” fusion, and the “high-level”
fusion. The former is used to get localization and mapping
of the different objects, while the feature extraction and
the consequent detection and classification are done by the
latter.

Sensor fusion can be done with different techniques,
based on fixed rules, particular data structures, or Artificial
Intelligence and Machine Learning models.

In their paper, Zacchi and Trapp [5] focus on improving
the perception of vehicle surroundings in urban environ-
ments. Challenges such as occlusions, appearances, and
disappearances often impede the performance of traditional
tracking algorithms in urban settings. Additionally, meth-
ods addressing the data association problem are constrained
by the limited viewpoint of the ego vehicle. To tackle these
challenges, they propose a framework that integrates var-
ious perspectives to enable collaborative perception. In
this framework, both automated vehicles and infrastruc-
ture contribute to their perception results. The developed
framework includes the usage of a particular data structure,
the Bayesian Occupancy Filter (BOF). A BOF combines
sensor measurements with prior knowledge about the envi-
ronment, iteratively updating their knowledge about the
occupancy of different locations. These filters are based on
Bayesian inference principles, allowing them to handle un-
certainty and integrate sensor data in a principled manner.
BOFs provide probabilistic object positions and enhance
the prediction of future object trajectories. [5] involves spe-
cific infrastructures that can merge different BOFs, coming
from vehicles, to obtain an overall probabilistic view of the
covered area. This result is then provided to all vehicles,
making them aware of what is around them.

One of the main challenges in sensor fusion involves
the exact positions of nearby objects within 3D space and
across time. Within this challenge, LiDAR excels at de-
tecting and tracking targets but within a confined sensing
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range due to signal sparsity, whereas cameras offer a rich
visual signal limited to the image domain. Once again, the
integration of diverse sensor inputs is crucial for gaining
a comprehensive understanding of scene dynamics. Eager-
MOT [6] stands as a framework developed to fuse data
from all available sensors, ensuring a precise picture of the
environment’s dynamics. The first stage aims to associate
object detections originating from different sensor modali-
ties (2D observations from images and 3D from LiDAR).
After that, the system employs a tracking formulation that
updates track states even when only partial (i.e. under
LiDAR and camera limitations). This formulation is based
on the overlapping performed with intersection over union
(IoU), between the 2D projection of LiDAR objects and
camera objects. After this process, the fused instances
contain information from both input types: each object
has its 3D location and its 2D bounding box. The model
illustrates the feasibility of integrating various space-based
inputs, emphasizing the necessity of considering the dis-
tinct limitations inherent to each sensor technology, which
vary depending on the circumstances and surroundings.
Therefore, it is crucial to design resilient solutions that are
modeled upon these insights.

2.2. The role of Artificial Intelligence
While the works presented above are not related to any

Artificial Intelligence (AI) model, recent years have seen a
strong evolution of advanced machine learning techniques.
These technologies are crucial to developing new sensor
fusion systems based on advanced mathematical models.

One of the main problems nowadays in sensor fusion
is the corruption or the lack of data, as a consequence of
adverse weather conditions, sensor obstructions, low light,
etc. The traditional solutions (i.e., the ones that do not
leverage Machine Learning techniques) are hampered by
hurdles and issues because they follow a rigid scheme. A
framework, called HyndraFusion, proposed by [7] brokers
a more flexible approach to solve these problems. Its main
functionality is to recognize the current driving context and,
based on this information, select the best combination of
sensors to maximize both the robustness and the efficiency
of the fusion task. In particular, a Convolutional Neural
Network (CNN) extracts a set of features coming from
input sources (i.e., sensors). The features extracted are
then processed by a specific module, containing information
about the external context (e.g., the weather conditions).
This step is fundamental for selecting a subset of branches
that receive the features as input. Each branch is a deep-
learning model that can convert features from a certain set
of sensors into a set of outputs useful for a specific task,
such as object detection or semantic segmentation. These
outputs are eventually merged to obtain a final detection
for the task. HyndraFusion was trained with the RADI-
ATE dataset [8] that contains data from various sensor
inputs, such as Radar, LiDAR, and video cameras. The
tested task, which was evaluated and compared against
other sensor fusion models, focused on Object Detection.

A noteworthy result indicates that when the model utilizes
all available branches, the results are worse than scenarios
where the model accurately selects specific branches. This
outcome demonstrates that using less sensor data can im-
prove robustness. In general, HyndraFusion outperforms
older, less flexible approaches by about 14%, demonstrating
that Machine Learning offers effective tools to enhance the
knowledge about environmental conditions that become a
crucial part of the sensor fusion chain.

One of the key aspects for the accuracy of Machine
Learning and especially of the Deep Learning models, is
the need for a huge amount of data to train the algorithms,
extending the model background knowledge in the desired
domain. The framework presented in [9] highlights how the
combination of real-world observations and simulated data
can be a valid solution to add a source of information and
allow models to have more data to work on. The integration
between the two data sources is divided into two differ-
ent layers, the data layer and the model layer. In the first
one, a merging process fuses the observation and simulation
data. The model trained on this mixed dataset can leverage
real-world data enriched with simulation data so that the
model has a huge amount of information to learn data pat-
terns. The technique, called Feature Engineering, involves
converting raw data into features that offer an enhanced
representation of the underlying problem in machine learn-
ing models. This results in improved model accuracy by
exploiting data patterns and correlations through various
operations, such as feature extraction, transformation, se-
lection, evaluation, etc. The huge amount of data provided
to the data layer permits obtaining a more complete and
refined features analysis of the investigated problem. On
the other hand, the model layer facilitates the separate uti-
lization of simulation and sensor data for training distinct
models, which can later be integrated to generate predic-
tions. The paper’s results make clear that the enrichment
of features significantly enhances the model performance.

