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Abstract—The adoption of IoT is increasingly challenged by
device energy constraints and growing environmental concerns,
especially as device densities surge in future wireless networks.
Energy Harvesting (EH) and Simultaneous Wireless Informa-
tion and Power Transfer (SWIPT) offer promising solutions
by enabling devices to recharge from ambient and wireless
sources. However, efficiently managing network energy consump-
tion without compromising connectivity remains unresolved due
to SWIPT’s nonlinear and non-monotonic energy dynamics.
Existing load-shifting and traffic steering strategies assume linear
load-energy relations, failing in the SWIPT context where both
user and network energy dynamics fundamentally change. In
this work, we bridge this gap by proposing a novel analytical
framework for dynamic load shifting in SWIPT-enabled Radio
Access Networks, leveraging stochastic geometry and realistic IoT
energy models. We formulate an operator-centric optimization
that accounts for delay-tolerant traffic and device duty cycling,
targeting optimal load shifting strategies that ensure both com-
munication and energy harvesting QoS. Numerical results suggest
that our approach enables adaptive load distribution, strategi-
cally exploiting periods when network energy consumption is
least sensitive to load and allows energy savings up to 15%.
These findings highlight how integrating EH, SWIPT, and load
management unlocks new avenues for scalable, energy-aware IoT
networks, paving the way for sustainable 6G architectures.

Index Terms—SWIPT, Energy Haversting, IoT

I. INTRODUCTION

Despite its ubiquitous adoption, the IoT paradigm is still
challenged by limited energy autonomy of devices, operational
sustainability, and increasing environmental impact [1]. These
issues are expected to intensify with the rise of massive
machine-type communications (mMTC) and increasing device
density, placing significant strain on future wireless networks
[2], [3]. In this context, energy efficiency (EE) becomes
essential, particularly in 6G heterogeneous networks where
diverse users and devices coexist and share limited resources
[4]. Energy Harvesting (EH) is thus emerging as a key strategy
for sustainable IoT, enabling devices to convert ambient energy
sources (e.g., RF, solar, kinetic) into usable power [5]–[7].
When combined with wireless power delivery [8], EH supports
large-scale deployments, reduces reliance on finite batteries,
and extends device lifetimes in remote or inaccessible envi-
ronments.

An effective method to integrate EH into Radio Access
Networks (RANs) is through Simultaneous Wireless Informa-
tion and Power Transfer (SWIPT) networks [9], [10] (Fig-
ure 1), which enables concurrent data and power delivery.
This dual functionality is particularly advantageous in battery-
constrained or hard-to-reach deployments. By allowing de-
vices to both communicate and recharge wirelessly, SWIPT
enhances scalability, reduces operational costs, and supports
energy-aware resource allocation strategies [11], [12]. How-
ever, ensuring energy-efficient operation in SWIPT networks
while maintaining quality-of-service (QoS) for both energy
and connectivity remains a major challenge [13], [14]. Unlike
conventional cellular systems with predictable energy scaling,
SWIPT networks exhibit non-monotonic energy dynamics due
to the dual role of user devices. Indeed, all transmitting devices
in a SWIPT RAN act not only as service consumers but also as
distributed contributors to wireless power delivery. This shift
undermines traditional energy management strategies, such as
sleep modes or energy proportionality, which assume a quasi-
linear relation between traffic load and energy consumption
[13]. In particular, an increase in user density may lead
to lower overall energy requirements and fewer active BSs
needed to maintain QoS, within certain operating regimes
[13], [15]. This phenomenon is due to emerging cooperative
energy transfer among UEs, where active devices help power
neighboring IoT nodes via passive EH.

