Demo: Decoding IEEE 802.11a/g/p OFDM in Software
using GNU Radio

Bastian Bloessl", Michele Segata*, Christoph Sommer” and Falko Dressler

“Institute of Computer Science, University of Innsbruck, Austria
"Dept. of Information Engineering and Computer Science, University of Trento, Italy

{bloessl,segata,sommer,dressler}@ccs-labs.org

ABSTRACT

We just released an Open Source receiver that is able to
decode IEEE 802.11a/g/p Orthogonal Frequency Division
Multiplexing (OFDM) frames in software. This is the first
Software Defined Radio (SDR) based OFDM receiver sup-
porting channel bandwidths up to 20 MHz that is not relying
on additional FPGA code. Our receiver comprises all lay-
ers from the physical up to decoding the MAC packet and
extracting the payload of IEEE 802.11a/g/p frames. In our
demonstration, visitors can interact live with the receiver
while it is decoding frames that are sent over the air. The
impact of moving the antennas and changing the settings
are displayed live in time and frequency domain. Further-
more, the decoded frames are fed to Wireshark where the
WiFi traffic can be further investigated. It is possible to
access and visualize the data in every decoding step from the
raw samples, the autocorrelation used for frame detection,
the subcarriers before and after equalization, up to the de-
coded MAC packets. The receiver is completely Open Source
and represents one step towards experimental research with
SDRs.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless communication; C.4.3
[Performance of Systems]: Measurement Techniques

Keywords
IEEE 802.11a/g/p, OFDM, Receiver

1. INTRODUCTION

Given the wide range of applications from IEEE 802.11
a/g/p to WIMAX and to LTE Advanced, Orthogonal Fre-
quency Division Multiplexing (OFDM) gained a lot of atten-
tion in the wireless networking community both in industry
and in academia. There are many new algorithms that have

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

MobiCom’13, September 30—October 4, Miami, FL, USA.

ACM 978-1-4503-1999-7/13/09.

http://dx.doi.org/10.1145/2500423.2505300.

159

Overview of the demonstration setup.

Figure 1:
While the GNU Radio receiver is decoding WiFi
frames, visitors can interact with the setup by grab-
bing one of the dipole antennas, move them around,
and watch the impact live on the graphical outputs.

been proposed for frame detection, frequency offset correc-
tion, and channel estimation [2,4,7]. Furthermore, OFDM
and its applicability in different scenarios and channels has
been studied analytically and by means of simulation [4,5].

Yet, the possibility to conduct experimental research in
this field is extremely limited. In particular, we’d like to
mention the custom radio prototypes [9], which are usually
based on Field-Programmable Gate Arrays (FPGAs), i.e.,
rather complex and inflexible.

Even though this approach offers high performance, in-
vestigations typically have to focus on small parts of the
receive chain, as an implementation of the complete trans-
ceiver, together with the design of the hardware platform,
incurs substantial effort. Furthermore, the code for custom
devices can neither be reused nor verified, nor can results be
reproduced by other researchers.

Matt Ettus, the developer of the USRP series of devices,
supplies an initial GNU Radio OFDM receiver using maxi-
mum likelihood estimation [8] and pseudonoise (PN) sequence
correlation [6] that did, however, not provide the required
bandwidth for WiFi.

To overcome current limitations, we developed a complete
OFDM receiver based on GNU Radio and fitted for opera-
tion on an Ettus USRP N210. This is, to the best of our
knowledge, the first prototype of such a Software Defined Ra-

GNU Radio Companion
File Edit View Build Help

Num. Threads: 1

OFDM Decode Signal
Debug: Disable

OFDM Equalize Symbols
Debug: Disable

— v IR N) I PINTI
DEEX @ A TA8 9 ¢ @K 0 &<
Frame Detection
Delay
Delay: 16
Complex Conjugate Decimating FIR Filter
UHD: USRP Source N
Samp Rate (Sps): 20M Decimation: 1
y Taps: [1]*windo ivi
Cho: Center Freq (Hz): 5.22G raps: [1]*window_size — Divide |5}
Cho: Gain (dB): 30 »{i|
Decimating FIR Filter
Complex to Mag~2 [out] in 1
Taps: [1]*window_size
FFT

FFT Size: 64 Delay OFDM Sync Short

Forward/Reverse: Forward Stream to Vector OFDM Sync Long Delay: 240 N Y"‘I o .

Window: Num Items: 64 Debug: Disable Debug: Disable S

bt 800m
Shift: Yes

Frame Decoding

OFDM Decode MAC
Debug: Disable

Max Samples: 5.2k
Min Plateau: 2

Socket PDU
Type: UDP Server
Host:

Port: 12345
MTU: 10k

OFDM Parse MAC
Debug: Enable

Figure 2: Overview of the blocks comprising the OFDM receiver in GNU Radio Companion.

dio (SDR) based OFDM receiver supporting all typical WiFi
variants and channel bandwidths up to 20 MHz. Its counter
part, the corresponding GNU Radio-based WiFi transmitter,
is also already published by Fuxjager et al. [3].

