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Abstract—Experimental research on wireless commu-
nication protocols frequently requires full access to all
protocol layers, down to and including the physical
layer. Software Defined Radio (SDR) hardware platforms,
together with real-time signal processing frameworks,
offer a basis to implement transceivers that can allow
such experimentation and sophisticated measurements.
We present a complete Orthogonal Frequency Division
Multiplexing (OFDM) receiver implemented in GNU
Radio and fitted for operation with an Ettus USRP
N210. To the best of our knowledge, this is the first
prototype of a GNU Radio based OFDM receiver for
this technology. Our receiver comprises all layers up to
parsing the MAC header and extracting the payload of
IEEE 802.11a/g/p networks. It supports both WiFi with
a bandwidth of 20 MHz and IEEE 802.11p DSRC with
a bandwidth of 10 MHz. We validated and verified our
implementation by means of interoperability tests, and
present representative performance measurements. By
making the code available as Open Source we provide
an easy-to-access system that can be readily used for
experimenting with novel signal processing algorithms.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM)
is used in almost all current and forthcoming wireless
communication standards. Besides cellular standards
(like WiMAX and LTE Advanced) and digital broadcast-
ing standards (like DVB-T), it is also used in many of the
IEEE 802.11 standards, i.e., the different WiFi variants.
With OFDM, data is transmitted in parallel on multiple,
orthogonal subcarriers. Compared to single carrier
systems, this poses a multitude of new challenges
for the hardware and asks for new signal processing
algorithms to cope with OFDM characteristics, like a
high Peak to Average Power Ratio (PAPR) [1].

Given the wide range of applications, OFDM gained
a lot of attention in the academic community: many
new algorithms have been proposed for frame detection,
frequency offset correction, and channel estimation [2]–

[4]. Furthermore, OFDM and its applicability in
different scenarios and channels has been studied
extensively by means of analytical methods and by
means of simulation [4], [5].

Yet, the possibility to conduct experimental research
in that field is extremely limited.

On one end of the spectrum lies experimentation
with Commercial Off-The-Shelf (COTS) hardware, but
this approach is limited to Received Signal Strength
(RSS) and throughput measurements: the functionality
of the physical layer (and, in part, also the MAC
layer) is realized in Application Specific Integrated
Circuits (ASICs) and is therefore static. For new
protocol standards such as IEEE 802.11p Dedicated
Short Range Communications (DSRC) there is no
consumer hardware available; instead, research is
conducted with expensive hardware prototypes [6].
Also, new physical layer and new signal processing
algorithms can not be integrated.

On the other end of the spectrum lies experimenta-
tion with custom radio prototypes [7], which are usu-
ally based on Field-Programmable Gate Arrays (FPGAs),
i.e., rather complex and inflexible. Even though
this approach offers high performance, investigations
typically have to focus on small parts of the receive
chain, as an implementation of the complete transceiver,
together with the design of the hardware platform,
incurs substantial effort. Furthermore, the code for
custom devices can neither be reused nor verified, nor
can results be reproduced by other researchers.

Generic Software Defined Radios (SDRs) such as
the well-known WARP [8] and Ettus USRP1 platforms
combine the advantages of both.

In this paper, we present a complete OFDM receiver
implemented based on GNU Radio and fitted for
operation on an Ettus USRP N210. This is, to the
best of our knowledge, the first prototype of an SDR

1http://www.ettus.com/

Bloessl, Bastian and Segata, Michele and Sommer, Christoph and Dressler, Falko, 
"An IEEE 802.11a/g/p OFDM Receiver for GNU Radio," 

Proceedings of ACM SIGCOMM 2013, 2nd ACM SIGCOMM Workshop of 
Software Radio Implementation Forum (SRIF 2013), Hong Kong, China, August 2013.

http://www.ettus.com/


su
pe

rce
de

d b
y 

co
nfe

ren
ce

 ve
rsi

on
Figure 1. Overview of the blocks comprising the OFDM receiver in GNU Radio Companion.

based OFDM receiver supporting channel bandwidths
up to 20 MHz – its counterparts, OFDM transmitters
using GNU Radio, are already available, e.g., the one
developed by Fuxjäger et al. [9].