Among the techniques with the largest potential for energy
savings in traditional RANs, load shifting of delay-tolerant
traffic via joint scheduling and traffic steering approaches,
often empowered by AI and virtualization, has proven to
enable significant improvements of both energy efficiency
and network performance [16]–[18]. For example, [16] ad-
dressed joint scheduling and power control for offloading
delay-tolerant traffic in dual-connectivity networks, showing
significant energy savings through coordinated decisions. [17]
advances policy-driven load balancing and traffic steering in
O-RAN, leveraging two-tiered optimization to meet diverse
traffic demands while reducing handovers and resource waste.
[18] shows that adaptive on/off switching and data shift
strategies can reduce macro BS power usage by up to 30%
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Fig. 1: Illustration of a SWIPT network where the base station
provides connectivity for both BB and IoT UEs while actively
charging IoT UEs.

per hour, especially for delay-tolerant services.

However, all these findings assume a quasi-linear and
monotonic relationship between load and energy consumption,
an assumption that does not apply to SWIPT networks, due
to their inherently nonlinear and non-monotonic energy dy-
namics. Thus, it is unclear how can load-shifting strategies
for delay-tolerant applications be redesigned or optimized
in SWIPT-enabled RANs to maximize overall energy effi-
ciency, while satisfying both connectivity and energy harvest-
ing quality-of-service (QoS) constraints for heterogeneous IoT
devices.

In this work, we apply recent results of stochastic geometry
to investigate the potential of dynamic provisioning strategies
based on load shifting in SWIPT networks. Specifically, our
results can be summarized as follows:

• We propose an analytical model of SWIPT networks perfor-
mance under delay tolerant IoT traffic, based on stochastic
geometry and on an IoT energy model that accounts for the
effects of duty cycling on user perceived performance.

• We formulate an optimization problem from the perspective
of the Mobile Network Operator (MNO), to determine QoS-
aware energy optimal load shifting strategies for IoT traffic.

• We characterize numerically the energy-optimal network
provisioning strategies emerging from our framework. On
a realistic daily traffic profile, we show that our framework
is effectively able to shift the load towards those operat-
ing conditions in which the power consumed is the least
sensitive to load.

Our results demonstrate the potential of combining EH,
SWIPT, and DSM to create adaptive, energy-aware IoT ar-
chitectures, laying the foundation for scalable and sustainable
6G wireless networks.

II. SYSTEM MODEL

We consider a cellular network where BSs are distributed
in space according to a homogeneous planar Poisson Point
Process (PPP) Φb with intensity λb BSs per m2. Similarly,
UEs are distributed in space according to a homogeneous PPP
Φu(t) with intensity of λu UEs per m2. UEs can be broadband
(BB) or IoT, though our analysis can easily be extended to
account for other categories of users.

We consider the case in which IoT devices harvest the
energy necessary for their operation from RF signals. Thus,
every IoT device is capable of exploiting downlink signals
from its serving BS to decode its intended information and
charge its battery (active charging), as well as any signal
transmitted from BSs and UEs for energy harvesting (passive
charging).

Thus, each IoT device can use downlink signals from its
serving base station to decode its intended information and
to actively recharge its battery (active charging), and it can
also harvest energy from any signals transmitted by base
stations and user equipments in its vicinity (passive charging).
Specifically, each IoT device is equipped with two separate
receivers, one for information transfer and the other for energy
harvesting. IoT devices commute between energy harvesting
and information decoding via Time Splitting (TS) [19]. In
such an operating mode, a fraction η (the time split ratio,
with 0 ≤ η ≤ 1) of the BS time dedicated to serving that
device is devoted to active power transfer, while the remaining
fraction 1 − η of BS time dedicated to that user is devoted
to receiving information. When an IoT device is not actively
served by the BS to which it is associated, it is performing
passive harvesting. We assume η takes the same value for all
devices.

