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Abstract—Accurate motion tracking in snow avalanche envi-
ronments remains challenging. Recently, ultra-wideband (UWB)-
based ranging systems have been shown to offer centimeter-level
accuracy under ideal conditions. However, their performance
degrades significantly in dynamic, obstructed snow to multipath
and signal attenuation. This can be compensated using multisensor
fusion based on inertial measurement unit (IMU) data. To address
these limitations, we propose a bidirectional LSTM (Bi-LSTM)
network for robust 3D localization. The proposed model lever-
ages time-synchronized sliding windows to learn spatiotemporal
correlations between high-frequency IMU dynamics and low-
frequency UWB updates. Unlike traditional Kalman filters, which
degrade under nonlinear motion and intermittent UWB outages,
the Bi-LSTM model adaptively learns to weight each sensor
modality while preserving long-term motion context. We evaluate
our approach using real-world field data, using a RTK-GNSS
as ground truth for validation. The proposed method achieves a
3D localization root mean square error of 0.31 m, representing
a 68 % improvement over adaptive Kalman filter fusion and a
72 % gain over UWB-only localization. These results highlight
the efficacy of deep recurrent sensor fusion for localization in
dynamic, extreme environments.

Index Terms—Localization, tracking, sensor fusion, bidirec-
tional LSTM, ultra-wideband (UWB), inertial measurement unit
(IMU), Kalman filter, deep learning

I. INTRODUCTION

Localization in outdoor environments cannot be reliably
achieved using a single positioning sensor, particularly under
dynamic conditions. Although global navigation satellite system
(GNSS) enables globally consistent real-time positioning, its ac-
curacy and reliability often deteriorate in dynamic or obstructed
environments [1]. This limitation becomes especially critical
in extreme scenarios like snow avalanches [2], where rugged
terrain, unpredictable motion, signal attenuation, and deep snow
layers pose additional challenges. The challenge becomes even
more severe in GNSS-denied environments, where satellite
signals are blocked, rendering real-time localization infeasible.

The AvaRange project addresses these challenges by de-
veloping a distributed, particle-based tracking system aimed
to investigate internal avalanche flow dynamics [3], [4]. This
system employs ultra-wideband (UWB) ranging to localize
mobile tags embedded within the snowpack in real-time. The
idea is to deploy fixed anchors across large alpine regions,
while mobile nodes perform time of flight (ToF) ranging
combined with inertial measurement unit (IMU) samples to
estimate positions. Field experiments conducted near Innsbruck
Nordkettenbahn featuring controlled tests using a cable car to

validate the feasibility of UWB tracking under avalanche-like
conditions. Results as reported in this paper show that UWB-
based ToF-based ranging improves accuracy over standard radio
frequency (RF) techniques such as GNSS. However, robust
3D trilateration requires simultaneous visibility to at least
four anchors, which is often unachievable in complex terrain.
Additionally, localization accuracy suffers with increased
anchor spacing or suboptimal anchor geometry due to geometric
dilution of precision (GDOP).

Findings from the conducted experiments also reveal that,
although GDOP effectively indicates geometric sensitivity
to noise, it does not accurately capture the true quality of
measurements or filtering performance often resulting in overly
conservative error estimates.

In dynamic environments, localization relies primarily on two
methods: geometric methods and fingerprinting methods. Each
offers unique advantages and trade-offs based on environmental
complexity, required accuracy, and computational resources.
Geometric localization techniques, such as trilateration and
triangulation, estimate a target’s position using measurable
physical quantities, such as distances or angles, between the
mobile tag and known anchor points. These methods are
computationally efficient, sensor-agnostic, and well-suited for
real-time applications. However, their performance tends to
degrade in complex environments due to multipath interference
or obstructed line-of-sight (LOS) conditions [5]. In contrast,
fingerprinting techniques rely on a pre-collected database of
signal characteristics such as received signal strength indicator
(RSSI) and channel impulse response (CIR) measured at known
locations during an offline phase. During operation, real-time
measurements are compared against this database to infer the
target’s position. Even though fingerprinting can offer high
accuracy in cluttered or non-line-of-sight (NLOS) environments,
it requires labor-intensive calibration, and frequent retraining,
and is often sensitive to environmental changes [6].