Matt Ettus, the developer of the USRP series of
devices, supplies an initial GNU Radio OFDM re-
ceiver using maximum likelihood estimation [10] and
pseudonoise (PN) sequence correlation [11]. The appli-
cability of this receiver to IEEE 802.11a/g/p, however,
is limited as the system does not support the required
bandwidth.

Moreover, our receiver comprises both the physical
layer as well as the complete decoding process including
the MAC layer of IEEE 802.11a/g/p networks. It
supports both all WiFi variants with 20 MHz channel
bandwidth as well as any IEEE 802.11p DSRC systems
with 10 MHz channel bandwidth.

Our main contributions can be summarized as fol-
lows:
• We present the first OFDM receiver for the GNU

Radio real-time signal processing framework sup-
porting IEEE 802.11a/g/p.

• The receiver is able to decode the signal for up to
20 MHz channel bandwidth using a normal desktop
PC and without any changes to the firmware of
the FPGA.

• The receiver comprises both the physical layer as
well as the complete decoding process including
the MAC.

• We make the code available2 as a modular package
of completely Open Source building blocks and
provide an easy-to-access system that can be
readily used as a tool for experimenting with novel
signal processing algorithms.

II. GNU RADIO OFDM RECEIVER

We implemented the OFDM receiver using the GNU
Radio real-time signal processing framework, which is
Open Source software and well-accepted in the wireless
communications research community. As hardware
front-end of the SDR system, we use an Ettus USRP
N210.

A. Overview

As illustrated in Figure 1 the structure of the OFDM
receiver is completely exposed to GNU Radio Com-
panion, a graphical tool to setup and configure signal
processing flow graphs. The receiver is divided into two
functional parts: The first part, depicted in the top half,
is responsible for frame detection. The second part,
shown in the bottom half, is responsible for decoding
the frame. In the following, we briefly discuss some
specific GNU Radio features we used, before explaining
the signal processing blocks in detail.

Stream tagging: GNU Radio was initially designed for
stream based signal processing. Stream tags have been

2http://www.ccs-labs.org/software/
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introduced to annotate the sample stream with further
meta data, like sampling frequency, carrier frequency,
or timestamps. We employ stream tagging to signal
the start of an OFDM frame, and in a later stage the
length and encoding scheme of the frame.

Message passing: GNU Radio is often used to im-
plement packet based transceiver systems, e.g., IEEE
802.11 or IEEE 802.15. The implementation of such
technologies is complicated in a stream-based environ-
ment, thus, message passing was introduced. Messages
can, like stream tags, encapsulate arbitrary information.
Thus, processing blocks can work on complete packets
and switch to stream-based processing only at selected
stages in the signal processing chain.

Vectorized Library of Kernels (VOLK): In order to
be able to support sample rates of 20 Msps for IEEE
802.11a/g and 10 Msps for IEEE 802.11p respectively,
we make use of VOLK [12], a toolkit that eases the use
of Single Instruction Multiple Data (SIMD) instructions.
It provides wrapper functions for the most common
signal processing tasks and dynamically selects the
implementation which offers the highest performance
on the host system. SIMD instructions work on vectors
instead of scalars, which speeds up the signal processing
considerably. VOLK also takes care of all platform
dependent issues of vectorized instructions, allowing
the user to write platform independent code.

B. Frame Detection

The first task in the receive chain is to actually detect
the start of an OFDM frame. Each IEEE 802.11a/g/p
frame starts with a short preamble sequence, which
consists of a pattern that spans 16 samples and repeats
ten times. The employed frame detection algorithm
has been introduced in [2]. It is based on the auto-
correlation3 of the short training sequence.Following
[2, Algorithm 1], we exploit this cyclic property and
calculate the autocorrelation value a of the incoming
sample stream s with lag 16 by summing up the
autocorrelation coefficients over an adjustable window
Nwin (here, s denotes the complex conjugate of s):

a[n] =
Nwin−1
∑

k=0

s[n+ k] s[n+ k+ 16]. (1)

3 Matched filtering would be more robust in order to detect a
known sequence, however it would require 16 complex multipli-
cations per input sample instead of only one. We therefore use
matched filtering only at a later stage of the OFDM receiver, which
needs to process less data.

Figure 2. Characteristic behavior of the autocorrelation function
as calculated in the frame detection part of the receiver during
frame reception.