A. Service model

We assume BSs use a generalized processor-sharing (GPS)
mechanism to divide BS time among all the connected devices.
In the downlink, the GPS weights are 1 for IoT devices, and
ωd for BB UEs. To take into account the difference in QoS
between IoT and BB, we define ωd = δd(1 − η), where δd
defines the ratio of QoS between the downlink process of the
two categories of UEs. The time spent by the BS without
transmitting is modeled as a user with a GPS weight βd. As
for uplink, in all configurations, the GPS weights are 1 for
IoT UEs, δu for BB UEs, and βu for the uplink BS time not
assigned to any UE. We assume that BB UEs always have
data to transmit and receive, and we denote the mean per-bit
delay required as τ0u for the uplink and τ0d for the downlink.
Instead, at each IoT device, we assume that the data to transmit
arrives at a constant rate equal to T 0

u bits per second. Similarly,
at each BS, the data to be transmitted in the downlink to each
IoT device arrives at a constant rate of T 0

d bits per second.
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We assume that, to optimize energy consumption (and thus
autonomy), IoT UEs follow periodic cycles of activity and
idle time, independently in downlink and uplink. Specifically,
they transmit for a fraction ϕu of their time and receive
data for a fraction ϕd of their time. This models IoT UEs
whose activity is triggered by human presence, such as event
detection systems.

To ensure fairness in the system, the values of ωd and δu are
set as the ratio between the traffic requirements of BB users
and that of IoT UEs in active state in downlink and in uplink,
respectively [20]. Thus, in general, the BS time dedicated to
serving an IoT device is a fraction ϕd of the time that the BS
might dedicate to serving it according to the GPS weight.

The BS utilization is the fraction of time during which it is
busy serving all associated users. Specifically, if S(x) denotes
the BS serving a user located in x, the utilization in downlink
is

Ud(S(x)) =
ϕdNiot(S(x)) + ωdNbb(S(x))

ϕdNiot(S(x)) + ωdNbb(S(x)) + βd
(1)

while in uplink, we have

Uu(S(x)) =
ϕuNiot(S(x)) + δuNbb(S(x))

ϕuNiot(S(x)) + δuNbb(S(x)) + βu
(2)

Niot(S(x)) and Nbb(S(x)) are the number of IoT and BB
UEs associated with S(x), while ϕdNiot(S(x)) (respectively,
ϕuNiot(S(x))) denote the mean number of IoT UEs in active
state in downlink (resp. in uplink). Thus, given ωd and δu,
by tuning βj , j ∈ {u, d}, the network controls the mean
amount of service received by UEs for both communications
and energy transfer, and the overall BS utilization, both in
downlink and uplink.

We define the ideal-per bit delay τj with j ∈ {d, u} as the
per bit delay which a UE would perceive if the BS with which
the UE is associated had utilization equal to one. Leveraging
tools from stochastic geometry and following the proof in [20],
we can define the ideal per-bit delay perceived by a BB UE
at distance x from its nearest BS as:

τ idd (x) =
ϕdNiot(S(x)) + ωdNbb(S(x))

ωdC(x, P,G, I)
, (3)

τ idu (x) =
ϕuNiot(S(x)) + δuNbb(S(x))

δuC(x, PI , 1, 0)
. (4)

We denote the capacity of a user located at a distance r

from the BS by C(r, P,G, I) bit/s per Hertz, where P is
the BS transmit power, and I the total received interfering
power. Using Shannon’s capacity law, we model C(r, P,G, I)

as C(r, P,G, I) = B
ρ log2

(
1 + PGr−α

N0+I(r,ρ)

)
, where α is the

attenuation coefficient, N0 the power spectral density of the
additive white Gaussian noise, ρ the reuse factor. We assume
BS antennas use beamforming, and we denote with G the
beamforming gain and with L the side lobes attenuation.

B. Analytical Model

In this subsection, we present the main analytical results
used in our optimization framework, based on recent stochastic
geometry results. They are derived from [12], [13].