In summary, geometric methods based on ToF techniques
offer strong potential for UWB-based positioning systems;
however, several challenges remain unresolved. These include
poor anchor visibility, environmental variability, signal re-
flections, sensor errors, and the need for costly setup and
tuning. Such problems make traditional positioning systems
less reliable in complex outdoor environments. Many existing
correction methods depend on dense anchor deployments or
computationally intensive post-processing techniques [7]–[10].



As an alternative, researchers have explored inertial navigation
systems (INS), particularly those utilizing IMUs. A typical IMU
includes a three-axis accelerometer and gyrometer, providing
high-rate measurements of acceleration, angular velocity, and
orientation [11]–[13]. Strapdown inertial navigation systems
(SINS) integrate this data to estimate position without requiring
external references. However, accuracy degrades over time due
to sensor errors both deterministic (e.g., bias, scale-factor, axis
misalignment, temperature sensitivity) and stochastic (e.g., drift,
random noise) [14], [15]. While deterministic errors can often
be mitigated through calibration, stochastic errors are inherently
unpredictable, causing cumulative drift.

The complementary characteristics of UWB and IMU
sensors make sensor fusion an effective solution for improv-
ing localization performance. Traditionally, Bayesian filtering
techniques such as the popular Kalman filter (KF) [16],
extended Kalman filter (EKF) [17], unscented Kalman filter
(UKF) [18], and particle filter (PF) [19] have been employed
for fusing heterogeneous sensors. However, these approaches
suffer from limitations including linearization errors, high
computational cost, and suboptimal performance in nonlinear
and non-Gaussian settings [20].

In recent years, deep learning-based fusion methods have
emerged as powerful alternatives, capable of learning complex
nonlinear relationships directly from data. For example, convo-
lutional neural network (CNN)-based architectures have been
used for classifying UWB LOS and NLOS conditions [21],
and hybrid models integrating double extended Kalman filter
(DEKF) with neural networks have demonstrated improved
robustness [22]. Earlier data-driven methods, such as multi-
layer perceptron (MLP) [23] and support vector machines
(SVMs) [24], offered limited compensation for sensor er-
rors. Despite this, these methods could not model long-
term temporal dependencies, which are critical for reliable
navigation during GNSS outages. This gap has been addressed
by recurrent architectures like long short-term memory (LSTM)
networks [25], gated recurrent units (GRUs) [26], [27], and
attention-based models [28], offering strong adaptability in
dynamic environments.

To improve the 3D localization accuracy in avalanche envi-
ronments based on UWB and IMU measurements, this paper
explores both traditional Bayesian filtering and deep learning-
based fusion methods. In particular, a bidirectional LSTM
(Bi-LSTM) model is developed to fuse time-synchronized
IMU accelerometer readings and trilaterated UWB position
estimates. It learns to predict 3D motion increments, which are
integrated over time during inference to reconstruct the full
trajectory, ensuring temporal continuity and coherent motion
estimation. The model processes input data using a sliding
window to capture temporal motion patterns. During training, a
custom weighted mean squared-error (WMSE) loss is applied
to emphasize vertical (z-axis) accuracy, where UWB readings
are typically less reliable, while also encouraging smooth and
physically consistent trajectory predictions. Our proposed Bi-
LSTM model achieves localization accuracy with a 72.2%
improvement over UWB-only trilateration and 68.0% over an

adaptive Kalman filter (AKF) baseline. These results demon-
strate that the proposed deep learning-based fusion approach
significantly outperforms conventional methods, offering a
robust solution for motion tracking in highly dynamic and
unstructured environments such as snow avalanches.