2. OUR GNU Radio OFDM RECEIVER

As illustrated in Figure 2 the structure of the OFDM
receiver is completely exposed to GNU Radio Companion, a
graphical tool to setup and configure signal processing flow
graphs. The receiver is divided into two functional parts:
The first part, depicted in the top half, is responsible for
frame detection. The second part, shown in the bottom half,
is responsible for decoding the frame. More technical details
on the implementation can be found in [1].

We already performed several interoperability tests and
verified that the receiver is compatible with off-the-shelf
hardware. Table 1 summarizes the results from interoper-
ability tests using different IEEE 802.11a/g/p transmitters
conducted in our testbed.

The objective of this demo is to highlight the very straight-
forward use of the OFDM receiver. In our opinion, the usage
is eased by the modularity of the receiver where each of
the functional blocks depicted in Figure 2 is responsible for

NIC Standard Bandwidth

MacBook Pro 802.11a/g 20 MHz v
Intel Ultimate-N 6300 802.11a/g 20 MHz v
Air Live X.USB 802.11a/g 20 MHz v
Cohda MK2 802.11p 10 MHz v
Unex DCMA-86P2 802.11a/p 10/20MHz V'

Table 1: Selection of WiFi and IEEE 802.11p devices
we verified to be interoperable with the receiver.

160

a very specific task. Furthermore, this modularity also of-
fers the possibility to compare different receive algorithm by
reimplementing one block with an alternate algorithm and
compare the alternative implementations directly by means
of simulations with captured input traces or with over the air
measurements. Finally, given the possibility to reconfigure
the receiver live while it is running, one can also get a feeling
for how different parameters impact the performance of the
receiver.

3. DEMONSTRATION SETUP

The setup of the demo is depicted in Figure 1. We can
see an Ettus USRP N210 connected to a desktop PC. The
second device, which acts as sender, uses an off-the-shelf
IEEE 802.11a/g/p Unex DCMA-86P2 WiFi card.

In order to demonstrate the capabilities of the OFDM
receiver, we extended it with various graphical outputs that
visualize every step of the decoding process. More precisely,
we plot the raw complex base band signal as acquired from
the SDR in time domain on the top right position in Figure 3.
This plot shows the raw input data the receiver is on which
the receiver is operating on.

Furthermore, we can visualize the autocorrelation of the
incoming sample stream. The autocorrelation of the input
samples is relevant for the receiver since it is used to recog-
nize the repeating pattern of the short preamble, which is
used by the frame detection algorithm to trigger subsequent
decoding operations. This visual output is particularly help-
ful to find a robust configuration that offers a good trade-off
between missing frames and triggering the decoding process
just by chance. Even though papers propose certain numeric
thresholds for these algorithms we found this indeed helpful,
since according to our experience with real hardware and its
imperfections these thresholds do not always work too well.

Moving into the frequency domain, we show a constel-
lation plot of the subcarrier symbols after compensation

of channel induced phase rotations. A typical screenshot
of such a constellation plot is depicted in Figure 3. The
QPSK-modulated symbols and the deviation from the ideal
positions can clearly be seen. This plot supports an intuitive
estimation of receiver performance, channel quality, and bit
error rates.

While the constellation plot shows that we manage to
equalize the subcarriers reasonably well, we still did not
show that we manage to decode the actual payload. For that
reason, we output all frames in the PCAP format, which is
the de-facto standard for packet capturing and is understood
by all network monitoring software. Following Linux, we
prepend each frame with a Radiotap header!, which allows
us to annotate frames with further metadata like encoding,
bandwidth, channel, and so on. With the help of a Linux
pipe, we connect Wireshark directly to the receiver and are
able to monitor the traffic live.

In addition to that, we implemented the required blocks
to connect the receiver with the Linux network stack. This
is done by removing the WiFi MAC header and replacing it
with an Ethernet header and feeding the decoded packet into
a TUN/TAP interface.? Note that one could also capture
packets from that virtual interface, but without a Radiotap
header we would lose the possibility to annotate frames with
metadata.

On the sending side we use a MiniPC built using standard
PC components, which is additionally equipped with a Unex
DCMA-86P2 WiFi card. This card is based on an Atheros
chipset and with minor modifications of the Linux kernel
(i-e., removing regulatory domain restrictions), we can use
this card to send IEEE 802.11a/g/p frames. More precisely,
we can set the channel bandwidth to 10 MHz and 20 MHz
and also utilize frequencies at around 5.9 GHz that are dedi-
cated to Intelligent Transportation System (ITS). By setting
up static routing and ARP entries on the MiniPC, we can
establish a unidirectional communication between the WiFi
card and the SDR.

