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Abstract—Molecular Communication (MC) has long been en-
visioned to enable an Internet of Bio-Nano Things (IoBNT) with
medical applications, where nanomachines within the human
body conduct monitoring, diagnosis, and therapy at micro-
and nanoscale levels. MC involves information transfer via
molecules and is supported by well-established theoretical mod-
els. However, practically achieving reliable, energy-efficient, and
bio-compatible communication at these scales still remains a
challenge. Air-Based Molecular Communication (ABMC) is a
type of MC that operates over larger, meter-scale distances and
extends even outside the human body. Therefore, devices and
techniques to realize ABMC are readily accessible, and associated
use cases can be very promising in the near future. Exhaled
breath analysis has previously been proposed. It provides a non-
invasive approach for health monitoring, leveraging existing com-
mercial sensor technologies and reducing deployment barriers.
The breath contains a diverse range of molecules and particles
that serve as biomarkers linked to various physiological and
pathological conditions. The plethora of proven methods, models,
and optimization approaches in MC enable macroscale breath
analysis, treating humans as the transmitter, the breath as the
information carrier, and macroscale sensors as the receiver. Using
ABMC to interface with the inherent dynamic networks of cells,
tissues, and organs could create a novel Internet of Bio Things
(IoBT), a preliminary macroscale stage of the [oBNT. This survey
extensively reviews exhaled breath modeling and analysis through
the lens of MC, offering insights into theoretical frameworks and
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practical implementations from ABMC, bringing the IoBT a step
closer to real-world use.

Index Terms—Diagnostics, Exhaled Breath, Internet of Bio-
Things, Medicine, Molecular Communication.

I. INTRODUCTION

HE exhaled breath is a complex mixture of various com-
T ponents, including gases, such as carbon dioxide (COs),
oxygen, nitrogen, and Volatile Organic Compounds (VOCs),
or particles, such as dust or pollen, cf. Fig. 1, that can provide
information about an individual’s health state. Analyzing the
exhaled breath usually takes place outside the human body,
making it suitable for non-invasive analysis approaches and
macroscale applications in advanced healthcare and medical
environments, for example, detecting various diseases such
as lung cancer, asthma, and Chronic Obstructive Pulmonary
Disease (COPD), or monitoring the physiological and patho-
logical states [1]. This non-invasive analysis of the exhaled
breath can be seen as a form of chemical communication,
where the chemical signals in the breath, including sneezing
and coughing, are used to transmit information about an
individual’s health state. In fact, this method of interpretation is
closely related to the idea of Molecular Communication (MC).
MC represents an alternative communication paradigm, where
chemical signals are used to transmit information via various
possible Information Molecules (IMs). Inspired by our living
environment, researchers try to (partially) engineer naturally
occurring MC processes for achieving synthetic MC links and
networks [2]. These engineered links and networks have been
proposed to develop new diagnostic tools and medical devices
that utilize the chemical signals in the exhaled breath to detect
and monitor various diseases [3].

This survey provides a comprehensive analysis of existing
research on human exhaled breath from the perspective of
MC, aiming to bridge the gap between related yet previously
isolated research communities by establishing common ter-

Nitrogen (79%)
Oxygen (16%)
CO, (4%)

0 20 40 60 80 100
Cumulative Percentage [%]

Fig. 1: Cumulative percentage composition of the exhaled human breath [4].
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minology and promoting interdisciplinary collaboration. An
interdisciplinary overview of related research across medicine,
biology, life science, chemistry, computer science, and en-
gineering is also presented. The detailed analysis follows
the conventional, well-known information flow model for
communication systems, examining key components such as
the transmitter, the channel, the propagation noise, and the
receiver.

A. Related Work

This section briefly reviews existing related works and
outlines the specific contribution of this survey.

A broad range of foundational surveys exists in the MC
literature. Four significant examples are highlighted, and these
works provide a general view on different parts of an MC
system, such as modulation, coding, or channel modeling.
However, this survey contributes as a specific Air-Based
Molecular Communication (ABMC) system by adopting a
breath-centered perspective and expanding upon numerous
crucial concepts, as outlined in the following.

In an early work, Farsad er al. [S] highlight the recent
advancements in MC research. While their work generally
focuses on MC, this work discusses analyzing the human
exhaled breath from an MC point of view by connecting a
natural transmitter, i.e., the human body, with an engineered
receiver, for example, a sensor.

Kuran et al. [7] survey the design of modulation tech-
niques in diffusion-based MC. In their surveyed systems, IM
propagation is governed by diffusion, possibly assisted by an
additional drift, mainly assuming simple end-to-end system
models, i.e., a point transmitter and a spherical receiver for
three-dimensional modeling. This work includes a detailed
modeling of the human transmitter, the breath-based ABMC
channel, and engineered receivers, providing a specific per-
spective on information modulation for breath analysis.

Coding approaches for diffusion-based MC are discussed in
detail by Hofmann et al. in [12]. In their work, they show that
most of the coding approaches in MC come from conventional
wireless communications and are just being applied to MC
systems. However, in the presented survey, coding approaches
are also utilized, but these approaches are mapped to the
naturally occurring exhalation process.

A summary of mathematical models for diffusion-based
MC can be found in [6]. In similar lines, this survey also
reviews basic mathematical models to provide the reader with
fundamental knowledge of ABMC. However, this work takes a
further step by surveying advanced models for exhaled breath
analysis, incorporating perspectives from disciplines such as
biology and life sciences.

Several other works consider partial aspects of a breath-
based ABMC system. But, as described in Table I and in the
following, this survey is the first to combine the natural human
transmitter with engineered receivers for breath-based disease
detection.

The work in [14] surveys odor-based MC in nature and
examines olfactory systems, primarily based on biological
systems. Biological systems that naturally function as MC
receivers detect and process exhaled breath for purposes like
olfaction in humans and animals. However, these natural MC

receivers fall outside the scope of this study since natural MC
receivers are not designed to analyze the chemical or physical
properties of breath for medical purposes. In contrast, engi-
neered receivers are specifically designed to detect, analyze,
and interpret exhaled breath, focusing on its chemical and
physical characteristics. The magazine article in [3] initially
explores the exhaled breath as a source message from the
communication engineering perspective. The article provides
a brief overview of the breath communication system, never-
theless, also by analyzing a natural receiver [3]. This survey
provides more in-depth analysis with emphasis on engineered
receivers for non-invasive disease detection via exhaled breath.