Our main contributions can be summarized as follows:

• We propose a Bi-LSTM model to fuse time-synchronized
IMU accelerometer readings and trilaterated UWB posi-
tion estimates;

• we trained and validated the model based on experimental
data from a measurement campaign in the Austrian Alps;

• and we evaluated the proposed system in comparison with
multiple baselines using a high-precision RTK GNSS
system to provide ground truth.

II. RELATED WORK

A. Radio-based UWB Localization

UWB-based ranging and localization has proven successful
in delivering centimeter-level positioning accuracy. However,
this accuracy is highly dependent on LOS conditions between
the mobile node and the anchors. NLOS signal propagation
and poor anchor geometry commonly referred to as GDOP can
significantly degrade ToF measurements and overall localization
performance [29].

Poulose et al. [30] introduced an UWB-based position
estimator using an EKF for improved indoor localization
in a multi-anchor setup. Their method processes time of
arrival (ToA) data from multiple anchors to address system
nonlinearities and was evaluated using MATLAB simulations
in a 2D environment under both LOS and NLOS conditions.
The results demonstrated that increasing the number of anchors
enhanced accuracy while reducing computational complexity.
Compared to traditional techniques such as linearized least
squares estimation (LLSE), weighted centroid estimation
(WCE), and maximum likelihood estimation (MLE), the EKF-
based approach achieved accuracy within a ±50 cm margin.
However, its use in dynamic scenarios is constrained by its
dependence on predefined noise models, limiting its adaptability
in real-world conditions.

Van Herbruggen et al. [31] proposed two heuristic anchor
selection algorithms for two-way ranging (TWR)-based UWB
indoor positioning systems to improve accuracy and update
rates. The first method selects anchors based on link quality and
GDOP, while the second is a lightweight, real-time algorithm
suitable for deployment on low-power UWB tags. Both methods
have been validated in industrial settings using a Kalman
filter and achieved localization accuracies in the order of
15–20 cm. Although promising, the non-constrained algorithm
requires continuous communication with all anchors and is
computationally intensive, restricting its scalability. Moreover,
both algorithms rely on static link quality metrics and lack
mechanisms to account for motion dynamics or adapt to
temporal changes which is an essential aspect for reliable
localization in dynamic environments.



B. IMU-based and Multisensor Fusion

Multisensor fusion approaches combining IMUs with other
modalities such as vision [32], [33], LiDAR [34], or UWB [35],
[36] have gained popularity for improving localization accu-
racy. Among these, UWB/IMU fusion stands out as a cost-
effective and compact solution capable of maintaining sub-
meter accuracy even under NLOS conditions. However, it is
still susceptible to multipath effects, IMU drift, and sensor
noise [37], [38]. Classical filters such as KF, EKF, and UKF
have been extensively applied [39], [40]; nonetheless, their
reliance on linear models limits usefulness in nonlinear and
non-Gaussian settings.

Hybrid approaches that integrate vision or LiDAR with
UWB/IMU [41], [42] further improve robustness but incur
high computational costs and are sensitive to environmental
factors such as lighting and occlusions. Neurauter et al.
[43] proposed two fusion algorithms using low-cost IMU
gyrometer and magnetometer readings later merged with state-
of-the-art Madgwick’s algorithm for correcting orientation
estimation, and tested on real snow avalanche datasets. The
reliance on magnetometer data adds sensitivity to magnetic
disturbances, thereby limiting its resistance to magnetically
sensitive environments.

C. Learning-based Sensor Fusion Techniques

Data-driven learning models have been proposed to improve
sensor fusion, primarily by modeling error distributions and
confidence estimation. For instance, Tommingas et al. [44]
introduced an extreme gradient boosting (XGBoost)-enhanced
fusion method combining UWB and GNSS to manage indoor-
outdoor transitions by predicting sensor confidence levels.
However, their approach depends on GNSS availability and
hand-crafted features, which limit scalability.

Deep neural networks have demonstrated strong potential
in enhancing localization. For example, CNN-LSTM architec-
tures [45] have been used for NLOS detection and correction,
even though they still suffer from issues like sensor drift
and synchronization challenges. The tightly coupled factor
graph technique [46] models probabilistic sensor relationships
and achieves high accuracy in controlled conditions, yet it is
computationally expensive and sensitive to modeling errors.