While the abundance of data is crucial, an exceedingly
high amount of information to share could hinder the whole
process: more advanced systems must select the main fea-
tures to submit to the sensor fusion process. This feature
map selection can be executed by exploiting of Convolu-
tional Neural Network (CNN) as reported in [10]. The
output of this selection permits a better transmission in
terms of wireless channel condition, interference level, dis-
tance, and link duration. As a consequence of that, the
entire network results less stressed by traffic overload. The
feature map selection through CNN can be done at different
vehicle layers. Intermediate feature maps may take a longer
time to process when received by the other vehicles within
the network (the maps need to pass through all other filters
inside the vehicles). For this reason, fusing the last-layer
feature map turned out to be the best decision to generate
a more efficient feature map compression, compliant with
the strict time constraints of cooperative perception.

A tool that can be effectively used to support the test-
ing and development of CAVs in deep learning and sensor
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fusion scenarios is the open-source simulator CARLA (Car
Learning to Act) [11]. It provides a highly customizable,
realistic urban environment where developers can generate
diverse, complex traffic situations, essential for training
robust deep learning models. By simulating various sensor
inputs, such as cameras, LiDAR, and radar, CARLA en-
ables comprehensive sensor fusion testing, allowing for the
integration and validation of multi-sensor data processing
algorithms. As an example, in [12] a level 4 CAV is imple-
mented through the CARLA simulator to train and test a
self-driving car agent using a Deep Q Neural Network. Sen-
sor fusion is achieved by integrating hood-mounted cameras
and radars, rearview mirrors, and a GPS. CARLA can also
be used as an effective testing tool for CAVs using V2X
communication to improve behavior planning and AI-aided
decisions, such as lane-changing and lane-keeping [13].

Due to the huge amount of data that AI models re-
quire to be trained and tested, the collection of information
is a point as crucial as it is critical in Machine Learn-
ing pipelines. Problems related to data manipulation and
the lack of human control are significant concerns. As
decision-making increasingly relies on autonomous systems,
the opacity of these systems can lead to unpredictable
outcomes and biases that are difficult to identify and cor-
rect. Moreover, the reliance on large datasets and complex
algorithms makes AI systems vulnerable to attacks and ma-
nipulation, such as adversarial attacks and data poisoning.
In [14], authors underline the important role that a Reg-
ulation and Policy Framework can have on CAV systems,
but they also specify that it is fundamental to balance
the trade-off between protecting CAV users’ privacy and
freedom, ensuring operational and data accessibility to
maintain state regulators’ command and control thresh-
olds. The research conducted in [15] and [16] highlights the
increasing importance of security policies in emerging 6G
and new transportation systems. Specifically, [16] describes
a privacy-preserving framework for vehicular pseudonym
issuance. This tool employs a blockchain structure to mit-
igate security risks associated with the data handling of
autonomous vehicles. Many articles [17][18][19] address the
theme of machine ethics, often referred to as the Moral
Machine. In this field, numerous problems arise (e.g., the
Trolley Dilemma), and resolving and regulating these issues
will require extensive input from legal and philosophical
committees. In particular, it will be especially challenging
to integrate human values into the system design of CAV
solutions [20], ensuring that autonomous vehicles can make
ethical decisions that align with societal norms and expec-
tations. Moreover, biases in training data pose significant
challenges, as these biases can lead to unfair or unethical
decision-making by autonomous systems, further compli-
cating the development of trustworthy and equitable CAV
technologies.

2.3. V2X paradigms in 5G and 6G ecosystems
In sensor fusion applications, the integration of data

gathered by individual vehicles with information sourced

from other vehicles or infrastructure is fundamental. Swift
and accurate data exchange ensures timely updates of the
surrounding environment for enhanced situational aware-
ness and effective decision-making. The advent of cutting-
edge telecommunication paradigms such as 5G and 6G is
pivotal in this regard, transforming computer networks
into dynamic ecosystems characterized by ultra-fast speeds,
minimal latency, and huge reliability. Consequently, the
realm of networking technologies for connected vehicles
stands as a primary beneficiary of these advancements [21].

According to the research conducted in [22], the 6G
infrastructures have the potential to introduce disruptive
services compared to 5G, thanks to advancements in pro-
cessing performance, network design, and electronic tech-
nologies. The research demonstrates that many Key Per-
formance Indicators (KPIs) of Quality of Service (QoS),
currently challenging to achieve, would be within grasp
with the implementation of 6G.

The newest developments of the vehicle to everything
(V2X) technologies allowed the exchange of information
between vehicles to pass from an ego approach (i.e., the
machine perception is related only to its sensors) to a co-
operative solution (i.e., the machine perception is related
not only to its sensors but also to the perception that the
other vehicles share with it). The ultimate goal of this new
paradigm is to “also see with the eyes of other,” and to have
a more precise, complete representation of the environment.
This paradigm is fundamental in facilitating what is com-
monly referred to as Day-2 Services, supporting real-time
information sharing among vehicles. The communication
systems transporting such sensory information must guar-
antee minimal delay, sterling robustness and unparalleled
availability, features that are at the core of 5G [23] and
6G [22] architectures.