Several works identify ABMC as a framework for pathogen
or virus transmission, specifically [8]-[10]. Gulec et al. [8]
present an end-to-end model starting from the emitted particles
by coughing or sneezing, including a channel model for air-
based transmission, and a human receiver, with the goal to
calculate a probability of infection. The survey by Barros et
al. [9] discusses models for virus emission from the human
body, relevant experimental datasets from other disciplines, as
well as in-body mechanisms for viral spread. Lastly, Schur-
wanz et al. [10] specifically target COVID-19 virus trans-
mission as a multi-user ABMC scenario, presenting simple
channel and transmitter models and conducting coughing and
sneezing experiments. The previous three works all have in
common that they are strictly limited to virus transmission
and, therefore, do not consider engineered receivers for breath
analysis, as is done in this survey. Additionally, they disregard
the vast majority of other IMs related to various diseases
that are emitted with the exhaled breath, a topic this survey
comprehensively covers.

In terms of experimental work, Lotter er al. [2], [13]
distinguish between long- and short-range experimental re-
search, surveying experimental testbed setups including but
not limited to ABMC [2] and also present synthetic MC
as a framework for modeling natural MC [13]. This survey
explicitly reviews existing ABMC testbed setups from both the
MC and the non-MC community, providing the reader with
a detailed overview of experimental work, such as specific
methods, testbed design, and component analysis. By includ-
ing examples from communication engineering, medicine, and
life sciences, this survey attempts to provide a starting point
for interdisciplinary research. In [11], Bhattacharjee er al.
consider communication techniques specifically for ABMC,
presenting an experimental testbed and analytical channel
models for ABMC, and evaluate a large number of modulation
and detection techniques. In contrast to our work, the analysis
is not specifically breath-related and lacks specific modeling
of the human transmitter as well as engineered receivers for
IMs such as biomarkers.

From the above literature review, it is clear that most of
the current work focuses on conventional MC components,
such as diffusion-based channels, generic modulation and
coding techniques, or virus transmission modeling. However,
a system-level survey on ABMC that uses exhaled breath as
an information source and engineered devices as receivers is
missing. A possible reason for this gap is that research on
ABMC for disease detection is still in its early stages and
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TABLE I: Comparison of this work with existing surveys and reviews in the MC domain, chronologically listed. Symbols indicate evaluation of the categories:

v (fully addressed), © (partially addressed), and X (not addressed).

Category / Ref. [5] [6] [3] [7] [8] 9] [10] [11] [12] [13] [2] [14] This
Work
Year 2016 2019 2019 2021 2021 2021 2021 2022 2023 2023 2023 2024 2025
Breath Analysis X X v X v v v X X X v
ABMC Perspective v X v v v v X X v v v
Transmitter Models v v X 4 v v v
Receiver Engineering X v X X v v v v
Channel Modeling v v v v v v v
Biomarkers Addressed X X X X X X X X X X 4
Experimental Testbeds X X X v v v X v v v
Interdisciplinary v v v v v
Noise and Interference v v v X X v v v

highly interdisciplinary, spanning communication engineering,
biology, and medical diagnostics. This complexity may have
discouraged earlier efforts to unify these perspectives in a
single survey. This work attempts to fill this gap by offering
an integrated review that bridges these domains, specifically
addressing breath-based IMs, human transmitters, engineered
receivers, and relevant experimental testbeds. A summary of
these relevant related surveys and papers and the aspects they
cover is shown in Table I, underlining the novel comprehensive
nature of this survey compared to previous works.

We note that the main parts of this survey focus exclusively
on the exhalation process and associated modeling and sensing
opportunities. This constitutes an outbound communication
system, with the human as the transmitter emitting IMs from
which information can be extracted. Future healthcare-related
MC research should also consider the conjugate inbound
communication system with the human as a receiver of sur-
rounding IMs that contain information about the environment,
enabling early alerts about unsafe levels of, for example, toxins
or pollen. Challenges related to the inbound communication
perspective will be discussed briefly at the end of the survey
in section Section VII.

B. Definitions

Firstly, a common language is necessary for interdisci-
plinary research. The following definitions aim to remove
ambiguities and clarify some frequently used terms throughout
this survey.

i) Natural versus Synthetic ABMC: Generally, ABMC
systems refer to MC systems using air as the physical channel
medium. Natural ABMC describes chemical communication
utilizing chemical signals for exchanging information, occur-
ring naturally in our living environment in various scales
such as gas-mediated cell signaling in the respiratory system
(micro- and nanoscale) or pheromone communication between
plants (macroscale) [13]. Inspired by natural MC, the field of
synthetic ABMC evolved by “establishing synthetic commu-
nication links” [13] by utilizing chemical signals [15].

ABMC systems and their components, transmitter, channel,
and receiver, can be classified as either natural or engineered.
Thus, natural ABMC does not include engineered components,
partially engineered ABMC includes engineering approaches
for a subset of the components, and fully engineered ABMC
solely consists of engineered components. Synthetic ABMC

includes partially engineered and fully engineered ABMC.
An example of a fully engineered ABMC is the world’s first
synthetic MC testbed, the so-called tabletop testbed [16].

In this work, emphasis is laid on partially engineered
ABMC by considering exhaled breath analysis. The human
body is considered as a natural transmitter. The propagation
channel can be natural, i.e., free space, or engineered, such
as breathalyzer devices. Engineered devices in the form of
sensors are specifically considered at the receiver side for
exhaled breath analysis.

ii) Information Molecules: The carriers of information
in MC encompass a diverse range of types, including mag-
netic nanoparticles, neurotransmitters, odor molecules, De-
oxyriboNucleic Acid (DNA) molecules, and calcium ions [17].
They exhibit distinct properties, such as diffusivity, biocom-
patibility, and magnetic susceptibility [17]. However, without
prior knowledge of the experimental setup or the system
model, it is impossible to define whether an information
carrier is generally a molecule, a particle, or an ion. If
an exact definition is not given, the term IMs is generally
used in this work to avoid ambiguity. The IMs are specified
more precisely if a concrete model or experimental setup is
available. For example, when analyzing the exhaled breath,
biomarkers serve as specific IMs that provide valuable insights
into physiological and pathological conditions. In this work,
the word “biomarker” will be used to generalize a specific IM
used to detect specific physiological and pathological states.