The summation over the window (which finally results
in the calculation of a moving average) acts as a low-
pass filter. We experimented with different window
sizes and found 48 to work well. Due to the cyclic
property of the short training sequence, the autocor-
relation is high at the start of an IEEE 802.11a/g/p
frame.

In order to be independent of the absolute level of in-
coming samples, we normalize the autocorrelation with
the average power p and calculate the autocorrelation
coefficient c as

p[n] =
Nwin−1
∑

k=0

s[n+ k] s[n+ k]; (2)

c[n] =

�

�a[n]
�

�

p[n]
. (3)

Here, |a[n]| denotes the magnitude of a[n]. A typ-
ical graph of c during frame reception is depicted
in Figure 2. It clearly shows the plateau of high
autocorrelation coefficients during the short training
sequence. In our OFDM receiver, we consider that there
is a plateau if three consecutive samples are over a
configurable threshold. For every detected frame, we
then pipe a fixed number of samples to subsequent
blocks in the flow graph.

An annotated overview of the frame detection blocks
in GNU Radio companion is depicted in Figure 1.
It can be seen that we split the calculation of the
autocorrelation coefficient in eight blocks and realize all
operations with standard operations in GNU Radio. All
the involved blocks make use of the already mentioned
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VOLK library. The gained speedup is crucial for the
receiver, as the blocks involved in frame detection have
to process the sample stream from the USRP at full
speed.

We implemented the OFDM sync short block to act
like a valve. Its inputs are the samples from the USRP
and the normalized autocorrelation coefficient. If it
detects a plateau in the autocorrelation stream, it pipes
a fixed number of samples into the rest of the signal
processing pipeline; otherwise it drops the samples.

Of course, this approach comes with some limitations.
First, the size of the frames that can be decoded is
limited to a configurable number of OFDM symbols,
and secondly, if another frame arrives shortly after
the first one, it will not be detected. If we would
set the maximum number of samples that we stream
into the rest of the flow graph according to the
maximum number of OFDM symbols per frame, we
could circumvent the size limitation. Further, we could
monitor the autocorrelation also during copying of
the frame and mark the start of a new frame when
another plateau is detected. This way, we would not
miss frames with a short time-lag, for example, a Clear
To Send (CTS) following a Request To Send (RTS).

C. Frequency Offset Correction

The next block in the receive chain is OFDM Sync
Long, which applies frequency offset correction and
symbol alignment. Frequency offset correction is
required, as the local oscillators of sender and receiver
might work on slightly different frequencies.

To compensate that, we utilize the algorithm sug-
gested in [3]. Currently, we use only the short training
sequence for estimating the frequency offset between
sender and receiver. The intuition behind this algorithm
is the following: Ideally, during the short sequence a
sample s[n] should correspond to the sample s[n+16]
due to its cyclic property. However, if noise and a
frequency offset are introduced, this is no longer the
case, and s[n] s[n+16] is not a real number, as in the
idealized case. Neglecting noise, the argument of that
product corresponds to 16 times the rotation that is
introduced by the frequency offset between samples.
To estimate the final value, averaging is applied and
the final value for the frequency offset d f is calculated
as

d f =
1

16
arg

 

Nshort−1−16
∑

n=0

s[n] s[n+ 16]

!

, (4)

where Nshort is the length of the short training sequence.

Figure 3. Characteristic behavior of the correlation of the input
stream with the known sequence calculated in the OFDM Sync Long
block.

Using the argument of the sum of the products
(instead of considering the mean argument of the
products) is much more robust against noise, as samples
with small magnitudes which are more affected by
noise are weighted less. Finally, the frequency offset is
applied to each sample as

s[n]← s[n] e i (n d f ). (5)

D. Symbol Alignment

The OFDM Sync Long block is also responsible for
symbol alignment. Each OFDM symbol spans 80
samples, consisting of 16 samples of cyclic prefix and
64 data samples. The task of symbol alignment is to
calculate where the symbol starts, to extract the data
symbols, and to feed them to an algorithm doing a Fast
Fourier Transformation (FFT). This alignment is done
with the help of the long training sequence, which is
composed of a 64 sample long pattern that repeats 2.5
times. As this block needs only act on a subset of the
incoming sample stream, and as the alignment has to
be very precise, we employ matched filtering for this
operation.