However, fast network infrastructure alone cannot guar-
antee the success of V2X communications without a well-
designed set of messages exchanged among vehicles. ETSI,
the European Telecommunications Standards Institute,
plays a crucial role in standardizing these messages to
ensure interoperability and efficiency in V2X communica-
tion systems. The most commonly used types of messages
are the Cooperative Awareness Message (CAM), the Decen-
tralized Environmental Notification Message (DENM), the
Collective Perception Message (CPM), and the Vulnerable
Road User (VRU) Awareness Messages (VAM).

Particularly, CAM and CPM messages hold significant
importance in the realm of sensory perception. CAM mes-
sages are periodically transmitted by vehicles to share data
regarding the vehicle’s state, such as position, speed, ac-
celeration, etc. These messages are designed to be the
workhorse of road safety systems, providing vital location
information to other vehicles and traffic control systems.
Conversely, CPM messages are designed for collective per-
ception, as they enable vehicles to share collected sensor
information from different sources, such as LiDAR and
video cameras. This data exchange allows vehicles to have
a more comprehensive, accurate understanding of the sur-
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rounding environment, enhancing traffic safety and flow.
In addition to CAM and CPM messages, the exchange
of Vulnerable Road User Awareness Messages (VAM) can
also significantly contribute to enhancing road safety in
the context of sensory perception. These kinds of messages
are designed to alert vehicles to the presence of nearby
vulnerable road users, such as pedestrians, cyclists, and
motorcyclists.

Both CAM, CPM, and VAM can be used by vehicles to
build a Local Dynamic Map (LDM), a construct envisioned
by ETSI [24], which plays a crucial role in V2X communi-
cations. The LDM represents a real-time environment map
that provides vehicles with localized information about
road conditions, traffic updates, and other relevant data
within their immediate vicinity. Vehicles can access up-to-
date and detailed environmental information, facilitating
proactive decision-making and further improving overall
road safety and efficiency.

A recent study [25] exploits the Multi-Access Edge
Computing (MEC) paradigm to merge information into a
centralized dynamic map of the road (the Server-LDM, or
S-LDM) that can be shared efficiently among services. In
keeping with the MEC paradigm, computing power can
be made available at the edge, without crossing the entire
network to reach a far-away server. Thus implemented,
the LDM becomes a valuable centralised asset for vehicles
and infrastructures that provide data to create and update
it, yielding a more precise, real-time representation of the
road. The S-LDM is capable of detecting when a certain
triggering event occurs and, following that, computing a
context around a reference vehicle or object. This output
is then shared with other MEC services. Experiments,
conducted both in lab settings and real-world conditions,
demonstrated the effectiveness of this technology as a facili-
tator for advanced automation, supported by the innovative
5G architecture. In most cases, individual message decod-
ing and map updates occurred in under 50 microseconds.
Furthermore, within a mere 70 milliseconds following the
previous update, the entire map could be refreshed in 95%
of instances.

The solutions described above show how sensor percep-
tion is pivotal for vehicles to have complete knowledge and
secure navigation within their surroundings. Indeed, the
convergence of sensor fusion, machine learning, 5G and 6G
telecommunication standards, and V2X protocols will play
crucial roles in shaping the future of transportation.

In particular, the integration of Artificial Intelligence
models within CAV systems is closely linked to the introduc-
tion of the 6G paradigm. While 5G technologies were not
initially designed to include Machine Learning strategies,
they can nevertheless be integrated with these technologies
to some extent. However, 6G technology could provide sev-
eral advantages and novel solutions for data transfer, which
can enhance algorithms such as Reinforcement Learning
and Federated Learning, commonly employed in these sce-
narios. To achieve ultra-low latency and ultra-fast speeds,
recent studies [26][27][28] utilize Millimeter-Wave technolo-

gies. These technologies involve utilizing frequency bands,
typically above 30GHz, which have been largely unused
for telecommunications traffic until now. However, the two
main side effects of Millimeter-Wave technology are that,
due to the ability to transmit at higher frequencies, com-
munication distances are reduced, and the Line-of-Sight
(LoS) issue is accentuated. One of the latest advance-
ments in cutting-edge technology is the development of
Non-Terrestrial Networks (NTN). By employing drones,
satellites, high-altitude platform stations (HAPS), and un-
manned aircraft systems (UASs), the coverage of solutions
utilizing millimeter waves can be extended [29]. This re-
sults in a network coverage, often referred to as “spotty”,
which ensures high availability and low latency even in
isolated places where the possibilities to interact through
classical transmission channels are limited. Another inno-
vative solution brought forth by the evolution of 6G are the
Reconfigurable Intelligent Surfaces (RISs), which enhance
transmission efficiency and strengthen information secu-
rity [30]. RISs consist of numerous adjustable elements that
reflect electromagnetic waves. By controlling the phases
and amplitudes of these elements, RIS technology increases
the Degrees of Freedom (DoF) of wireless channels, thereby
improving signal transmission and enabling advanced ca-
pabilities. RISs mitigate issues such as signal blockage and
deep fading, significantly enhancing wireless connectivity
through signal enhancement, interference suppression, re-
liable reception, and precise positioning. In [31] and [27],
authors emphasize that RIS could become a standard for
modern networks, as radio signal propagation between
transmitters and receivers can be flexibly reconfigured to
achieve the desired realization and distribution. This ap-
proach is expected to facilitate a more flexible, reliable
exchange of information.