iii) The Internet of Bio Things: Originating from the well-
known Internet of Things (IoT), an interconnected network of
machines and objects with computing capabilities, the Internet
of Bio-Nano Things (IoBNT) emerged [18], [19]. The [oBNT
describes a network of interconnected bio-nano things by using
either MC or Terahertz signaling. However, medical appli-
cations in biological environments on micro- and nanoscale
domains require tiny machines and devices, so-called bio-nano
things, and novel bio-cyber interfaces utilizing, for example,
protein-based fluorescence [20] or rely on acoustic or terahertz
approaches [21]. As this work refers to the analysis of exhaled
breath, the MC system is a network of biological entities, i.e.,
the human body (cf. Section III), and engineered receivers
(cf. Section V), where the distances are on the scale of
centimeters to meters. Therefore, we use the term Internet of
Bio Things (IoBT) as a preliminary stage of the [oBNT. The
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IoBT relies on existing broad knowledge of traditional receiver
structures, as well as macroscale particle propagation model-
ing, making the initial transition more feasible compared to
the IoBNT vision. In previous definitions, the IoBT describes
a network of “biological computing devices” [22]. This survey
adopts a slightly different perspective by defining the IoBT as
a network of biological transmitters and engineered receivers
(could be biological), utilizing MC for macroscale commu-
nication. Table II summarizes and compares the introduced
concepts of IoT, IoBT, and IoBNT related to aspects such as
scale, medium, and maturity.
C. Structure of the Survey

The remainder of this survey is structured as follows.
Section II generally maps the components of analyzing the
human exhaled breath onto the MC information flow com-
ponents in a high-level manner. These mapped components
are further discussed and modeled in detail in Section III,
Section IV, and Section V for the human body as a transmitter,
the physical environment as the propagation channel, and
engineered sensors and detection technologies as receivers for
disease detection, respectively. Furthermore, this survey pro-
vides an overview of existing testbeds in the ABMC domain in
Section VI, distinguished between testbeds from the MC field
(Section VI-A) and testbeds from other fields such as medicine
or life science (Section VI-B). Finally, Section VII discusses
open challenges and limitations for analyzing the exhaled
breath from a life science perspective in Section VII-A, and
from an engineering perspective in Section VII-B. Section VIII
concludes the survey by briefly summarizing the main impact
and outlining future research. A roadmap on how to read the
survey can be found in Fig. 2. An overview of the frequently
used abbreviations in this survey can be found in Table III.

II. AIR-BASED MOLECULAR COMMUNICATION
INFORMATION FLOW COMPONENT MAPPING

This section generally maps the components of the well-
known information flow model, cf. Fig. 3, to the human
exhaled breath analysis for medical means. Individual com-
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Fig. 2: Structure of the survey and recommended reading paths.

ponents can thus be better understood, and corresponding
research questions can be discussed.

As a natural transmitter and an engineered receiver is
targeted in a natural ABMC system, the human exhaled breath
system, the transmitter in the information flow model is
represented by the human body, more precisely, the human
head with nose and mouth as so-called transmitter outlets,
cf. Section III. Thus, the transmitter is natural; the release
mechanism of the IMs cannot be controlled. Overall, the
transmitter is conceptually visualized in Fig. 3.

The information source represents the origin of a message
located in space, intended for meaningful communication to
a receiver. From the perspective of analyzing the exhaled
breath through the lens of MC, the information source implies
the underlying metabolic and health conditions, for example,
diabetes, lung cancer, asthma, and viral infections. Another
valuable source of information is identifying the precise loca-
tion of these conditions, which share overlapping properties
and characteristics with other non-critical conditions. For
example, acetone is a byproduct of ketogenesis during diabetic
ketoacidosis, when insulin deficiency triggers fat metabolism.
This originates from the inability of the pancreas to regulate
glucose [23]. At the same time, acetone is also produced
during adherence to a ketogenic diet, as the liver processes
fat for energy [24]. Moreover, the category or severity of a
condition, such as the type of diabetes, lung cancer stage,
asthma category, or viral load, provides different information
concerning the degree of progression and persistence of the
condition.

Considering source encoding in exhaled breath analysis,
the information quantification occurs with the metabolic pro-
cesses converting a specific health condition and its loca-
tion into a set of biomarkers in the exhaled breath. The
probability distributions of different biomarkers also indicate
an individual’s health condition, specific location inside the
body, and severity. In exhaled breath diagnostics, the body’s
metabolic activities serve as the primary information source,
producing VOCs and other biomarkers that reflect specific
biochemical or pathological states. Source encoding begins
with quantifying these metabolic outputs, transforming them
into discrete sets of biomarkers that encode health-related data.
For example, the presence of acetone in breath may signify
fat metabolism associated with diabetic ketoacidosis. At the
same time, elevated nitric oxide (NO) levels can indicate
inflammation in the respiratory tract, serving as a marker
for asthma. This process effectively translates diverse health
conditions into interpretable representations, capturing their
spatial localization (for example, upper versus lower airway)
and severity, thereby compressing complex biological data into
a structured and meaningful format.

During channel encoding, redundant information exists
in the form of recurrent occurrences of biomarkers over
extended periods in quasi-reproducible concentration levels
and amounts. The redundancy helps to mitigate the influence
of noise in the transmission channel, thus minimizing the
aberrations in the estimated information at the receiver side.
For example, while coughing, several coughs are exhaled,
possibly representing an analogy to repetition coding.
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TABLE II: Contrast between the classical IoT, the breath-based IoBT adopted in this survey, and the long-term IoBNT vision.

Aspect IoT

TIoBT (this work)

IoBNT

Conventional machines/sensors with
micro-controllers

Core entities

Biological transmitters (e.g., human
body) and engineered receivers

Interconnected bio-nano things
(synthetic cells, nanosensors)

Communication scale m - km (wireless, optical, wired)

cm - m (exhaled-breath molecular
channel)

nm - mm (diffusion, THz); mm - cm
(ultrasound), cm - m (cardiovascular
system)

Signaling medium Electromagnetic

Air-Based Molecular
Communication (aerosols, VOCs)

Molecular (chemical), acoustic
(ultrasound), radio (THz)

Interface maturity Mature silicon electronics

Leverages existing gas/aerosol
sensors — easier first step

Emerging methods: protein
fluorescence, THz nano-antennas

Typical applications  Smart cities, industrial IoT, logistics

Non-invasive health monitoring via
breath analysis

Targeted drug delivery, in-body
diagnostics, synthetic biology

Key implementation Energy and connectivity Reliable macro-scale MC channel Miniaturization of devices, robust
hurdle management for large networks modeling and sensor calibration bio-nano interfaces
Transmitter Wr—wW Channel Receiver
- WNW Buoyanc
, ia M g
‘1. ...... > Wlay ~ AN =5 %%‘% 3?%}? SCRS— > |8 | >
» g S
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Information Source Channel Encoding/ / Detector/ Channel Decoder/  Information
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Cross-Drift Gravity

v

Fig. 3: Information flow model for analyzing the exhaled breath from a source of information via a channel to a sink of information, containing a natural

transmitter, a natural channel, and an engineered receiver unit.