In Figure 3, a typical graph showing the correlation
of the input stream with the known sequence is
reproduced. The two characteristic peaks are very
dominant and narrow, thus allowing very precise
symbol alignment.

We calculate the indices of the highest three peaks
as

NP = argmax3
n∈{0,...,Npreamble}

63
∑

k=0

s[n+ k]LT[k], (6)
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where Npreamble corresponds to the added length of the
short and long preambles, LT is the repeating pattern
of the long training sequence spanning 64 samples,
and argmax3 returns the top 3 indices maximizing the
expression.

The first data symbol thus starts at sample index

nP =max
�

NP
�

+ 64, (7)

as the latest peak of the matched filter output is 64
samples before the end of the long training sequence.

With the relative position of the first data symbol
known, this block can extract the data symbols, then
pass chunks of data samples that correspond to one
symbol to subsequent blocks in the flow graph. The
first symbol of each OFDM frame is tagged, so that the
following blocks are able to recognize the frame start.

Knowing the start of the data symbols, we can
remove the cyclic prefix by subsetting the data stream
and grouping the samples that correspond to individual
data symbols as

s←
�

s[nP + 16], . . . , s[nP + 79]
︸ ︷︷ ︸

first symbol

, s[nP + 80+ 16], . . .
︸ ︷︷ ︸

second symbol

�

.

(8)

E. Phase Offset Correction

The next step is the transition from time to frequency
domain, which is done by the FFT block.

Following the FFT, the OFDM Equalize Symbols block
is the first one in frequency domain and is responsible
for phase offset correction and channel estimation. As
the sampling times of sender and receiver are not
synchronized and as the symbol alignment is not perfect,
a phase offset is introduced. This phase offset is linear
with frequency and can be corrected with the help
of pilot subcarriers. IEEE 802.11 mandates four pilot
subcarriers that encode a predefined BPSK constellation
which is the same for each frame, but changes from
symbol to symbol. Thus, the symbol index within the
frame has to be known; it is signaled by a tag in the
sample stream that is added by the OFDM Sync Long
block. Based on the four pilots the phase offset is
estimated by a linear regression and compensated.

F. Channel Estimation

Besides the phase, also the magnitude of the carriers
has to be corrected, which is also performed by the
OFDM Equalize Symbols block. This is especially impor-
tant if QAM-16 or QAM-64 encoding is utilized, where
also the magnitude carries information. Non-linearities

in the magnitude might be caused by imperfect channel
filters in the hardware. The current implementation
of our block assumes the magnitude of the carriers to
be sinc-shaped and corrects based on that assumption.
However, this shape could be seen to depend also on the
sender, as we experienced differences when we using
different transmitters. Thus, this equalization needs
some further improvement, as it currently restricts our
receiver to BPSK and QPSK modulations.

This block also removes DC, guard and pilot subcar-
riers and thus subsets the 64 symbol input vector into
48 symbols.

G. Signal Field Decoding

The next block in the chain is called OFDM Decode
Signal. In each frame, the short and long training
sequences are followed by the signal field, which is a
BPSK modulated OFDM symbol encoded with a rate
of 1/2 that carries information about the length and
encoding of the following symbols. Again, the start of
the frame and, thus, the position of the signal field
is tagged in the sample stream. For decoding of the
convolutional code, the IT++ library is used.

If the signal field is decoded successfully, i.e., if the
rate field contains a valid value and if the parity bit
is correct, OFDM Decode Signal annotates the sample
stream with a tag, carrying a tuple of encoding and
length of the frame. This tag is used by the following
block to decode the payload.

H. Frame Decoding

The final step in the receiver is the decoding of the
actual payload. It is performed in multiple sub-steps,
as follows.

Demodulation: The OFDM Decode MAC block receives
vectors of 48 constellation points in the complex plane,
corresponding to the 48 data subcarriers per OFDM
symbol. According to the used modulation scheme,
these constellations are mapped to floating point values,
representing the soft-bits of the employed modulation.

Deinterleaving: Dependent on the Modulation and
Coding Scheme (MCS), the bits of a symbol are
permuted. The permutation is the same for all symbols
of a frame.