3. Cooperative Manoeuvering and beyond-Day-2
Applications

AI/ML solutions play a critical role in autonomous and
automated driving and have become an essential compo-
nent of a plethora of applications that require an intelligent
decision-making process [32, 33, 34]. This Section examines
the integration of AI in enabling vehicles to perform com-
plex driving manoeuvers collaboratively, enhancing road
safety and traffic efficiency by leveraging the advanced
capabilities of 5G and 6G networks for improved commu-
nication and data sharing among vehicles. Beyond-Day-2
Applications suggest several use cases for CAV solutions
that can be grouped into four main categories, as done
in [35]: Vehicle Coordination, Intersection Crossing Assist,
Partial and High automation, and Advanced Warning and
Information. Table 1 lists application examples for each
category, and references to work that investigates them
through the usage of AI/ML and 6G-based technologies.

Below, we delve into two categories listed in Table 1:
Vehicle Coordination and Partial and High Automation.
Specifically, we focus on ML-based solutions for adaptive
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Table 1: Use cases defined by Car2Car Communication Consortium

Car2Car use case Application examples AI/ML solutions 6G-based solutions

Vehicles Coordination Cooperative Lane Merging (CLM)
Cooperative Transition of Control [36, 37, 38] [39, 40]

Intersection Crossing Assist
Advanced GLOSA (A-GLOSA)
Optimized Traffic Lights via V2I

Automated GLOSA with negotiation
[41, 42] [43, 44]

Partial and
High Automation

Hazardous Location Notification
Cooperative EBS (C-AEBS)
Advanced Pre-crash sensing

Advanced Cooperative ACC (AC-ACC)

[45, 46] [47, 48]

Advanced Warning and
Information

Advanced Slow Vehicle Warning (ASVW)
Advanced ICW (AICW)
Overtaking motorcycle

VRU presence awareness
VRU collision warning
VRU brake intervention

[49, 50, 51, 52] [53, 54]

Acronyms used in Table 1:

Green light optimum speed advisory (GLOSA)
Adaptive cruise control (ACC)
Emergency brake system (EBS)

Intersection collision warning (ICW)
Vulnerable road user (VRU)

cruise control and trajectory prediction (Section 3.1) and
cooperative lane changing (Section 3.2).

3.1. Adaptive cruise control
Adaptive cruise control (ACC) aims to determine in an

automated way the acceleration/deceleration that a vehicle
should adopt, so that it can maintain a safe following
distance (or, equivalently, time headway) and obey to speed
limits. Among the various possible approaches that have
been proposed in the literature for ACC, Reinforcement
Learning (RL) and Deep RL (DRL) are among the most
popular ones, since they proved to be very effective in
handling acceleration control in time- and space-varying
environments, while requiring a limited amount of input
information. A comprehensive survey on RL and DRL-
based mechanisms can be found in [34], which underlines
the effectiveness of such techniques whenever one has to
control the linear movement of a vehicle. Importantly, RL
and DRL models can exploit the variety of scenarios that
typically characterize complex road scenarios.

A crucial role in an RL or DRL mechanism is played
by the reward function, as it characterizes the objective
of the learning process and the policy that will be output,
thus determining a vehicle’s behavior. Furthermore, the
choice of the reward function affects the convergence of
the learning process and whether or not it will converge
to the optimal solution [55]. We argue here that using a
continuous reward function can significantly help to provide

convergence and often allows finding a better trade-off
among the different needs of an ACC application.

In the case of connected autonomous (or automated) ve-
hicles, ACC has been enhanced by leveraging the additional
information that a vehicle’s application can collect about
its surroundings as well as its neighboring vehicles. Such
enhanced ACC is known as Cooperative ACC (C-ACC).
The work in [56] is one of the first to propose C-ACC,
combining RADAR and vehicle-to-vehicle communication
as sources of information to control the time headway of
an ego vehicle with respect to a leading vehicle. The mech-
anism proposed in [56], however, defines an action space
that includes discrete values of (positive/negative) accel-
eration, which may lead to an oscillating, often far from
reality, behavior. Additionally, [56], as most of the tradi-
tional solutions for ACC, focuses on headway as a unique
objective of the proposed DRL, thus failing to address
vehicle stability and passengers’ comfort. We underline
that this is a significant shortcoming since providing safety
implies accounting not only for time headway but also for
the vehicle’s stability under different pavement conditions
as the vehicle acceleration varies.

This serious concern is partially tackled in [57, 58, 59,
60], which introduce DRL-based solutions that enable a
multi-objective optimization by defining reward function
that includes different factors like time-to-collision, head-
way, and jerk. Nevertheless, even the above solutions
neglect the vehicle dynamics, thus leading to selected ac-
tions that may be unsuitable for real-world vehicle behavior.
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Conversely, a study that considers vehicle stability only is
[61], which focuses on electric vehicles and, specifically, on
controlling the torque vectoring to improve stability. As far
as passenger comfort is concerned, it is worth mentioning
that an extensive empirical study on the factors that mainly
impact such a performance metric has been presented in
[62].