The modulation process correlates to the exhalation of
breath. The modulated physical properties of the exhaled
biomarkers directly correspond to information about prevailing
health conditions, their location inside the body, and their
severity. These properties of biomarkers can manifest in many
forms, including concentration, type, temporal properties, the
spatial regions occupied, or a hybrid combination of any of
these [11]. The modulation of the exhaled breath can be closely
related to irregular patterns [25], [26]. These can be viewed
as signals that carry information about the state of health.
Analyzing their modulation characteristics can help diagnose
or monitor health conditions linked to a specific breath pattern.

The channel for analyzing the exhaled breath is represented
by the surrounding free space, containing air as the physical
channel medium. Considering analyzing the exhaled breath,
the channel is non-engineered, cf. Section IV. The IMs propa-
gate primarily naturally and are governed by diffusion, advec-
tion, buoyancy, gravity, and/or an initial drift velocity. Other
effects (here called noise), such as cross-drift introduced by
air conditioning systems or physical obstacles, such as walls,
influence the propagation without an engineered purpose, i.e.,
these effects are not introduced to specifically support the
propagation of the IMs.

The only engineered component of the considered ABMC
system in this work is the receiver, cf. Section V. Please note
that this survey paper does not focus on natural MC receivers.

For demodulation at the receiver, specialized sensors detect
and demodulate information-carrying biomarkers and their

physical properties in exhaled breath. Biomarkers, which may
include VOCs, nitrogen oxides, COs, and other gaseous
metabolites, serve as critical indicators of metabolic and
physiological processes in the body. For example, metal-oxide
gas sensors can detect and demodulate the received biomarkers
based on their type, concentration, and temporal properties. To
ensure accurate biomarker identification and characterization,
computing units on the receiver side are necessary. These
units perform signal processing, feature extraction, and pattern
recognition using Machine Learning (ML) algorithms [27].

Channel decoding helps decode the information from the
released biomarkers in the exhaled breath influenced by noise.
Error detection and/or correction, correcting for noise and/or
distortions, form part of the channel decoding technique.

The source decoder maps the detected and demodulated
biomarkers back to their corresponding physiological states
and locations within the human body. This process involves
interpreting biomarker raw data as well as patterns and linking
them to known health conditions, metabolic disorders, or
inflammatory responses.

Finally, at the information sink, the information presents
the individualist physiological and pathological states, which
can be further processed, for example, by healthcare providers
for personalized medicine. Here, familiarization and training
are essential, as initially, new workflows in electronic health
record systems often reduce efficiency [28].
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TABLE III: Alphabetical list of abbreviations used throughout this survey.

ABMC Air-Based Molecular Communication
Al Artificial Intelligence

BSA Body Surface Area

CALPUFF California Puff

CAPD Continuous Ambulatory Peritoneal Dialysis
CCI Co-Channel Interference

CFD Computational Fluid Dynamics

CMOS Complementary Metal-Oxide Semiconductor
COPD Chronic Obstructive Pulmonary Disease
CSA Colorimetric Sensor Array

CSK Concentration Shift Keying

CT Computerized Tomography

DNA DeoxyriboNucleic Acid

EBC Exhaled Breath Condensate

EBT Exhaled Breath Temperature

EMA European Medicines Agency

FDA Food and Drug Administration

HBDB Human Breathomics Data Base

HYSPLIT Hybrid Single-Particle Lagrangian Integrated Trajectory

M Information Molecule

IMI Interferometric Mie Imaging
IoBNT Internet of Bio-Nano Things
IoBT Internet of Bio Things

IoT Internet of Things

ISI Inter-Symbol Interference

LPD Lagrangian Particle Dispersion
LRT Lower Respiratory Tract

MC Molecular Communication
MEMS Micro-Electro-Mechanical Systems
MIMO Multiple-Input Multiple-Output
ML Machine Learning

MRI Magnetic Resonance Imaging
OOK On-Off Keying

PCR Polymerase Chain Reaction

PIV Particle Image Velocimetry

POC Point-Of-Care

QCM Quartz Crystal Microbalance
qPCR Quantitative Polymerase Chain Reaction
RNA RiboNucleic Acid

SAW Surface Acoustic Wave

URT Upper Respiratory Tract

vyOoC Volatile Organic Compound

III. THE HUMAN BODY AS A TRANSMITTER

In this survey, humans are considered as the transmitter of
the ABMC system. While IMs are emitted from various parts
of the human body, this study focuses specifically on those
released from the respiratory system. These emissions, referred
to as exhaled breath, include not only normal respiration but
also other mechanisms like sneezing, coughing, and talking.

Unlike conventional MC transmitters that intentionally en-
code information into a physical signal, the human transmitter
shows a dual nature of signal emission, i.e., emitting signals
either subconsciously and uncontrollably (i.e., passively) or
consciously and controllably (i.e., actively). Examples of sub-
conscious and uncontrollable emissions include normal breath-
ing, which is essential for sustaining life, and involuntary
actions, such as sneezing or coughing, which are triggered
by reflexes or strong irritants. In contrast, conscious and
controllable emissions can include voluntary forced breathing
during medical examinations, deliberate coughing to clear
the throat, or intentional talking to communicate specific
information. However, the types of IMs emitted largely remain
uncontrollable. This section, therefore, presents descriptions
and modeling approaches for them.

In general, exhaled human breath includes both gaseous
components, such as VOCs and COs, as well as exhaled

particles, including aerosols and droplets, which can carry
biological material. It is noted that the term “particles” is used
as a general term encompassing both “aerosols” and “droplets”
to avoid confusion, although they are typically differentiated
by size [29]. The following sections identify key information
sources in exhaled breath, explain their formation, and review
models describing their behavior and properties.