Convolutional Decoding and Puncturing: For decoding
of the convolutional code and puncturing, the IT++
library is again utilized.

Descrambling: The final step in the decoding process
is descrambling. In the encoder the initial state of the
scrambler is set to a pseudo random value. As the
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Figure 4. Setup of our interoperability test: the laptops on the
left as well as the blue MK2 were used to transmit IEEE 802.11
a/g/p frames, which have been received by the gray Ettus USRP
N210 in the middle.

scrambler is implemented with a seven bit feedback
shift register, 27 = 128 initial states are possible. The
first 7 bit of the payload are part of the service field
and always set to zero, in order to allow the receiver to
deduce the initial state of the scrambler. The mapping
from these first bits to the initial state is implemented
via a lookup table.

Output: After the decoding process, the payload
is packed into a GNU Radio message and passed to
subsequent blocks in the flow graph.

As final endpoint of the flow graph, we use a Socket
PDU block of type UDP Server that sends the payload
re-encapsulated in a User Datagram Protocol (UDP)
datagram. A user can then receive the datagrams,
e.g., with netcat and see the payload appearing in
their terminal. Therefore, the flowgraph can be easily
extended with custom applications.

III. INTEROPERABILITY

For all tests and experiments, we used an Ettus USRP
N210 with an XCVR2450 daughterboard as RF frontend,
which allows us to tune to the Industrial Scientific and
Medical (ISM) bands at 2.4 GHz and 5 GHz as well as
to the DSRC band at 5.9 GHz.

As an initial evaluation step, we tested the interoper-
ability of our GNU Radio OFDM receiver for different
technologies. The aim was to verify basic compliance
of our receiver to the IEEE 802.11a/g/p standards –
not yet measuring quantitative performances metrics,
such as Packet Delivery Ratio (PDR). All the mentioned
standards use OFDM at the physical layer but differ in
parameters like carrier frequency and bandwidth.

Table I summarizes the results from all interoperabil-
ity tests using different IEEE 802.11a/g/p transmitters
conducted in our testbed (Figure 4).

NIC Standard Bandwidth

MacBook Pro 802.11a/g 20 MHz Ø
Intel Ultimate-N 6300 802.11a/g 20 MHz Ø
Air Live X.USB 802.11a/g 20 MHz Ø
Cohda MK2 802.11p 10 MHz Ø
Unex DCMA-86P2 802.11a/p 10/20 MHz Ø

Table I
SELECTION OF DEVICES THAT WE USED TO VERIFY THE IMPLEMENTATION

OF THE RECEIVER.

First, we investigated the IEEE 802.11g standard,
which, like IEEE 802.11b, uses the 2.4 GHz ISM band.
It defines 14 channels with a bandwidth of 20 MHz
each [13]. Since IEEE 802.11g is a high data rate ex-
tension to IEEE 802.11b, it is designed to be backward
compatible. For that reason an IEEE 802.11g network
usually uses the same preamble and physical header
as IEEE 802.11b networks. However, an IEEE 802.11g
Network Interface Card (NIC) can also be switched to
a pure OFDM mode, called Extended Rate PHY (ERP)
OFDM in the standard, when all devices in the network
support IEEE 802.11g.

Since our receiver only supports pure OFDM, we
used that mode for our tests in the 2.4 GHz band. In
particular, by setting up an ad hoc network between
a MacBook Pro and a laptop with an Intel Centrino
Ultimate-N 6300 WiFi card, we were able to verify
that all frames were decoded correctly by the SDR.
More precisely, we overhear all kinds of frames in
that network, ranging from management frames (i.e.,
beacons), data frames, and control frames, like an RTS.

As stated in Section II, a current limitation of the
receiver is that the frame detection block pipes a fixed
number of samples into the rest of the flow graph. For
that reason, we miss most of the CTS frames as the
receiver is still synced on the corresponding RTS that
precedes the CTS frame.

In a second experiment, still using the same devices,
we investigated the compatibility with IEEE 802.11a
networks. IEEE 802.11a networks also have a channel
bandwidth of 20 MHz and work exactly like IEEE
802.11g networks in ERP mode, but at 5 GHz. We
executed the same test as for 2.4 MHz and, again, were
able decode all radio packets we captured.