Theorem 1. The mean ideal per-bit delays in downlink and
uplink are given by:

τ̄d =H(ωd, ωd, C(r, P,G, Ī)) (5)

τ̄d,I =τ̄d
ωd

(1− η)
(6)

τ̄u =H (δu, δu, C(r, PI , 1, 0)) (7)

τ̄u,I =δuτ̄u (8)

Where:

H(y, z, g(r)) =

∫ ∞

0

f(r, y)e−λbπr
2

λb2πr

zg(r)
dr. (9)

with

f(r, y) = λu [y + γ (ϕj − y)]

∫ ∞

0

∫ 2π

0

e−λbA(r,x,θ)xdθdx

A(r, x, θ) is given by A(r, x, θ) = πx2 −[
r2 arccos

(
r+x sin(θ)
d(r,x,θ)

)
+ x2 arccos

(
x+r sin(θ)
d(r,x,θ)

)
+

− 1
2

√
[r2 − (d(r, x, θ)− x)2][(d(r, x, θ) + x)2 − r2]

]
, and

d(r, x, θ) is the euclidean distance between (x, θ) and (0,−r)

and j ∈ {d, u}. The interference term Ī in C(r, P,G, Ī) is
given by Ī(r, ρ) =

PLgλb2πr
2−α

ρ(α−2)
τ̄d
τ0
d

.

C. IoT Power Consumption and Energy Harvesting Model

The energy model of an IoT device relates its communica-
tion activity and its states (active, standby, off) to the power
consumed. Specifically, in this work, we refer to a class of
IoT UEs with an overall power consumption between 1 and
10 mW, such as those whose operations can be sustained
by active and passive RF EH [21]. Examples are medical
and sensing devices for body area networks, such as [22]
and [23]. The model that we adopt is derived from [24]
through a measurement-based characterization, and it can be
parametrized to account for a wide range of device architec-
tures and types. The expression of the consumed power for an
IoT device at x, denoted as hreq(x), is

hreq(x) = ec

(
w1 + w2PIoTUtx(x)

)
(10)

with w1 + w2PIoTUtx ≤ 1. PIoT is the transmit power
of the device, which we assume is lower than or equal to
a maximum value Pmax, and ec is the maximum power
consumed by the device. w1 is the part of the consumed power
that does not depend on the load or device configuration,
and which models the power consumption due to other tasks
(sensing, computing). w2 modulates the contribution due to
communication activity and transmit power. Utx(x) is the
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mean fraction of time the device at x is busy transmitting.
Note that we assume that downlink processing and sensing
are modeled as proportional to the transmitted data, thus via
w2.

Lemma 1. Utx(x) = τ̄u
τ0
u

ϕu

f(r,δu)
where f(·, ·) ≤ 1 is as in

Theorem 1.

We refer to the Appendix for the proof.
As briefly introduced in the previous section, IoT device

can perform both active and passive harvesting. The power
harvested via active charging is

hactive
in (x) =

Ud(x)Pr−αGηϕd

f(r, wd)
(11)

The power harvested via passive charging is given by several
contributions:

1) power harvested from transmissions of the serving BS
to the other associated users, which depends on the
time where the user is not served by the associated BS
corresponding to 1− 1

f(r,wd)
:

hpassive
assBS

(x) = Ud(S(x))Pr−αL

(
1− ϕd

f(r, wd)

)
(12)

2) from the transmission of other BS to the cell of the user

hpassive
otherBS

(x) = I(r(x), ρ)

(
1− Ud(S(x))(ϕd − η)

f(r, wd)

)
(13)

3) from the transmission of other user in UL in the same
cell as the typical user

hpassive
otherUE

(x) =

(
1− Ud(S(x))(ϕd − η)

f(r, wd)

)
Ō (14)

where

Ō =
(1− γ)δuPbb + ϕuγPI

(1− γ)δu + ϕuγ

λbπα

α− 2

τ̄u
τ0u

With hin(x) we denote the sum of all of the four quantities
for a device located at a distance x from the nearest BS. We
define the energy neutrality of an IoT device at distance x from
the closest BS, denoted as h0(x), as the difference between
the power required to operate and the power harvested. Thus,
h0(x) = hreq(x)− hin(x). To obtain which is the percentage
of users with a satisfactory energy efficiency, such that h0(x)

is non-negative, we can consider the CDF of harvested energy
h0 as:

CDFh(l) = eval(CDFr

(
h−1
0 (r)

)
, l), for all r ≥ 1 (15)

where CDFr(·) is the CDF of the distance between a user
and its BS, and h−1

0 (·) is the inverse of the function h0(x),
defined previously. This metric is used to evaluate which is
the percentage of users with a nonnegative power budget,
corresponding to a regime where IoT UEs can harvest all of
the consumed power from active and passive RF sources.