A. Information Source Identification

Exhaled breath analysis can reveal important health indica-
tors. A detailed breakdown of the key parameters, classified
in /) biomarkers, 2) physical properties, 3) spatial origin, and
4) flow rate, is given below.

1) Biomarkers

Biomarkers can be distinguished in VOCs, Non-VOC gas
compositions, inflammatory markers, and microbial markers.

VOCs are organic compounds in gaseous form at room
temperature, emitted through various physiological processes
and detectable in exhaled breath. They serve as useful health
indicators. For example, specific hydrocarbons help identify
asthma [30], while oxidative stress markers and lung inflam-
mation indicate COPD [31]. Alkanes and benzene deriva-
tives are other families indicative of conditions like lung
cancer [32]. Acetone, a ketone exhaled by diabetic patients,
reflects fat metabolism instead of glucose breakdown [33].
VOC:s also help diagnose liver disease [34], infections [35],
[36], and neurological conditions such as Alzheimer’s disease
and Parkinson’s disease [37].

Non-VOC gases, such as COg, offer key insights into
respiratory function and gas exchange efficiency. Exhaled
breath normally contains 4-5% CO; [38], reflecting proper
lung function. Elevated levels of COs in blood may signal
hypoventilation from conditions like COPD or muscle weak-
ness [39], while low levels may indicate hyperventilation due
to anxiety or acidosis [40]. Additionally, abnormal CO5 levels
can also point to cardiovascular issues affecting pulmonary
circulation and impairment of gas exchange [41].

The presence of hydrogen sulfide (H3S) in breath re-
sults from sulfate-reducing bacteria breaking down sulfur-
containing amino acids [42]. Elevated H5S levels may indicate
gut infections or small intestinal bacterial overgrowth, and
in the respiratory tract, it can signal sinus infections or
inflammation [43].

Exhaled carbon monoxide (CO) is a gaseous component of
breath that reflects oxidative stress [44]. The level of released
CO is determined through haem metabolism catalyzed by
oxygenase enzymes, which takes place inside the human body.
Additionally, it also originates from external sources like
air pollution or tobacco smoke. A recent analysis indicates
elevated exhaled CO levels in asthmatic patients [45].

Elevated ammonia (NH3) in exhaled breath can be in-
dicative of health conditions related to metabolic and liver
function [46]. In particular, liver dysfunction can result in
increased NHj levels because the liver is primarily responsible
for converting NHj3 into urea [47]. Conditions such as liver
cirrhosis or acute liver failure can disrupt this process, leading
to elevated blood NHj levels detectable in exhaled breath.
Similarly, renal failure can lead to high NHjs levels as the
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kidneys fail to excrete urea efficiently, resulting in elevated
NHj; concentrations in the breath [48].

Inflammatory markers in exhaled breath reflect the body’s
response to inflammation caused by infections, autoimmune,
or chronic diseases. For example, patients with airway in-
flammation in the case of asthma and COPD release elevated
levels of NO and hydrogen peroxide [49]-[51]. Inflammatory
markers in the form of cytokines also help detect a wide
range of health conditions such as cystic fibrosis and lung
cancer [52].

Microbial biomarkers include pathogen-specific com-
pounds, microbial DNA, or volatile metabolites produced by
respiratory pathogens. They support the diagnosis of infections
like bacterial pneumonia, viral illnesses, and fungal diseases.
For example, microbial VOCs in breath aid in the early
detection of bacterial infections [53], while viral DNA or
RiboNucleic Acid (RNA)-such as SARS-CoV-2 in exhaled
aerosols—serves as a biomarker for diseases like COVID-
19 [54].

2) Physical Properties

Breath temperature and humidity serve as valuable non-
invasive indicators of health conditions, reflecting physiolog-
ical and pathological processes in the respiratory and car-
diovascular systems. Elevated breath temperature can indicate
airway inflammation, infections, or obstructive lung diseases
like asthma and COPD [55]. In contrast, changes in breath
humidity can signal respiratory tract hydration status, mucus
production, and fluid balance issues seen in conditions such
as cystic fibrosis, chronic bronchitis, and heart failure [56].
These parameters can aid in early disease detection, continuous
monitoring, and management of chronic conditions.

3) Spatial Origins

As depicted in Fig. 4, the respiratory tract is divided into
the Upper Respiratory Tract (URT) and the Lower Respiratory
Tract (LRT). The URT comprises the mouth (oral cavity), nose
(nasal cavity), pharynx, and larynx, while the LRT includes the
trachea, right and left primary bronchi, and lungs [57].

Nasal exhaled breath, originating from the nasal cavity and
URT, contains biomarkers influenced by the mucosal lining of
the nasal passages, sinuses, and nasopharynx [58]. This breath
primarily reflects URT conditions such as allergic rhinitis,
sinusitis, nasal polyps, and infections. Elevated NO levels
in nasal breath are indicative of upper airway inflammation,
aiding in the diagnosis of allergic rhinitis and sinusitis [59].

Specific VOCs and hydrogen sulfide (H2S) can suggest bac-
terial infections of the sinuses [43].

Oral exhaled breath, originating from the oral cavity, LRT,
and systemic circulation, contains biomarkers influenced by
both lungs and systemic metabolic processes [60]. This breath
primarily reflects conditions affecting the LRT and systemic
metabolism, including lung cancer, metabolic conditions such
as diabetes and liver dysfunction, and lower respiratory in-
fections. Elevated NO levels in oral breath indicate lower
airway inflammation, aiding in the diagnosis of asthma and
COPD [61]. Specific VOCs, such as alkanes and benzene
derivatives, can indicate lung cancer [32], while elevated
acetone levels can signal ketosis, commonly seen in diabetes
or prolonged fasting [60]. VOC patterns and hydrogen cyanide
help diagnose lung infections and differentiate between bacte-
rial and viral etiologies, and elevated NHj3 levels can indicate
liver dysfunction or renal failure [46].

4) Flow Rate

Finally, the flow rate may reveal significant insights into a
patient’s clinical status.

Respiratory frequency monitoring, i.e., the frequency and
rhythm of breathing, can reveal many health abnormalities.
Sleep-related disorders such as central sleep apnea are exam-
ples in which sleep is disrupted by intermittent or cyclical
absence of breath, affecting blood oxygen saturation lev-
els [62]. Similarly, rapid and deep breathing in the case of
hyperventilation is also indicative of chronic anxiety and panic
attacks [40]. Other health conditions that affect the respiratory
rate include respiratory distress, neurological disorders, or
metabolic abnormalities [63].