As stated in Section II, we support BPSK and QPSK
modulation, each with coding rate 1/2 and 3/4, leading
to four modulation and coding schemes. We were able
to verify that all four currently supported encoding
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schemes work.
We were also able to verify that the frame detection

blocks of the receiver are able to keep up with a sample
rate of 20 Msps, as we did not experience any overruns
of the input buffer during the tests. Thus, we can
conclude that the basic decoding algorithm works,
works fast enough, and is implemented correctly.

A final experiment has been conducted in order to
assess the compatibility with IEEE 802.11p. The IEEE
802.11p DSRC standard is a version of the IEEE 802.11
standard designed for Inter-Vehicle Communication
(IVC) [14], [15]. It is based on an OFDM physical
layer operating in the dedicated 5.9 GHz frequency
band, which has been specifically reserved for vehicular
communications. Essentially, it is based on IEEE
802.11a with slightly changed timings to cope with
Doppler effects, the channel bandwidth having been
reduced to 10 MHz, halving all bitrates, now ranging
from 3 Mbit/s to 27 Mbit/s.

To perform the IEEE 802.11p test, we used two
different DSRC prototype devices. The first device
is a Cohda Wireless MK24, an integrated IEEE 802.11p
/ IEEE 1609 DSRC/WAVE solution. It is intended to
operate as an On Board Unit (OBU) or as a stand-
alone Roadside Unit (RSU). The MK2 is the basis for
major field operational tests in USA, Australia, Germany,
France, and Korea. The device is highly customizable,
in particular it is possible to set any kind of wireless
parameter, including the channel, transmit power, as
well as the modulation and coding scheme.

The second type of device is a Unex DCMA-86P2 Mini
PCI card, which is based on an Atheros IEEE 802.11a
chip set and implements only the physical layer of
IEEE 802.11p. These cards have been successfully used
by many of the Grand Cooperative Driving Challenge
(GCDC)5 participants. Like other WiFi cards, the Mini
PCI NICs can be installed in off-the-shelf laptops. All
layers above the physical layer are provided by the
Linux kernel and user space utilities, which we slightly
adapted to support IEEE 1609 WAVE.

In order to assess compatibility between our SDR
solution and the mentioned devices, we transmitted
IEEE 802.11p frames from both devices. We were able
to verify that frame decoding was successful in all
experiments, showing that the GNU radio receiver
is also compatible to IEEE 802.11p networks with a
channel bandwidth of 10 MHz.

4http://www.cohdawireless.com/
5http://www.gcdc.net/

Component Type

CPU Intel Core i7-2600 CPU 3.40GHz
NIC RTL-8169 Gigabit Ethernet
Operating System Ubuntu 12.04 LTS, 64 bit
GNU Radio Version 3.6.4
SDR Ettus Research N210 revision 4
Daughterboard XVCR2450
Antenna VERT2450 (3 dBi)

Table II
OVERVIEW OF THE MOST IMPORTANT COMPONENTS OF OUR TEST SYSTEM.

IV. PERFORMANCE MEASUREMENTS

In a second evaluation step, we investigated the
performance of the receiver quantitatively by means
of PDR curves for different modulation and coding
schemes. Information on the most important hard-
and software components of our test system is listed
in Table II. The tests were performed by sending
frames at a rate of 5 packets per second from IEEE
802.11a/g/p devices to our GNU Radio OFDM receiver
using the Ettus USRP N210. The packet size was 63 B,
consisting of 30 B MAC header including 4 B Frame
Check Sequence (FCS), 8 B IEEE 802.2 Logical Link
Control (LLC), and 25 B of data payload.

At the receiver, we logged the number of successfully
decoded frames. If a frame was decoded correctly was
decided based on the 4 B FCS, which is part of the
MAC Protocol Data Unit (PDU).

As the experiments were carried out in our office
environment and, thus, space was limited, we had to
insert a 30 dB attenuator before the transmit antenna
in order to decrease the signal power and to actually
experience packet loss. The distance between the
antennas was approximately 6 m. We performed
measurements for both IEEE 802.11a networks and
IEEE 802.11p networks.