To model the BS power consumption, we adopt a flexible and
widely-used BS power model from [25], where the total power
consumption is expressed as:

q1 + Ud[q2 + q3(P − Pmin)] (16)

where q1 is the static power consumed when the BS is idle,
q2Ud captures load-dependent power unrelated to transmit
power, and q3Ud(P − Pmin) models the transmit-power-
dependent component, where P is the actual transmit power
within [Pmin, Pmax], and Ud is the downlink utilization. This
model accounts for both fixed and traffic-dependent energy
consumption and is suitable for analyzing dynamic energy-
efficient network strategies.

III. ENERGY-OPTIMAL LOAD SHIFTING

In the following sections, we refer to time as an observation
window that is divided into K time slots, where k ∈ {1, ...,K}
denotes the label of the k-th slot. Each slot is characterized
by the density λk

u of installed devices, including both BB and
IoT devices. In the no-shifting scenario, we assume that in
each time slot, IoT devices transmit the traffic they generate
by utilizing the entire available channel capacity. In this case,
the per-bit delay corresponds to the value defined in Theorem
1 with ϕk

d = ϕk
u = 1 for each k. When the active state ϕk

j ,
j ∈ {d, u} of IoTs is not equal to 1, the downlink throughput
T k
d and the uplink throughput T k

u available to the IoT devices
at time slot k, are given by:

T k
d (ϕ

k
d) =

ϕk
d(1− ηk)

ωdτ
0,k
d

=
ϕk
d(1− ηk)

(1− ηk)δdτ
0,k
d

=
ϕk
d

δdτ
0,k
d

, (17)

T k
u (ϕ

k
u) =

ϕk
u

δuτ
0,k
u

, (18)

where τ0,kj represents the BB UEs target for the related process
and time slot k. Assuming we can over-provision the system
when convenient, it is reasonable to assume target different
per-bit delays for each time slot. These expressions are based
on the fact that, in our system, the per-bit delay is the inverse
of the throughput. Additionally, the weights for downlink and
uplink scheduling for BB UEs, which are utilized to calculate
the per-bit delay, depend on both δj and ηk. The traffic sent
(resp. received) by IoT devices during time slot k can be
expressed as:

Bk
j = γkλk

uT
k
j (ϕ

k
j ) (19)

To optimize network resource usage and create a more energy-
efficient system, our proposed load-shifting mechanism mod-
els the ability to redistribute transmission loads across adjacent
time slots. In traditional systems, the load generated at time k

must be delivered within a certain delay constraint. To capture
this, we define a window of size D, which represents the
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maximum delay allowed for shifting traffic to neighboring time
slots. Considering the periodic nature of a 24-hour day, our
model also permits shifting some load from the last time slot
to the first. As a result, each time slot can receive load from
up to D preceding time slots and forward traffic to up to D

subsequent time slots. We define ϕk
j,0 as the target ϕk

j , which
depends on τ0,kj , and describe the target activation during time
slot k, indicating how many bits are generated or received.
Denoting by χk

j the amount of requested traffic at time slot k:

χk
j = λk

uγ
kT k

j (ϕ
k
j,0), (20)

the total amount of traffic sent (resp. received) in time slot k
under the load shifting assumption can be now expressed as:

Bk
j =

k−1∑
i=k−D

Bi,k
j + χk

j −
k+D∑
i=k+1

Bk,i
j (21)

where Bi,z
j with j ∈ {u, d} defines the uplink (resp. downlink)

load moved from timeslot i to z. At the end of the observation
period consisting of K equal time slots, the total traffic sent
(resp. received) will be given by the sum

∑K
k=1 B

k
j .

The proposed modelization implies that some devices may
transmit at a throughput lower than their assigned target during
specific time slots, while in others they may fully utilize the
channel capacity for transmission or reception.