Peak expiratory flow rate measures the maximum speed at
which an individual can exhale air from the lungs after a maxi-
mal inhalation. This typically offers information about airflow
obstruction, long-term lung complications, and asthma [52].
The values vary based on age, gender, height, and smoking
habits, with lower values indicating more significant airway
narrowing or obstruction [64].

Breath-holding time is the duration a person can voluntar-
ily hold their breath after full inhalation. This indicates overall
respiratory health and fitness, efficiency of gas exchange [65],
lung capacity [66], and the body’s tolerance to elevated levels
of CO2 [67]. Longer breath-holding time suggests better lung
function, cardiovascular fitness, and efficient metabolic pro-
cesses. In contrast, shorter breath-holding time may indicate
compromised respiratory efficiency, reduced lung capacity, or
underlying cardiovascular and/or pulmonary health issues.

B. Signaling Molecule Carrier Generation and Emission

The respiratory system plays a crucial role in the generation
of exhaled particles.

1) Production of Gaseous Components

Gaseous biomarkers, produced by the body through
metabolic processes or absorbed from the environment and
dissolved in the bloodstream, can reach the alveoli, which
are tiny, thin-walled sacs surrounded by capillaries. These
biomarkers diffuse from the capillaries into the alveolar air
(see Fig. 4), driven by a concentration gradient, and are sub-
sequently released into the airways and exhaled to the external
environment [69]. The efficiency of this process depends on
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the concentration gradient, solubility, and chemical properties
of the gaseous molecules.

2) Production of Exhaled Particles

From the nasal mucosa to the alveoli, the epithelial cells of
the respiratory tract are covered by a bilayer airway surface
liquid film. This film consists of a top mucus gel layer
(97% water and 3% mucins, non-mucin proteins, salts, and
cellular debris) and a low-viscosity periciliary layer containing
cilia beneath it [70]. It is widely recognized that respiratory
particles are primarily generated from this liquid film [68], and
biological materials (e.g., viruses and DNA) are transported
from the respiratory tract to the outside of the body by either
encapsulating within exhaled particles or adsorbing onto the
surface of particles. Two primary physical mechanisms are
responsible for the generation of respiratory particles. The
first is turbulent aerosolization (or shear-induced surface wave
instability) [71], see Fig. 5a. This occurs when air flows
over the liquid film at sufficient velocity, pulling portions
of the film into fine ligaments that fragment into particles
within the airstream [72]. As shown in Fig. 5b, the second
mechanism involves the rupture of the fluid lining during the
reopening of closed respiratory passages. A notable site for
this process is in the terminal bronchioles, where fluid closures
occur during the airway collapse following exhalation. When
reopened during inhalation, the fluid closures are ruptured,
thus leading to the production of particles [73]. A similar
process likely occurs in the larynx during activities such as
talking and coughing, which involve the opening and closing
of the vocal folds [74]. Additionally, this mechanism generates
salivary particles through the movement and contact of the
tongue and lips, especially during actions like sneezing.

C. Transmitter Modeling

In the following, the transmitter models are reviewed when
the human body is considered as the source of the parti-
cles presented in Section III-A. The analysis begins with a
single-transmitter scenario, covering the Wells-Riley model
along with models for sneezing, coughing, and breathing.
Meanwhile, the limitations of these models are discussed, and
potential expansions to develop a more comprehensive model
are explored, incorporating factors such as particle generation,
exhaled flow dynamics, individual physiological differences,
and the impact of face masks. Finally, this section is concluded
with a brief discussion on extending single-transmitter models
to scenarios involving multiple transmitters. A summary of the
considered models can be found in Table IV at the end of the
section. Quantitative comparisons of each model’s accuracy
are limited to a very small number of cases, highlighting an
important research gap.

1) Emission Rate Models

The simplest transmitter model for an ABMC is the volume
transmitter assumption used in the Wells-Riley model [75],
[76], which assumes that exhaled particles (e.g., virus-
carrying aerosols) are instantaneously and uniformly dis-
tributed throughout an environment. Although this is a major
simplification of a human transmitter as it neglects its location
and environmental geometry, it has been widely employed
to predict COVID-19 transmission due to its ease of imple-
mentation and computational efficiency. The model treats an
infectious person as a well-mixed quantum source, where one
quantum is defined as the airborne dose that, when inhaled,
causes infection in 1 —e~! ~ 63% of susceptible individuals.

Compared to the above volume transmitter, the point trans-
mitter assumption is a more practical model to describe the
released particles from the mouth and nose of a human.
Specifically, both a sneeze and a cough are commonly modeled
as an impulsive source, and the particle emission rate for a rate
model [77]-[79] can be respectively expressed as

S, = Ryd(d — drx)6(t), (1)
S. = Red(d — drx)d (1), 2)

where R and R, are the rates of particles emitted by sneezing
and coughing, §(-) is the Kronecker delta function, d is a
vector defining a position in space, and drx is the location of
the release point. Unlike sneeze and cough sources, the particle
emission from a single breath is continuous. Based on the fact
that each breath takes no more than 4.98 s while it takes several
minutes for particles to reach a receiver located a few meters
away, a breath is usually approximated as a constant source
with the variation of emission rate ignored [77]. Thus, a breath
starting at time ¢ = 0 can be mathematically modeled as

Sp = Rpd(d — drx)[u(t) — u(t — t)], 3)

where R}, is the averaged emission rate, u(t) is the Heaviside
step function, and ¢y, is the averaged duration of a breath. By
assuming that a sneeze, a cough, and a breath are independent
of each other, the final emitted signal, including all these
modes, is

S =S5+ S+ S “4)

Although the modeling in (1)-(3) can simplify propagation
and receiver analyses, this remains a highly idealized assump-
tion. On the one hand, research has shown that a cough or
sneeze cannot be accurately represented by a sudden release
of particles. Specifically, a real cough displays a complex
temporal velocity profile approximated as a combination of
gamma-probability-distribution functions, see [80, Fig. 1], to
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transport particles from the respiratory system to the ambient
environment through the nasal and buccal passages. Moreover,
measurements of cough flow velocity profiles in [81] indicate
that the average cough width ranges from 35 mm to 45 mm,
with peak velocities ranging from 1.5 m/s to 28.8 m/s (average
of 10.2 m/s) and an average Reynolds number of 2.04x 10*.
On the other hand, the breath model in (3) is also simplified
and fails to capture many fluid dynamics characteristics of
breath airflow. First, the flow rate profile of breathing can be
more accurately represented by a sinusoidal waveform rather
than a rectangular waveform, i.e., Ry[u(t) — u(t — tp)]. This
sinusoidal flow can be approximated as [82, Eq. (1)]