All of the above issues are tackled in [63], which ad-
ditionally considers the different driving conditions that
a vehicle may face. To do so, [63] defines a C-ACC solu-
tion based on DRL with a continuous action space, which
accounts for the time headway, the passengers’ comfort
and safety, and the vehicle stability under critical road
pavement conditions.

Although RL and DRL models have proved to be mostly
effective for ACC, it is important to mention that other
approaches have been proposed. An interesting comparison
between DRL and Model Predictive Control (MPC) in
ACC can be found in [64]. Interestingly, the study under-
lines that, since MPC is model-based, it requires online
optimization, thus implying a non-negligible computational
complexity, which may be hardly feasible for real-world
ACC applications. Being instead model free, DRL has
much lower complexity and, hence, can determine the vehi-
cle’s acceleration in real time. Moreover, a DRL approach
accounts for the environment in which the vehicle oper-
ates, thus enabling a better control of the vehicle. On the
other hand, DRL requires proper training to be able to
effectively address different situations (a.k.a. generaliza-
tion error). To overcome this critical aspect, simulation
tools can be effectively used to generate extensive datasets
that can capture a high number of scenarios and situa-
tions. Through these simulators, one can also represent
the environment and the effect of actions on it, thus ob-
taining a virtual validation of the performance of RL and
DRL mechanisms. Relevant examples of these tools include
the VISSIM commercial traffic simulator, the open-source
CoMoVe [65] simulator for virtual validation of driving
applications, ADAS sensors, communications, and vehicle
dynamics, and the open-source VeinsGym [66] that inte-
grates the popular Veins vehicular networking simulation
toolkit [67] with Open AI Gym [68], which has become
the de facto standard for realizing reinforcement learning
solutions.

3.1.1. AI/ML for trajectory estimation and prediction
Vehicle trajectory prediction is a fundamental task that

builds upon AI/ML approaches and is at the basis of several
other applications in autonomous and automated driving,
such as collision avoidance and lane changing. A compre-
hensive survey on this topic can be found in [69].

A large body of work on vehicle trajectory prediction
addresses rather simple environments such as highways or
straight stretches [70, 71], or it focuses on specific road
sections [72]. Such approaches cannot typically cope with
larger and more complex road scenarios. For instance,
[73] presents a solution based on a classification of drivers’

driving style without accounting for the fact that this may
change over time, depending, e.g., on the traffic conditions
or the road layout. Thus, while such an approach may
work well in straight stretches of road, it cannot adapt
to, e.g., road intersections or roundabouts. [74], instead,
defines a discrete set of manoeuvers on a highway scenario
and computes the probability thereof. It then leverages
Gaussian processes to characterize the predicted trajectory,
along with the related uncertainty. Although interesting,
such an approach hardly scales with the number of different
road scenarios and the high number of manoeuvers that a
driver can execute therein.

More complex scenarios, such as road intersections, have
been analyzed much more rarely in the literature. Among
the studies concerning road intersections, [75, 76] focus
on a simpler problem than trajectory prediction, i.e., they
only predict whether a vehicle turns or proceeds straight.
From the methodology point of view, the former exploits
non-parametric regression, while the latter leverages Long
Short-Term Memory (LSTM) networks – an approach that
has then been widely used for trajectory prediction. En-
hanced predictions are provided, instead, in [77, 78], using
Graphical Neural Networks models. Interestingly, such
models also take into account the interaction between ve-
hicles and between vehicles and the road infrastructure
elements. A deep convolutional neural network (CNN) has
been introduced in [79], which, importantly, also accounts
for the fact that an ego vehicle can receive information
on the manoeuvers of its neighboring vehicles through ve-
hicular communication technologies. The method in [79],
however, exhibits high complexity, since it requires to com-
pute the likelihood of the possible trajectories of each ego
vehicle. Although exploiting a different methodology based
on temporal CNNs and a Kalman filter, the work in [80] has
a similar goal and flavour, thus still exhibiting exceedingly
high complexity.

A more scalable method is introduced in [81], which
assumes that the network infrastructure can monitor and
gather data on a given geographical area. Such information
is then used by an edge server to create a hybrid convolu-
tional and recurrent neural network model for trajectory
prediction that is delivered to the vehicles. Importantly,
such a model enables transfer learning, and the vehicles
can customize the model they receive from the network
using their local data on the driver’s driving style. In [82],
multiple data sources, such as sensors and IoT devices,
are used to produce trajectory predictions, using each of
them as a different data source. The final prediction is
selected using the uncertainty affecting the different tra-
jectory predictions. However, this study fails to adopt a
multi-modal approach and, since the prediction uncertainty
is computed as a confidence score, the approach may not
be accurate enough to identify the most reliable predic-
tion. Finally, it is worth mentioning [83], which integrates
an LSTM-based model for trajectory prediction with a
collision-forecasting mechanism, thus tailoring the former
to the highly demanding latency requirements of the latter.
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3.2. Cooperative lane changing
The recent advancements in autonomous driving tech-

nologies must consider vehicles’ capability to coordinate
manoeuvers with one another in a cooperative manner.
Lane changing maneuvers constitute one of the most im-
portant sets of actions that have an important impact
on relationships and traffic management between vehicles.
The survey [84] explains the critical impact of AI solutions
for vehicle motion planning. Specifically, DRL models
are particularly suitable to model and solve these kinds
of problems. The work also emphasizes the evolution of
DRL techniques for motion planning tasks. An interesting
branch of RL is Multi-Agent RL (MARL), where the agents
are not seen as separate entities to be trained. Still, they
are considered a common source of information for building
a unique intelligent system.