Under the load-shifting assumption, we formulate the
energy-optimal problem, which aims to identify for each time
slot k, the best system configuration in terms of density of
active base stations λk

b , splitting factor ηk, BS transmission
power P k, and fraction ϕk

d , ϕk
u of active IoT devices in

downlink and uplink, respectively. Specifically:

Problem 1 (Energy-Optimal Dynamic Network Management).

minimize
{λb},{P},

{ϕu},{ϕd},{η}

K∑
k=1

ekλ
k
b

[
q1 +

τ̄kd
τ0d

(
q2 + q3

(
P k − Pmin

))]
(22)

Subject to, ∀t:

(C1)
τ̄kd
τ0d

≤ 1,
τ̄ku
τ0u

≤ 1

(C2) CDFh(0) ≤ ι

(C3) 0 ≤ Bk
d ≤ (D + 1)Bk

d

(C4)
∑K

k=1 χ
k
d ≤

∑K
k=1 B

k
d

(C5) 0 ≤ Bk
u ≤ (D + 1)Bk

u

(C6)
∑K

k=1 χ
k
u ≤

∑K
k=1 B

k
u

(C7) 0 ≤ ϕk
u, ϕ

k
d ≤ 1

(C8) 0 ≤ ηk ≤ 1

(C9) Pmin ≤ P k ≤ Pmax

(C10) 0 ≤ λk
b ≤ λb,max

where ek is the energy cost at time slot k. Constraints (C1)
ensure that the QoS in downlink and uplink is satisfied for
all users, with τ̄kd and τ̄ku as in Equations 5 and 6. Constraint
(C2) ensure that the percentage of non-satisfactory harvesting
is lower than ι, where CDFh(·) is given by Equation 15. D
represents the maximum allowable delay for the load shift, and
the delay constraints are detailed in (C3) and (C5). Constraints
(C4), (C6) ensure that the total shiftable traffic in DL and UL
is preserved over the observation window, with χk

j and Bk
j as

in Equations 20 and 21, respectively. Constraints (C7)-(C10)
reflect realistic bounds on the values of the active ratios in DL
and UL, splitting factor, transmission power, and density of
active base stations, respectively. The problem is non-convex
and highly non-linear, which makes deterministic approaches
impractical. A Genetic Algorithm (GA), was adopted given
its effectiveness in related optimization tasks [12]. The com-
putational complexity mainly scales with the number of time
slots, since each gene encodes the decision for one slot. To
keep the search space manageable, we constrained gene values
to the range [0,1] with a discretization step of 0.02, which
substantially reduces the number of candidate solutions while
preserving solution accuracy.

IV. NUMERICAL RESULTS

In this section we present the optimization results and
the optimal load-shifting strategies deducible. We assume
that base stations operate in the 1.5GHz band and utilize
a bandwidth of 50MHz, in accordance with 5G standards.
Unless otherwise specified, the proportion of IoT devices is
set to 80% of the total number of UEs, reflecting many current
deployment scenarios. Both IoT and BB UEs are assumed to
transmit at a power of 0.2W, and a frequency reuse factor of
3 is adopted. By default, we consider a beamforming gain of
10, constant across the main lobe aperture, which is assumed
to be 45◦. The path loss exponent is set to 3, representative
of urban environments. The base stations are of the macro
type, with transmit power ranging from 1W to 11W. Unless
otherwise stated, the target mean per-bit delay in the downlink
is set to 10−5 s for BB UEs and 10−3 s for IoT UEs. In the
uplink, the target delay is 10−4 s for all UEs, consistent with
typical IoT applications such as environmental monitoring
[26]. User density is considered to vary between 10−2 and
100 users per m2, modeling scenarios ranging from sparse
BB deployments to dense IoT environments. The maximum
acceptable proportion of IoT users unable to harvest this
minimum energy is limited to 5%. The parameters of the
BS energy model are selected to represent the behavior of
the high load proportionality (HLP) BS type, with values of
q1 = 482.3, q2 = 48.23, and q3 = 144.69. This corresponds
to a 75% load proportionality, which can be achieved, for
example, through time-domain duty cycling at the subsystem
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level [27]. These parameters were specifically chosen to reflect
a maximum power consumption of 1500W per BS, which is
typical for standalone macro BSs [28]. While, the maximum
energy consumed by IoT devices is assumed to be ec = 6mW.
The cost of energy per time slot ek = 131.47C/MWh,
corresponding to an average daily value for the north of Italy,
is assumed to be constant1. For j = d, u the target ϕk