Qv = asin(St). 5)

Here, o and 8 depend on the respiration frequency, defined
as the number of breaths per minute, and the minute volume,
which refers to the total volume of air inhaled or exhaled
in one minute. Both are influenced by individual physiologi-
cal parameters. For example, experimental studies show that
increased height is correlated with a lower RF, larger body
surface area is associated with a higher MV, and both RF
and MV vary between male and female subjects, indicating
that (5) is affected by body height, weight, and gender [82].
Second, the flow direction of the exhaled jet during breathing
is characterized by two front angles and two side angles
for nose breathing, and one side angle for mouth breathing,
showing minimal variation across individuals [82]. The study
by Xu et al. [83] also reveals interactions of the exhaled
air jet with body-generated thermal plumes that influence the
dispersion and mixing of particles and result in differences
between exhalation standing or lying down. These source
models provide valuable insights into the transmitted signals
and can serve as boundary conditions for studying subsequent
propagation dynamics.

2) Particle Concentration Models

While (1)-(3) are expressed in terms of particle emission
rate, they can also describe the initial quantity or concentration
of released particles once these values are obtained [84]. Stud-
ies measuring the concentrations of various breath metabolites,
such as NHj3, acetone, methanol, ethanol, and isoprene, in
healthy individuals show that their normal levels generally
follow a log-normal distribution [85]-[88]. These baseline
values can be interpreted as representing a binary bit-0, while
elevated levels may correspond to a binary bit-1, potentially
indicating adverse clinical conditions. Different distributions
have been observed for other types of particles. For instance,
the concentration of the COVID-19 virus in exhaled particles
per breath follows a Poisson distribution, with mean values
ranging from 4.9x 10~ virus copies per cm? for low emitters
to 0.637 virus copies per cm® for high emitters [89].

The size of exhaled particles is a critical parameter for
estimating the biomarker load in particles, yet it has also been
overlooked in current MC modeling efforts. Exhaled particles
span a wide range of sizes, influenced by their generation
mechanisms and sites of origin (see [68, Fig. 2]). The largest
particles (diameter > 100um) are typically produced during
vocalization near the front of the oral cavity, where airflow
interacts with varying gaps between the lips, tongue, and

teeth. Rapid airflow, during coughing, sneezing, or sudden
exhalation, generates a broad size distribution of particles
via turbulent aerosolization. For example, cough particles
can range in size from less than 1pm to over 100pm [90],
[91]. Smaller particles can be generated by the vocal folds
during vocalization, with sizes typically in the 1-5um range.
Additionally, the transient closure and reopening of distal
airways are thought to produce small breath particles. These
droplets, generated by the rupture of the fluid lining in the
terminal bronchioles, range in size from 0.01 to 2um in their
hydrated state. The size distribution of these particles is often
well-represented by a single lognormal distribution centered
around 0.7pm [91].

3) Exhaled Air Trajectory Models

When a person is considered as a point transmitter, the
emitted signal can also be represented as a cloud comprising
particles mixed with warm air from the mouth and nose. This
transmitter model is particularly useful for determining the
cloud’s trajectory by taking the effects of gravity, buoyancy,
and air-droplet interactions into account [8], [92]. To track
the cloud’s location in space, it is crucial to derive its time-
dependent density; thus, the emitted signal is often expressed
in terms of density rather than emission rate or concentration
(see [8, Eq. (2)]). The breath cloud model is considered in
detail in Section IV.

In addition to becoming subject to external forces such
as gravity or airflow in the surroundings, as will be further
described in Section IV, several factors are acting on the
particles’ trajectory after they exit the human body that are
still dependent on the exhalation process. Furthermore, hu-
man exhalation characteristics are analyzed using Schlieren
imaging [83]. The exhaled air resembles a constant jet with
additional turbulent vortex rings. The jet’s width and length
increase with time and distance from the body.

The centerline peak velocity w,, within the jet decays
with distance x from the emission point, according to an

ﬂ) u, with the area of the mouth

exponential model u,,, (
or nose A, and the characteristic velocity exponent n,, obtained
via fit to experimental data [93], [94]. The resulting initial
velocity among the subjects is on the order of 1-2ms~'. The
airflow velocity u,, is generally larger than the propagation
velocity u, of the jet itself since the latter is subject to
vortex-like patterns. The propagation velocity correlates with
physiological metrics like Body Surface Area (BSA) and
RF [83]. Gupta et al. [82] have proposed the linear model
u, < BSA - RF.

4) Respiratory Tract Models

The transmitter modeling can be further extended to include
particle generation and propagation within the respiratory
system. In the context of viral transmission, the concentration
of particles released C), from human sneezing, coughing,
and breathing is described as an advection process of virus
concentration C, in the lungs [9]. This model is governed by
the following partial differential equations

dc
d—tp = VD,k,C,(VC,), (6)
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Fig. 6: Weibel A symmetric bifurcation model for the LRT [96].

and
dc,
dt

where D, is the diffusion coefficient of particles, k, is the
rate of virus entering nasal or buccal cavity, C,, is the initial
concentration of virus in the nasal/oral cavity, R, (t) is the
rate of virus replication in the lungs, P,(t) is the propagation
of virus from the lungs to the nasal/oral cavity, and * is the
convolution operator. It is noted that k, can be varied with
the different respiratory events (e.g., sneezing, coughing, and
breathing) and reflects the conversion speed of the virus to
exhaled particles and the speed of particle release. In addition,
k., also varies over time and is linked with different disease
stages. For R, (t) * P,(t), although it currently does not exist
in the literature, there is an effort from the MC community that
modeled the virus propagation within the respiratory system in
a reverse direction, i.e., from the nasal cavity to alveoli [95].

It is possible to describe the respiratory tract and its two
segments, the LRT and URT in more detail by looking at it
from a geometric modeling perspective. Each segment exhibits
distinct anatomical properties, flow dynamics, and modeling
challenges, contributing to the complexity of simulating par-
ticle emission processes.