Another neural network model, Bi-LSTM has been success-
fully applied in related fields such as human activity recognition
and tracking [47]. Despite its capability to model bidirectional
temporal dependencies and manage complex motion dynamics,
it remains unexplored in the context of UWB/IMU fusion.

D. Proposed Bi-LSTM-based UWB/IMU Fusion

In contrast, this work presents a loosely coupled Bi-LSTM-
based UWB/IMU fusion framework designed for GNSS-denied
and dynamic environments. Instead of relying on GNSS inputs,
hand-crafted filters, or explicit signal classification, our model
learns temporal motion patterns directly from sequential sensor
data. Compared to traditional Bayesian filtering methods, the
neural network approach demonstrates higher accuracy and

adaptability. It generalizes well across diverse and complex real-
world scenarios while maintaining robustness against sensor
drift, noise, GDOP, and NLOS conditions. This makes it
especially suitable for accurate 3D trajectory estimation in
extreme environments.

III. SYSTEM MODEL

The system design combines UWB-based ranging with
inertial sensing, thereby creating a multi-sensor dataset suitable
for both traditional filtering and deep learning-based fusion
techniques. As illustrated in Figure 1, the system follows a
modular pipeline that begins with synchronized data collection
from the nodes and anchors, followed by pre-processing of
the data sets, sensor fusion, and final trajectory evaluation.
The system workflow is divided into four main stages: (1)
experimental setup and field data acquisition, (2) sensor-specific
preprocessing comprising IMU calibration, motion reconstruc-
tion, frame transformation, and UWB-based localization, (3)
multi-sensor fusion using AKF and Bi-LSTM neural networks,
and (4) evaluation using GNSS-based ground truth. Each stage
of the system is described in detail in the following.

A. Experimental Setup and Data Collection

For this work, we have used data collected in a field
experiment in the Austrian Alps [48]. The experimental setup
included an AvaNode mounted to a cable car counterweight.
The cable car of Innsbruck Nordkettenbahn moved along
a potential avalanche path emulating the actual avalanche
scenario. This experiment was designed to emulate avalanche-
relevant motion by tracking a cable car along a controlled,
repeatable trajectory that approximates real avalanche paths.
A sensor payload mounted on the cable car counterweight
captured synchronized measurements from multiple sensor
modalities: an UWB module, an IMU, and a high-precision
RTK GNSS system.

1) AvaNode and AvaAnchors: The experimental system com-
prises two core device types: the AvaNode [49], which serves
as the mobile sensing platform, and multiple AvaAnchors,
statically deployed throughout the test area to facilitate position
estimation [48]. The AvaNode, representing the tracked object,
simulates the motion of a snow particle within an avalanche.
The important sensing components include:

• DW1000 UWB transceiver for ToF-based ranging, inter-
faced with an Adafruit Feather M0 microcontroller. The
DW1000 supports timestamping precision down to 15 ps,
enabling highly accurate distance estimation.

• MPU9250 IMU, consisting of a 3-axis accelerometer and
gyroscope, enclosed within a 3D-printed cube (edge length
100 mm) that aligns the sensor coordinate frame with the
cube’s geometric center.

An Emlid RTK GNSS unit is used for high-accuracy position
ground truth. IMU data was logged at 400 Hz to an onboard
SD card via the Feather M0 microcontroller. In contrast, UWB
ranging was performed at a frequency of 20 Hz. Although the
AvaNode system includes additional components such as GNSS
receivers and a recovery mechanism, only data from the UWB
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Figure 2. Calibrated accelerometer and gyrometer measurements along X-,
Y-, and Z-axes.

and IMU subsystems are utilized in this work for motion
reconstruction and localization analysis. The AvaAnchors,
deployed at six fixed locations along the cable car track, also
use DW1000 UWB transceivers. Their positions were precisely
georeferenced using the real-time kinematic (RTK) GNSS
system, ensuring accurate trilateration. These anchors formed
a wireless mesh WiFi-based network, with at least one anchor
configured as a gateway to manage the network, coordinate
ranging schedules, and relay data to a backend server. This
setup provided a robust framework for capturing high-resolution
motion data under controlled conditions, enabling the evaluation
of sensor fusion methods for 3D trajectory reconstruction in
avalanche-like environments.