A recent study [85] applies the MARL concept to de-
velop a cooperative lane-changing framework. This latter
is based on an exchange of states, actions, parameters,
and rewards among all vehicles in the analyzed area. The
degree of success of a given action is evaluated according
to some parameters that constitute the final reward of that
action, such as safety (i.e., the vehicles should operate with-
out collisions), the distance between vehicles, speed, and
the newest one, the driving comfort (i.e., avoid brutal ma-
noeuvres that can hurt the passengers). This shared state
representation permits the building of accurate motion
planning strategies that outperform the solutions based on
separate actor networks.

The study in [86] addresses decision-making challenges
in lane change for autonomous vehicles, focusing on han-
dling observation uncertainties and adversarial perturba-
tions. Primarily, it introduces an Observation Adversarial
RL (OARL) approach, utilizing a Constrained Observation-
Robust Markov Decision Process (COR-MDP) to model
lane change behaviors under policy constraints and un-
certainties. By employing a black-box attack technique
and a Constrained Observation-Robust Actor-Critic (COR-
AC) algorithm, the authors advance lane change policies
while ensuring robustness against adversarial observations.
Evaluation in three traffic flow scenarios showed OARL’s
improvements over baseline methods, enhancing perfor-
mance, collision safety, and robustness.

The work in [87] tackles safety challenges arising from
blocked views and lack of cooperation among autonomous
vehicles during lane changes and overtaking maneuvers.
They introduce the Cooperative Collision Avoidance scheme
for autonomous vehicles during overtaking and lane chang-
ing (CCAV-OLC) to mitigate safety risks. The CCAV-OLC
scheme employs Inverse RL (IRL) to mimic human driv-
ing strategies, addressing challenges in high-dimensional
AV environments. To enhance learning efficiency, they
propose IRL-GP, leveraging Gaussian Process regression
for Bayesian prediction with limited demonstrations. Ad-
ditionally, the authors integrate cooperative communica-
tion among autonomous vehicles using 6G V2X technol-
ogy, improving decision accuracy and speed. Their results

demonstrate risk reduction in collisions during manoeu-
vers. Comparative analysis highlights the effectiveness of
CCAV-OLC in information delivery, collision probability,
and computational efficiency.

An alternative approach to RL techniques is the Monte
Carlo method, which involves using random sampling to
approximate solutions to problems. In particular, lane-
changing can be modelled as a search tree by simulation
multiple trajectories from the current state. The Monte
Carlo Tree Search (MCTS) leverages this data structure
to explore the space of possible random simulations for
the Monte Carlo method. The research conducted in [88]
combines the MCTS with some heuristic rules to divide the
problem into two levels, the upper-layer, and the lower-layer.
The first one optimizes the passing order through the MCTS
for a critical conflict zone, while the second one, according
to the plan established by the upper-layer, aims to solve
the potential problems during the lane change action. The
strategy of employing a bi-level strategy integrating MCTS
coupled with heuristic rules shows a notable improvement
in its effectiveness w.r.t. conventional cooperative driving
methodologies.

A network of connected autonomous vehicles can be
defined as a spatial scope or environment where information
is shared among the actors inside this area. Within this
scope, connected vehicles can cooperate in order to define
an enhanced and safe mobility plan. The information
fusion can be done by exploiting different techniques, such
as traditional rule-based, LSTM [89], and Convolutional
Graph Neural Network (CGNN). This latter is a valuable
representation of the scope, since each node of the graph
can be interpreted as a vehicle, and the edges are the
connections between them. As reported in [90], the CGNN
has great potential in aggregating information for a clique
of nodes. Starting from these considerations, [91] has
developed a solution to aggregate both information coming
from the local perspective of the vehicles and the one from
the connected environment. The step forward of this work
is to couple the CGNN with a DRL network to plan future
actions. The framework uses CGNN as the encoder to
learn abstract relational representations between agents
and then feeds these representations into a policy network
for actions. The proposed model outperforms the baseline
methods both in terms of parameter number (this new
technique is more lightweight) and performance.

Cooperative vehicle motion planning is a fundamental
aspect of autonomous driving systems, but optimizing and
solving it with the sole usage of the described solutions. In
December 2023, ETSI released the standard for the last
version of the manoeuver Coordination Message (MCM).
This type of message aims to establish a specific protocol
for vehicles to cooperate when executing particular maneu-
vers, such as lane changes, with precision. More in detail,
the protocol provides two kinds of messages. The first is
used by the vehicle that wants to execute an action, to
communicate its intention to the neighbors. The other
vehicles can answer the request with a set of proposals (i.e.

8



possible manoeuvers) to help the vehicle in bringing the
action to an end. Each proposal is assigned a score, based
on how much the vehicle deems convenient to carry out
that specific action. The first vehicle must assess which
combination would optimize both the successful execution
of the manoeuver and the score. Although some parts of
the standard still need to be defined, such as the method
for assigning a score to an action, this type of message
has the potential to emerge as a crucial tool for efficiently
organizing vehicle motion planning, which encompasses
activities like lane-changing.