In order to make the demo more interactive for visitors, we
connect two large dipole antennas with a pretty long cable to
both devices. This way, visitors can grab the antennas and
move them around, while watching the impact on the receiver.
The constellation plot of the symbols on the different carriers
shows very clearly the impact of different antenna placements.

4. REQUIREMENTS FOR THE DEMO

Our equipment consists of a MiniPC from which we send
the WiFi frames and a desktop PC where the OFDM re-
ceiver is running on. In order to provide the visitors a clear
presentation of the live graphs, we connect a screen or a
small projector to the desktop PC. In total, we need 4 power
plugs (2 PCs, SDR and screen). We do not require much
space, a normal table is large enough for the setup. It would
be nice if we could pin a poster beside the booth, as this aids
to give more detailed explanations of the receiver structure.

Accompanying this demo paper, we made a video that
shows the demonstration setup and in particular how visitors
can interact. The video, a list of related publications, and
all software can be found on our website.?

"http://www.radiotap.org

“https://www.kernel.org/doc/Documentation/
networking/tuntap.txt

3http://www.ccs-labs.org/software/gr-ieee802-11/

161

File Edit View Go Capture Analyze Staistics Telephony Tools Internals Help
LX) 8 Q«
Filter: ~ | Expression.

No. Time Protocol _ Length info o
5261 111.556726 e 73, fund
5262 111.571001 e 73, fund

Scope Plot

v| el

b Frane 5263: 73 bytes on wire (584 bits), 73 bytes captured (584 bits)
iy

Broadcast (Ff:ff:ff:ff:ff:ff)
23:23:23:23:23:23 (23:23:23:23:23:23) o3
t(FFFfAfo A TR1T)

[}
079

000 60 00 11 00 Ge 05 00 60 00 18 b2 00 00 00 2a 17 n . 3
B010 6188 00 00 DO ff ff ff ff ff ff 23 23 23 23 23 L
8020 23 ff ff ff ff ff ff fo fe 20 60 aa aa 03 00 G0 #.....
0030 60 88 b 48 65 6C 6C 67 20 40 6f 62 69 43 6T 60 ...Hel
bod0 21 21 21 2 e i

che

Figure 3: Screenshot of the live visualizations while
the receiver is running: Packets in Wireshark (left),
time domain signal (right), and constellation plot of
(here) QPSK-modulated symbols (bottom right).

5. REFERENCES

[1] B. Bloessl, M. Segata, C. Sommer, and F. Dressler. An
IEEE 802.11a/g/p OFDM Receiver for GNU Radio. In
ACM SIGCOMM 2013, 2nd ACM SIGCOMM Workshop
of Software Radio Implementation Forum (SRIF 2013),
Hong Kong, China, August 2013. ACM.

L. Chia-Horng. On the design of OFDM signal detection
algorithms for hardware implementation. In /EEE
GLOBECOM 2003, pages 596-599, San Francisco, CA,
December 2003. IEEE.

P. Fuxjager, A. Costantini, D. Valerio, P. Castiglione,
G. Zacheo, T. Zemen, and F. Ricciato. IEEE 802.11p
Transmission Using GNURadio. In 6th Karlsruhe
Workshop on Software Radios (WSR), pages 1-4,
Karlsruhe, Germany, March 2010.

T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger.
Practical Estimation of Rapidly Varying Channels for
OFDM Systems. IEEE Transactions on
Communications, 59(11):3040-3048, November 2011.
M. Morelli and U. Mengali. A Comparison of
Pilot-Aided Channel Estimation Methods for OFDM
Systems. IEEE Transactions on Signal Processing,
49(12):3065-3073, December 2001.

T. Schmidl and D. Cox. Robust frequency and timing
synchronization for OFDM. IEEE Transactions on
Communications, 45(12):1613-1621, 1997.

E. Sourour, H. El-Ghoroury, and D. McNeill. Frequency
Offset Estimation and Correction in the IEEE 802.11a
WLAN. In IEEE VTC2004-Fall, pages 4923-4927, Los
Angeles, CA, September 2004. IEEE.

J.-J. van de Beek, M. Sandell, and P. O. Borjesson. ML
estimation of time and frequency offset in OFDM
systems. IEEE Transactions on Signal Processing,
45(7):1800-1805, 1997.

A. van Zelst and T. C. W. Schenk. Implementation of a
MIMO OFDM-based wireless LAN system. IEEE
Transactions on Signal Processing, 52(2):483-494,
Feburary 2004.

2

4

[5

6

(8]

(9]