B. IMU Calibration and Motion Reconstruction

IMU calibration and motion reconstruction described in this
work is based on the methodology proposed by Neurauter
and Gerstmayr [50] and Winkler et al. [51], which models
sensor errors, computes orientation from angular velocity,
and enables gravity-compensated integration of accelerometer
data. The calibration of IMU sensors is essential to reduce
deterministic measurement errors such that accelerometer
reflects only inertial and gravitational components, while
the gyrometer is correctly tracking angular motion without
introducing systematic drift.

The calibrated inertial measurements are depicted in Figure 2.
The IMU sensor has been mostly subject to translational motion
with less rotational activity. The accelerometer data shows
consistent signals along the X- and Y-axes, while the Z-axis
is dominated by the gravitational component, centered around
−9.81 m/s2, as expected. The gyrometer measurements have
been close to zero across all axes, with minimal fluctuations
which indicate absence of significant rotational motion.

The calibrated IMU data is then evaluated to recover the
3D trajectory of the mobile system using inertial sensor data,
specifically translational acceleration and angular velocity.
Motion reconstruction using IMU data refers to the process
of estimating the full kinematic state (position, velocity,
orientation) of the mobile node by integrating accelerometer
and gyroscope measurements over time. Orientation estimation
from calibrated gyroscope measurements involves computation
of rotation matrices which help mapping vectors from local
frame (body) to global frame of reference. Then, linear motion
is computed by the transformation of calibrated accelerometer



readings to global coordinate frame using rotation matrix,
followed by the integration of calibrated accelerometer signals.
The gravity vector is subtracted to obtain translational accel-
eration, and the resulting global acceleration is numerically
integrated using the explicit Euler method to obtain velocity
and position. The computed gravity-compensated translational
acceleration and motion data form a globally consistent 3D
trajectory, suitable for comparison with external references
such as UWB or GNSS systems.

C. UWB Ranging and Localization

For UWB-based distance estimation, the alternative double-
sided two-way ranging (AltDS-TWR) method is adopted. The
AltDS-TWR method enhances ranging accuracy by exchanging
three messages between the mobile node and anchor, thereby
reducing timing uncertainty and alleviating clock drift without
requiring tight synchronization. This approach is robust to
clock drift and does not require symmetric delays, making it
well-suited for asynchronous systems [52]. The time-of-flight
(Tf ) is calculated as:

Tf =
RaRb −DaDb

2(Ra +Da)
, (1)

where Ra and Rb denote round-trip delays measured at
each device, and Da, Db are the respective known reply
delays. Distances di can be calculated from time-of-flight (Tf )
measurements as:

di = c · Tf , (2)

where c denotes the speed of light.
The position of the mobile node is estimated through

multilateration formulated by non-linear optimization. The
objective is minimization of mean squared error (MSE) between
the measured distances and the Euclidean distances to a set of
fixed anchor nodes. Let ai = (xi, yi, zi) denote the coordinates
of anchor i, and let di represent the corresponding measured
distance. The estimated position p = (x, y, z) is obtained by
solving the following optimization problem:

MSE(p) =
1

N

N∑
i=1

(∥p− ai∥ − di)
2 (3)

where N is the number of anchors providing distance mea-
surements. A minimum of four anchors is required to obtain a
unique solution in three-dimensional space.

Figure 3 compares the UWB-only trajectory with the RTK
GNSS baseline. An increasing deviation of up to 4 m is
observed over time, particularly along the vertical (Down)
axis, where GDOP effects are more significant.