4. Vehicular Microclouds

4.1. Motivation
CAVs are equipped with many computing, sensing, stor-

age, and communication resources. All the previously
discussed applications require processing of collected sensor
data locally or shared between cooperatively acting cars.
Much of the computational effort is related to machine
learning. Conceptually, all this processing could be done in
a backend cloud server. However, both the sheer amount
of sensor data and the real-time requirements render this
approach ineffective. 5G conceptualized and later stan-
dardized MEC to overcome these issues. Given the unclear
business perspective, we still see only few such MEC edge
servers.

An alternative would be to opportunistically use compu-
tational resources in the local vicinity of the car. With the
move towards automated driving, cars turn into high-end
compute servers. These resources, when clustered together
in the form of a vehicular microcloud [92], can enable the
provision of intelligent applications and services on the
edge. In the following, we discuss vehicular microclouds,
their role in enabling intelligent services at the edge of the
network.

The microcloud concept is currently being pushed for-
ward to be generalized in the form of 6G virtualized edge
computing [93]. This way, 6G edge computing will enable
distributed sharing of resources and processing of com-
putationally expensive tasks – not only in the context of
cooperative driving but also for, e.g., distributed learning
tasks in smartphone apps.

4.2. Concepts
In essence, a vehicular microcloud consists of a small

cluster of CAVs that offer their hardware resources, includ-
ing computing, communication, and storage, for use by
other vehicles, pedestrians, or services. The key technology
that enables the formation of vehicular microclouds is V2X,
as the vehicles need to communicate among each other (and
with infrastructure) using ultra-reliable and highly efficient
links in order to share their resources reliably in a common
pool. This way, much like traditional microclouds, vehic-
ular microlcouds can provide the necessary infrastructure

to facilitate multi-access edge computing (MEC), therefore
extending this paradigm into the vehicular domain.

In terms of geographic location, a vehicular microcloud
can be mobile, formed by vehicles moving in the same
direction, or stationary, in the vicinity of a specific geo-
graphic region (e.g., vehicles parking or queuing in front of
a traffic light) [94, 95]. Furthermore, an individual vehic-
ular microcloud, can be connected to a larger network of
distributed microclouds and be managed independently or
in centralized fashion.

The possibility to utilize the resources of the connected
and autonomous vehicles (CAVs) as servers at the edge
of the network effectively brings storage and processing
capabilities closer to the data source. This can reduce
latency and improve reliability, offering a responsive and
agile computing environment tailored to the evolving needs
of (different applications and services). Particularly parked
cars can help overcoming both communication and resource
management issues [96].

4.3. Resource Management
An important characteristic of vehicular microclouds

that requires particular attention is resource variability.
Namely, in contrast to traditional microclouds, which have
a fixed set of computing resources with predictable availabil-
ity, the formation of the vehicular microcloud, and therefore
the availability of its computing resources is directly de-
pendent on the presence of the participating vehicles. As
such, the dynamic nature of the vehicular traffic imposes
that in a vehicular microlcoud architecture there are not
only dynamic users, but also dynamic/fluctuating resources,
therefore their allocation needs to be handled accordingly.
This presents a set of challenges, in particular with respect
to user management and resource discovery. The vehicular
microcloud needs to be able to effectively balance the vary-
ing demand for resources and their availability to preserve
the system’s scalability and flexibility.

In this regard, AI and ML-based techniques can pro-
vide an adaptive and agile solution to address these chal-
lenges. Mobility prediction [97], computation task offload-
ing decisions [98, 99, 100], resource allocation and content
caching [101] are some of the topics that can benefit from
AI and ML-based methods [102].

The delivery of the content within strict time constraints
in the vehicular environment, which has high mobility
presents a major challenge. One potential solution to
overcome this challenge is to use content caching closer to
the end-user, e.g., vehicles within a microcloud in the edge
of the network. This allows access to the content at lower
latency, as opposed to loading the desired content from
the cloud. Aung et al. [101] exploit this idea by proposing
a vehicular edge framework where some vehicles act as
content providers by caching the relevant content, whereas
the other vehicles consume it. The core idea behind this
approach is to exploit traffic information and dynamically
align the routes of provider and consumer vehicles. A graph
pruning search algorithm is used to reduce the search space
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for consumer path planning, where the goal is to maximize
the number of content providers along a vehicles journey.
On the other hand, the content providing vehicles determine
their routes by taking decisions at the intersection based on
deep reinforcement learning (DRL) approach that rewards
content delivery, more specifically, the primary objective
is to optimize the revenue generated from advertisements
delivered to consumers.

Guo et al. [98] consider a vehicular microcloud archi-
tecture where vehicles have limited computing capacity
and they offload computationally-intensive tasks to the
servers in the infrastructure for more efficient computation.
This scheme uses Deep Q-learning methods for task of-
floading decisions, optimizing for minimal processing time
within execution delay constraints, while accounting for fre-
quent handovers and fluctuating resource availability at the
servers. The Q-learning algorithm is a reinforcement learn-
ing method that iteratively learns about the best offloading
decisions until an optimal policy for task offloading is de-
termined. The approach additionally introduces two neural
networks to reduce the correlation between current Q value
and the target Q value and thereby improve the stability of
the Deep Q Network (DQN). Additionally, an experience
replay mechanism is adopted to enhance training efficiency.