j,0 is
set to 0.08 if τ0,kj = 10−6, to 0.8 elsewhere. The maximum
acceptable delay D for shifting is set to 6. The value of BS
density has been varied with a granularity of 10−4 m−2, to
guarantee good accuracy of the GA search process. We assume
the mean number of users per base station to be lower bounded
by 5. This models the simple energy-saving strategy common
among MNOs, which switch off those BSs that serve very
few users to no users at all, as they represent a very high
energy cost per user and a small benefit for performance. The
initial population size n in the genetic algorithm (GA) was
set to 100 chromosomes. This choice struck a good balance
between computational load and convergence speed.

A. Analysis

We begin our analysis by examining the system behavior
with respect to different target per-bit delays in downlink over
a single time slot. Figure 2 shows the optimal energy cost
with respect to the overall density of connected UEs. The
continuous lines correspond to the novel findings. The green
and blue lines correspond to a IoT throughput T 0

d = 1
10−4 . In

the green line configuration, the per-bit delay for broadband
users is τ0d = 10−6, with a delay ratio δd = 100. In the blue
line configuration, the per-bit delay for BB users increases,
while δd decreases, resulting in the same effective throughput
for IoT devices as in the green configuration.

The red line, on the other hand, maintains the same per-
bit delay for BB users as the red configuration but achieves
higher throughput for IoT devices, with δd = 10. This scenario
is particularly relevant to give UEs a greater throughput, which
serves as the foundation for load-shifting. In our system, we
aim to identify optimal timeslots that can accommodate data
originally scheduled for other timeslots. Without adequate
available throughput, these timeslots would be unable to
handle the additional data. As the required throughput for
BB users increases, the system shows a corresponding rise in
overall energy consumption compared to the previous scenario.
This is due to the need to deploy additional BSs to meet
performance requirements. Interestingly, at low user densities,
the price increase for improved throughput for BB and IoT
UEs is minimal. This indicates that enhancing throughput
for users does not significantly impact the network’s energy
consumption. This is advantageous for MNOs because they

1Energy costs can be extracted from the API in https://www.electricitymaps.
com/
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Fig. 2: Energy consumed at the optimum vs. densities of users for
different BB and IoT target per-bit delays. ϕ = 1 refers to the baseline
configuration where the IoTs cannot manage their duty cycle tuning
ϕu and ϕd.

can provide users with better service without incurring higher
energy costs, thereby preserving energy efficiency. The slight
difference in the optimal energy configuration for the two
considered values of target per-bit delays is possible thanks to
the key role of BS utilization in SWIPT networks. Specifically,
at the optimum, in the higher-throughput configuration, the
system deploys an additional active BS that enhances the
performance of active harvesting because the average distance
from the serving BS is decreased. The improved harvesting
performances allow for a reduction of η as it is visible in
Figure 3. This means that BS can allocate more resources
to BB users to satisfy their required QoS. Since the QoS
requested is high, they manage to push the downlink utilization
to 1. This feature is fundamental to maximizing the passive and
active harvesting performances. In fact, from its value depend
both the active and the passive harvesting: a higher utilization
allows for a more efficient harvesting, as it is evident from
Equations 11, 12, 13, and 14. In the lower-throughput con-
figuration, it is not convenient to activate more BS since it
will translate into an average lower BS downlink utilization,
with negative consequences on the harvesting performances.
This explains why the DL utilization in both configurations is
always at the maximum (even if the energetic model is high-
load proportional). Since the amount of bits received by IoTs
is constant across all configurations, the red and green lines
coincide because IoTs do not require an additional channel for
their transmissions.