D. Sensor Fusion Using Adaptive Kalman Filter

We used an AKF as our baseline method for fusing data
from UWB and IMU sensors. AKF extends functionality
of a standard KF by dynamic adjustment of measurement
noise model to enhance robustness under varying sensor
noise and uncertainties. AKF uses standard prediction and
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Figure 3. Relative error computed between UWB-only trilaterated positions
and RTK GNSS ground truth along Z-axis.

correction (update) steps to estimate 3D position, velocity, and
acceleration. The state vector can be defined as:

xk =
[
xk yk zk ẋk ẏk żk ẍk ÿk z̈k

]⊤
(4)

Using a constant-acceleration motion model, the prediction
step is given as:

xk|k−1 = Fxk−1|k−1, (5)

Pk|k−1 = FPk−1|k−1F
⊤ +Qk, (6)

where F is the 9 × 9 state transition matrix based on
sampling interval ∆t, and Qk = GQ0G

⊤ is the process
noise covariance. During the update step, when actual sensor
measurements are incorporated, the measurement model can
be defined as:

zk = Hkxk|k−1 + vk, vk ∼ N (0,Rk). (7)

The Kalman gain and state update equations are following:

yk = zk −Hkxk|k−1, (8)

Sk = HkPk|k−1H
⊤
k +Rk, (9)

Kk = Pk|k−1H
⊤
k S

−1
k , (10)

xk|k = xk|k−1 +Kkyk, (11)
Pk|k = (I−KkHk)Pk|k−1. (12)

To address time-varying uncertainties in the dynamic environ-
ments, AKF adaptively updates measurement noise covariance
Rk using the empirical innovation covariance over a sliding
window of size N . Let yi be the innovation vector at time
step i over a fixed window of size N . The sample innovation
covariance is:

Ĉ =
1

N − 1

k∑
i=k−N+1

yiy
⊤
i (13)

We update the measurement noise covariance as:

Rk = Ĉ−HkPk|k−1H
⊤
k (14)

Additionally, the filter applies GDOP-based dynamic scaling to
Rk to account for geometric uncertainty in UWB positioning.
The scaled UWB measurement noise is computed as:

Rscaled
UWB = α(g)2 ·RUWB (15)

where the scaling factor α(g) is a function of the GDOP
value g. The combined approach of using both residual-based
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Figure 4. Architecture of the proposed Bi-LSTM fusion model with three
hidden layers containing 512 neurons each. The model processes sequences
of IMU and UWB data and predicts 3D displacement vectors for trajectory
reconstruction.

adaptation and GDOP-based scaling makes the filter more
reliable when sensor noise increases or anchor placement is
poor. It is especially useful for the vertical Z-axis, where UWB
measurements are often less accurate, because of the limited
height variation in anchor positions.

IV. SENSOR FUSION VIA BI-LSTM NEURAL NETWORK

A. Model Architecture

As an alternative approach to model-based filtering, we
developed a learning-based sensor fusion technique based on
a deep recurrent model using Bi-LSTM. The primary purpose
of the model is to estimate the motion of the system by
understanding the complex temporal relationships between
IMU acceleration measurements and UWB trilaterated position
estimates. In this fusion method, we adopted the frame-
wise prediction strategy in which the model is trained to
predict frame-wise displacement vectors. Here, a frame refers
to a single-time instance incorporating input features that
contain both IMU and UWB data. Each predicted displacement
vector represents the relative positional change between two
consecutive time steps, which can also be referred to as the delta
position ∆pt. Instead of directly predicting absolute positions
between successive time steps, the proposed neural network
focuses on learning the motion patterns specifically, how the
system advances from one time step (or frame) to the next.
The incremental formulation helps the system to generalize
better in terms of understanding motion patterns and also aids
in eradicating long-term drifts.

The model takes input samples in the form of a fixed-length
sliding window of 200 consecutive time steps. For each time
step, the input vector contains six features from the input data,
which are three-axis accelerometer readings and also three-axis
UWB positions. This combination forms an input sequence of
[200× 6] shape where temporal continuity and sensor fusion
occur simultaneously. The input data is divided into three
categories: 70% for training, 15% for validation, and 15%
for testing. During the training phase, the model sequentially
predicts the displacement vectors ∆pt ∈ R3 from the input
data at every time step in the sliding window, that is called the
per-frame delta predictions. In the inference phase (testing),

cumulative integration of these predicted displacement vectors
generates a full 3D trajectory.