For the IEEE 802.11a/g measurements with a band-
width of 20 MHz, we decided to avoid the 2.4 GHz band
due to the high amount of interference sources, which
could invalidate the results. Instead, we performed
all measurements on the 5 GHz ISM band, which is
less crowded compared to the 2.4 GHz band. The only
wireless card in the lab that actually supports packet
injection in the 5 GHz band using the default Linux
driver is the aforementioned Unex WiFi card, which,
to the best of our knowledge, cannot be forced to
use an arbitrary modulation and coding scheme. For
that reason, we had to stick to the lowest MCS, i.e.,
BPSK with a coding rate of 1/2, resulting in a bitrate
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Figure 5. Packet delivery ratio of IEEE 802.11a packets, sent
from a Unex device. The packet size is 95 B, all packets are BPSK
modulated with coding rate R=1/2.

of 6 Mbit/s.
At the transmitter we varied the transmission power

from 0 dBm to 18 dBm in steps of 1 dBm.
Furthermore, we also started a COTS WiFi receiver

and logged the overheard packets, in order to compare
the performance of our implementation with consumer
hardware. As COTS device, we used an Air Live X.USB
dongle since the device has easy to access antenna
connectors. The average PDR of 200 measurement
runs, together with the 95 % confidence intervals are
depicted in Figure 5. Note that in contrast to typical
PDR curves we plot transmission power on the X-axis
and not the Signal to Noise Ratio (SNR). This stems
from the fact that the receiver does not log any SNR
values and thus, the values on the X-axis are not to be
interpreted as absolute, but relative. Furthermore, the
relative power levels between both receiving devices
should not deviate much, as the antenna setup is the
same.

The results show that the performance of the re-
ceiver is comparable to consumer grade devices. It is
especially worth noting that the PDR curve approaches
one for higher transmission powers and, thus, we can
conclude that we do not introduce any systematic
errors in the receive chain. Furthermore, also the
power interval in which the PDR curve of the SDR
rises matches the interval of the COTS device very
well.

For the IEEE 802.11p measurements with a band-
width of 10 MHz, we used the Cohda MK2 devices,
since, in contrast to the Unex cards, they allow us to
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Figure 6. Packet delivery ratio of IEEE 802.11p packets, sent from
a MK2 from Cohda Wireless. The packet size is 95 B.

set all MCSs that the IEEE 802.11p standard mandates.
In our measurements we made use of BPSK and
QPSK modulation, each with coding rates 1/2 and 3/4,
resulting in four different MCSs. We did not employ
the higher order modulations, where the magnitude of
the subcarriers encodes information, since the receiver
is currently limited to Phase Shift Keying (PSK) due to
the lack of implementations of sophisticated channel
estimation algorithms.

Since IEEE 802.11p operates on its own, dedicated
frequency band at around 5.9 GHz, we do not assume
that there are any considerable interference sources.
As in the previous measurements we varied the trans-
mission power between 18 values, spaced 1 dBm apart.
The results of 30 measurement runs and the 95 %
confidence intervals are shown in Figure 6. We can see
that all four employed encodings are supported and
the SDR approaches a PDR of 1 for higher transmission
powers. Furthermore, the results are reasonable in the
sense that higher bitrates suffer from higher packet loss
as expected.

V. CONCLUSION

We presented an IEEE 802.11a/g/p receiver for GNU
Radio and gave an overview of its structure and mode
of operation. This is, to the best of our knowledge,
the first GNU Radio receiver supporting Orthogonal
Frequency Division Multiplexing (OFDM) at channel
bandwidths of up to 20 MHz. The receiver is using the
Ettus USRP N210 Software Defined Radio (SDR) and
does not require any change to the firmware of the
Field-Programmable Gate Array (FPGA). To check the
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implementation and to verify its correctness, we made
extensive interoperability tests with both consumer
grade IEEE 802.11a/g WiFi cards as well as early IEEE
802.11p devices. Furthermore, we presented Packet
Delivery Ratio (PDR) measurements, which showed
that we can not just decode 20 MHz OFDM signals, but
also that the performance of the receiver is reasonable.
To make our work accessible to the community, we
release the receiver under the GPLv3. This way, our
GNU Radio OFDM receiver can serve as a basis for
further experimentation, measurements, and research
on signal processing algorithms. This also allows for
reproducibility of conceptual studies and experiments,
and all blocks of the receiver can be analyzed in more
detail by fellow researchers.
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