The dashed lines correspond to the baseline scenario where
IoT devices are always active both in downlink and uplink
(i.e., ϕu = ϕd = 1). When IoT devices cannot tune their
duty cycle, the energy consumed by the networks increases
for higher densities because the BSs are underused even if
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Fig. 3: Splitting factor at the optimum vs. densities of users.

the passive harvesting is more effective due to the longer
duration of transmissions (as it is evident from the earlier
decrease in η visible in Figure 3). On the contrary, the dynamic
increase of the active users achieves a balance point where
the power harvested from surrounding users equals the power
required to operate the device, without requiring additional
energy. This allows the system to maintain the splitting factor
near zero for a wider range of densities, as devices can adapt
their consumption and reduce overall energy consumption.
Such a behavior is only possible through flexible control
over device activation. Furthermore, the divergent behavior
of the curves for λu > 3 × 10−2, is clarified by Figure 4,
which shows the energy cost with respect to the downlink
activation of IoTs, for different densities of installed users.
For high densities, the activation time impacts the network
energy consumption. Indeed, reducing the load in that specific
density (i.e., time slots) could allow for saving up to 15%

of the energy cost. The load can then be shifted during a less
crowded time slot in which the impact of the load is lower. To
explore this possibility, we focused on an average daily traffic
profile derived from [29]. The system’s behavior is illustrated
in Figure 5. In this figure, the red color indicates the time
slots where over-provisioning the network is advantageous,
as shown in the previous analysis. Consistent with the trend
observed in Figure 4, the most congested time slots correspond
to the highest gains in energy costs (i.e., the amount of load
shifted). Reducing the duty cycle during those time slots
allows for higher relative savings. Consequently, the load is
redirected to lighter slots, which are now more heavily utilized.
This is possible thanks to network over-provisioning.

V. CONCLUSIONS

This paper presents an analytical framework to optimize
energy-efficient load shifting in SWIPT-enabled networks,
balancing operational costs, network performance, and de-
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Fig. 4: Energy consumed at the optimum vs. ϕd for different users’
configurations.
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Fig. 5: Optimal shifting strategy for a 24-hour observation window
with a time slot duration of 2 hours. The black line represents the
considered traffic profile.

vice lifetime. Our results demonstrate that strategic over-
provisioning during low traffic periods can improve QoS with-
out increasing energy consumption. We highlight the nonlinear
and often counterintuitive relationship between traffic demand
and energy use, enabling novel energy-saving strategies. The
proposed approach empowers MNOs to dynamically redis-
tribute load to intervals in which the energy consumed is
less sensitive to traffic demand fluctuations, while maintaining
user-perceived QoS. This is particularly impactful for IoT
devices capable of adapting their communication schedules.
It is important to note that savings vary based on the traffic
profile considered, meaning different scenarios can result in
different savings. A promising direction for future work is the
integration of real-time green energy availability and storage
conditions into the load shifting framework, which could
further enhance the sustainability and operational efficiency
of SWIPT networks.
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APPENDIX

Proof sketch of Lemma 1. To derive the uplink utilization
Utx(x) of IoT located at distance x from the associated BS, we
start by considering the time the device is busy transmitting,
which corresponds to the ratio ϕu over the entire uplink time.
Similar to base stations, the energy consumption of an IoT
device is a rescaling of the maximum energy consumed when
the IoT device is transmitting at its peak capacity. The rescal-
ing factor is determined by a fixed quantity that represents the
energy consumed when the IoT is not transmitting data and a
variable component that relies on both the transmission power
and the IoT’s utilization. The latter can be derived from the
mean uplink utilization of BS τ̄u

τ0
u

. Given that BS resources
are distributed among f(r, δu) users and the uplink weight
of IoTs is 1, we can calculate the amount of resources (time)
allocated by the BS to IoTs, which corresponds to the duration
in which the device is actively transmitting information. The
actual transmitting time is then multiplied by the fraction of
time the IoT scheduled to use for transmitting, i.e., ϕu
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