4.4. Mobility Prediction
Mobility prediction can help to improve the allocation

efficiency of the resources, as the system can forecast future
resource demand and availability, thereby manage the avail-
able resources more effectively. This can be more beneficial
than on-demand resource allocation, as long as the mobility
prediction is accurate [103].

Pannu et al. [103] followed an empirical approach to
investigate the so-called Dwell time of car at an intersec-
tion. Using the popular Luxembourg SUMO mobility data
[104], the authors collected a huge set of mobility data,
and performed statistical techniques to derive the best fit-
ting probability distribution. The resulting Johnson SU

distribution turned out to fit very accurately for 80% of
all intersections in Luxembourg. However, it turned out
that the distribution is not generalizable. In a follow-up
study, Schettler et al. [97] used a simple RL scheme that
significantly outperformed the empirical approach.

Wu et al. [105] present a mobility prediction model and
Deep Reinforcement Learning (DRL) framework for mobile
service provision in a multi-user setup. This framework
follows a comprehensive approach that jointly addresses
mobility prediction, resource allocation, and offloading de-
cisions. At the first stage, a Long-Short-Term Memory
(LSTM)- based mobility prediction model is used to pre-
dict the future locations of mobile users based on their
current position. Then, the offloading decisions and the
resource allocation are considered together, as these can
engage each other. A Deep Q-Network (DQN) handles the
offloading decisions, whereas a Deep Deterministic Policy
Gradient (DDPG) manages computing resource allocation.
The reward function is designed to encourage low latency by

maximising the number of successfully executed requests.
As users move and seek services from edge servers, the
model makes decisions regarding edge server selection and
service migration based on factors such as service status,
user locations, and the availability of computing resources.

5. Research Challenges

Existing proposals for cooperative manoeuvers in con-
nected and autonomous vehicles often concentrate on spe-
cific scenarios that, for instance, consider intersection cross-
ing [106] or lane changes [107]. Yet, they frequently over-
look the vast array of potential real-world driving circum-
stances. These proposals are typically tailored to specific
cases and rely on predefined spatial assumptions, which
may not fully encompass the complexities of real-world
driving dynamics. Consequently, there is an urgent need
to develop cooperative driving strategies that are flexible
and applicable across diverse scenarios. This necessitates
formulating methods leveraging AI/ML approaches to sys-
tematically identify suitable conditions for cooperative ma-
noeuvers on various road segments, ensuring automated
driving technologies’ safe and efficient deployment.

One of the most promising approaches in distributed
learning for 6G-enabled cooperative autonomous driving is
federated learning. Initially particularly interesting because
of its privacy preserving nature, we now know that both
privacy [108] as well as security [109] are not fully solved
yet. At the same time, federated learning is one of the
most efficient approaches for cloud and edge computing.
Novel 6G virtualized edge computing concepts [93] need
further research to overcome mobility-related issues and to
advance the efficiency of resource allocation.

Scalability presents another significant concern [110].
Current solutions often focus on a limited number of ve-
hicles and fail to account for cascading scenarios. For
instance, concurrent lane changes by multiple vehicles may
not be adequately addressed [111]. While enforcing restric-
tions to allow only one lane change at a time might seem
plausible, such artificial constraints can severely impact
traffic throughput and hinder the prompt exit of vehicles
from highways. In the context of 5G and 6G technologies,
scalability concerns extend to utilizing the infrastructure re-
sources required for executing these manoeuvers efficiently.
Specifically, in the context of 6G, we expect more decisions
to be offloaded back to the vehicles. For example, using
distributed uniform consensus algorithms [112], one could
implement virtual traffic lights since 6G nodes can support
low-latency, high-bandwidth communications.

Although no such approaches have been taken to the
best of our knowledge, we believe that some of the results re-
viewed in this paper can facilitate answers to this challenge.
Specifically, we believe that S-LDMs [25] can consolidate
collective perception information and increase the scalabil-
ity of collective perception services. We believe that such
an improvement to perception services could facilitate the
generalization of maneuver control and management.
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Yet another set of challenges arises from the need to
ensure resilience in the face of failures [113] and cyber-
attacks [114, 115]. Among others, resilience to Byzantine
attacks against message transmissions [116] or physical
layer resilience [117] play pivotal roles. Many existing im-
plementations involve the exchange of privacy-sensitive
information, potentially compromising the privacy of road
users beyond just the drivers involved in the cooperative
maneuver. Recent developments in the area of Automo-
tive Digital Forensics (ADF) [118] can facilitate solutions
for determining the source and liability of failures and
cyber-attacks. We note that in ADF, early attempts for
generalization exist [119].

6. Conclusions

Our survey underscores the impact of AI/ML in advanc-
ing CAV technologies within the 5G and 6G ecosystems.
While we have identified significant advancements, our
work also highlights the complex challenges ahead, includ-
ing data privacy, security, and the need for robust, scalable
ML models that can operate effectively across diverse and
dynamic vehicular environments. Looking forward, it is
clear that realizing the full potential of AI/ML in CAVs
will require an interdisciplinary approach, blending insights
from telecommunications, computer science, automotive
engineering, and beyond. Collaborative efforts will be es-
sential in dealing with the intricacies of next-generation
vehicular networks, ensuring that the vehicles of the fu-
ture are not only autonomous and connected but also safe,
reliable, and efficient.
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