The bidirectional nature of the model allows processing of
the input sequences in both forward and backward directions.
The proposed model is composed of three stacked Bi-LSTM
layers, each layer with a hidden dimension of 512 units
per direction (forward and backward). To convert sequential
features generated by stacked Bi-LSTM layers from the input
data, the model uses a fully connected (dense) layer. The
fully connected layer linearly maps the final hidden state at
each time step to a 3D displacement vector. The bidirectional
functionality helps the model to capture both past and future
context for each timestep in the input window, rendering it
particularly beneficial for modeling complex motion patterns
in the sequential data. The detailed layer-wise architecture of
the proposed Bi-LSTM network is depicted in Figure 4.

The training of the model is performed on the mini-batches
of size 64 and optimized using adaptive moment estimation
(Adam) optimizer with its standard learning rate of 0.001 to
ensure stable and fast convergence. The loss function is based
on a WMSE emphasizing prediction accuracy along the Z-axis.
This weighting strategy is motivated by the notion of noise
dominance across the vertical (Down) axis. The loss for one
sample can be expressed as:

loss(x, y, z) = wx(x̂− x)2 +wy(ŷ− y)2 +wz(ẑ − z)2 (16)

where, x̂, ŷ, ẑ symbolizes the predicted delta positions, and
x, y, z are the corresponding ground truth values. The weights
wx, wy, wz are adjustable according to the axis-specific im-
portance. To formulate this loss over a batch of size N , the
averaged WMSE L can be calculated as:

L =
1

N

N∑
n=1

[
wx(x̂n − xn)

2 + wy(ŷn − yn)
2 + wz(ẑn − zn)

2
]

(17)
The corresponding hyperparameters used during training are
summarized in Table I. The model configuration was empiri-
cally optimized for the best performance. The reconstructed
3D trajectory from the Bi-LSTM model was obtained by
integrating predicted position deltas over time and subsequently
benchmarked against baseline methods and ground truth
measurements.

V. PERFORMANCE EVALUATION

In the following, we evaluate the localization accuracy
of the proposed Bi-LSTM sensor fusion model compared
with classical approaches, including UWB-only positioning,
IMU-only dead reckoning, and an AKF. Results are assessed
using multiple metrics: root mean square error (RMSE), mean
absolute error (MAE), maximum error, axis-wise decompo-
sition, and statistical error distributions. Each evaluation is
compared to the RTK GNSS ground truth. UWB-only serves
as the baseline, IMU-only captures uncorrected inertial drift,
AKF represents traditional model-based fusion, and Bi-LSTM
embodies the learning-based method trained to reduce spatial



Table I
BI-LSTM MODEL HYPERPARAMETERS

Hyperparameter Value Description

Input Features 6 3-axis IMU + 3-axis UWB
Output Size 3 ∆x, ∆y, ∆z prediction
Hidden Size 512 Per direction (Bi-LSTM)
Number of Layers 3 Stacked Bi-LSTM layers
Bidirectional Yes Forward and backward

temporal modeling
Window Size 200 Length of input sequence
Batch Size 64 Selected via grid search
Learning Rate 1e-3 Selected via grid search
Optimizer Adam Adaptive gradient descent
Loss Function Weighted MSE Higher weight on Z-axis
Early Stopping 30 epochs Patience based on val. loss
Data Split 70/15/15 Train/Validation/Test

localization error. Relevant configuration data is summarized
in Table I.

A. Training Convergence and Stability

Figure 5 presents the training evolution of the proposed
Bi-LSTM-based sensor fusion model. The top subplot shows
the validation RMSE across training epochs, and the bottom
subplot displays both the training and validation loss curves
of WMSE on a logarithmic scale. The validation RMSE
exhibits a rapid decline during the initial epochs, reflecting
efficient early learning. Over time, minor fluctuations are
observed in the later epochs, potentially caused by sensor
noise and non-uniform characteristics in the validation data.
Nevertheless, the overall trend remains stable with no signs of
overfitting or divergence. The close alignment of the training
and validation loss curves throughout the training further
strengthens the model’s generalization capability. The training
phase is keeping track of the validation loss with an early
stopping mechanism that stops training when no significant
improvement occurs in the validation performance after a
minimum of 30 epochs. Rather than training for all epochs,
this method enhances computational efficiency by ceasing the
training earlier, thereby avoiding overfitting and unnecessary
performance degradation. In this way, the network produces per-
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Figure 5. Bi-LSTM model training: validation RMSE (top), training and
validation loss (bottom).
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bars represent variance for each method.
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step delta displacement vectors ∆pt, which are incrementally
accumulated to reconstruct the complete 3D trajectory.

While we have optimized our model using WMSE loss func-
tion, however, RMSE validation is preferred for visualization
and reporting as it offers a direct measure of spatial accuracy
in physical units. The resulting curves demonstrate the model’s
generalization ability through stable convergence highlighting
the robustness of the proposed model.

B. Overall Localization Accuracy

We first evaluate the accuracy of the location estimations with
respect to ground truth using the Euclidean norm based RMSE
(cf. Figure 6). As can be seen, the IMU-only approach leads to
very high measurement errors. This effect is well-understood
due to accumulating error over time. The UWB-only approach
is better but still leads to high errors. The AKF-based fusion
shows moderate reduction of RMSE. The proposed Bi-LSTM-
based approach effectively decreases the RMSE to about 0.31 m,
outperforming all other methods.

To further investigate positioning accuracy and directional
performance, Figure 7 presents the RMSE for each spatial axis.
In order to quantify the influence of noise, we particularly
concentrated on the Z-axis since errors are more prominent
in Down axis. For UWB, the calculated RMSE of 1.53 m is
decreased by AKF to 1.33 m. However, our Bi-LSTM deep
neural network achieves the best performance of 0.11 m, thus
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enabling more precise elevation correction. This eventually
proves that the trajectory estimation from the predicted delta
positions has certainly closer alignment to the ground truth. Our
Bi-LSTM approach helps to reduce both systematic drift in the
IMU measurements and noisy fluctuations in UWB positions
by learning context-aware temporal patterns.

C. Statistical Error Distribution

To further highlight the statistical error distribution, Figure 8
shows a histogram of localization errors. The IMU-only errors
are the largest, even exceeding 10 m with a wide distribution
due to accumulated integration drift in the measured data. The
UWB-only errors extend beyond 4 m and concentrate around
2 m. The AKF reduces the error and has a slightly squeezed
error distribution (but with peaks also reaching 4 m). In contrast,
the Bi-LSTM model produces sharply concentrated errors with
most errors remaining well below 0.5 m.

VI. CONCLUSION

In this paper, we presented a Bi-LSTM-based heterogeneous
sensor fusion system for accurate 3D localization in dynamic
and obstructed environments. The proposed model learns the
spatiotemporal relationships between high-frequency IMU data
and sparse UWB measurements to capture motion dynamics
and handle sensor degradation or dropouts. The Bi-LSTM
fusion model achieves significant improvements in localization
accuracy – we achieved a 68 % reduction in RMSE on real-
world field data recorded at the avalanche test site. We tuned
the system to focus most notably on the vertical Z-axis by
learning adaptive error patterns that account for modality-
specific noise and temporal dynamics. In contrast to traditional
filtering approaches with fixed noise assumptions, this data-
driven method offers greater flexibility and resilience in diverse
sensing conditions. These results highlight the effectiveness
of deep recurrent fusion models in safety-critical applications.
The proposed model is currently deployed for offline post-
processing, where inference latency is not critical. Future work
will explore real-time deployment and the scalability of the
system to support collaborative operation across several sensing
nodes in shared or distributed environments.
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