The LRT forms a highly branched system designed for
efficient air distribution. Its bifurcation dynamics create com-
plex secondary flows and inertial effects, which are further
influenced by patient-specific factors such as asymmetrical
lung volumes. Investigations such as those in [97] and the
review in [57] reveal critical insights. In terms of branching
and flow dynamics, the LRT demonstrates intricate bifurcation
behavior, with airflow distribution heavily dependent on indi-
vidual anatomical variations. Computational Fluid Dynamics
(CFD) simulations have highlighted significant disparities in
flow rates between the left and right lungs, particularly in
individuals with pathological conditions. Models that consider
pressure-driven flow conditions more accurately represent real-
world scenarios compared to uniform flow assumptions [97].
There are several modeling approaches. A widely used frame-
work for studying the lower airways is the symmetric branch-
ing model proposed by Weibel (Model A) [96], where airway
diameters and lengths decrease geometrically with each gen-
eration

= VCyDp(VC,) + (Ry(t) * Py(1)), (7

do=do-275, l,=1y-27% (8)

where d,, and [, are the diameter and length of the n-
th generation of bifurcation, with dy and [y as the initial
diameter and length. The principle of the model is also
depicted in Fig. 6. However, this model assumes regular,
symmetric branching patterns, which rarely occur in nature.
The less common Weibel B model incorporates asymmetries
to better reflect real anatomical structures [96]. Advancements
in medical imaging techniques, such as computed tomogra-
phy, now allow for creating highly detailed, patient-specific
airway geometries [57]. These models enable simulations that
incorporate individualized boundary conditions, leveraging tur-
bulence models such as the kappa-epsilon (k-¢) model, which
considers differential equations for the turbulent kinetic energy
+ and the dissipation ¢ for accurate flow dynamics [98], [99].

The URT, encompassing several bifurcations and asymme-
tries, plays a vital role in humidifying and filtering inhaled air.
It also serves as an initial region where turbulence significantly
influences the behavior of exhaled particles. The URT exhibits
distinct flow characteristics during inhalation and exhalation.
Inhalation is associated with intense turbulence caused by the
narrowing of the glottis, whereas exhalation tends to exhibit
more uniform flow patterns [99]. Despite this distinction,
turbulence remains a key factor in accurately modeling particle
transmission, as demonstrated in computational studies [99]. In
terms of modeling approaches, advances in medical imaging,
such as Computerized Tomography (CT) and Magnetic Reso-
nance Imaging (MRI), now enable the development of realistic
three-dimensional reconstructions of URT geometries [57].
These models provide a powerful tool for predicting deposition
patterns in aerosol therapy and exploring molecular signaling
pathways. Realistic morphometric and image-based methods
have made it possible to perform experimental and computa-
tional studies with high anatomical fidelity [57].

The effects of human physiological factors in terms of
URT geometry and saliva properties on the particle emission
during a sneeze are introduced and investigated numerically
in [100], since these factors are associated with the illness,
anatomy, stress condition, and sex of an individual. This study
proposes a URT model that includes simplified representations
of the pharynx, nasal cavity, and buccal cavity, connected to
form an integrated flow network. To assess the impact of
the geometric features within the nasal or buccal passages
of URT, four conditions (i.e., open or blocked nasal passage
with or without teeth) are considered. Results indicate that
the presence of teeth can increase exit velocities from the
lower mouth regions, potentially leading to a higher release
of particles. Additionally, variations in saliva properties—such
as fluid density, viscosity, and surface tension—are found to
influence both the number and size of emitted particles.

5) Further Model Refinements

Face Masks: After particles are released from the mouth
or nose, some can be blocked and deposited by a face mask,
preventing them from contributing to the final emitted signal.
When a mask fits perfectly to the face, the emitted signal
depends primarily on the mask’s filtration efficiency, with
surgical masks and N95 respirators providing filtration rates
of 95% and 97%, respectively [101]. However, a mask is not
always perfectly fitted, and particles that escape through gaps
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between the mask’s edge and the skin also contribute to the
emitted signal. To model this scenario, the area around the
mouth or nose can be represented as a planar surface, with
the gaps modeled as a cuboid extending from the mask surface
to the environment (see [89], [102, Fig. 1]). The probabilities
of particles traveling through either the gap or the mask are
calculated as functions of various mask parameters and the
exhaled airflow rate. Consequently, the emission of a single
particle into the ambient environment (i.e., the propagation
channel) is modeled as a Bernoulli random variable.

Mobile Transmitter: An underlying assumption in all
the transmitter models discussed so far is that the human
transmitter remains static. However, this assumption may not
hold in real-life scenarios where individuals can move within
an environment. Consequently, incorporating human mobility
into the model is necessary, making the emitted signal a
function of both location and time. While human mobility
in ABMC systems has yet to be investigated, introducing
this factor would significantly increase the complexity of
transmitter modeling. However, the mobility issue has so far
received attention in liquid-based MC systems, such as the
movement of nanobots within blood vessels [103]. We believe
that the methodologies developed for liquid-based MC systems
could offer valuable insights for modeling the movement of
human transmitters in air-based scenarios. For more details on
the analysis of mobile liquid-based MC systems, we refer the
readers to [104]-[108].

Multi-Transmitter Scenarios: The transmitter models dis-
cussed above focused on a single transmitter. In scenarios
where multiple individuals (i.e., multiple transmitters) are
present at different locations, the final emitted signal to a
receiver can often be approximated as the sum of signals from
each individual, assuming that their emissions are independent.
However, this assumption may not hold in certain scenarios,
where interactions between emitters or environmental factors
could influence the emitted signals.

IV. COMMUNICATION CHANNEL

Building upon the generic channel modeling principles
introduced in the following subsection, the concepts that apply
to breath-related ABMC are examined in this section. Research
from diverse fields, such as aerosol science, fluid mechanics,
and indoor air quality studies, is incorporated. The focus is on
the effects of ventilation, obstacles, and human interactions
on biomarker transport in ambient and controlled setups.
These factors impact the behavior of the channel, directly
or indirectly, in the context of exhaled breath analysis for
health diagnostics from an MC perspective. Therefore, this
section provides an overview of the key physical channel
characteristics, presents noise and interference sources and
mechanisms, and considers more detailed aspects of breath
cloud modeling and mathematical channel models.

A. Propagation Mechanisms and Interference

For ABMC systems, diffusion, advection, gravitational
forces, initial drift velocity, and buoyancy are well-known
propagation mechanisms [8], cf. Fig. 3.

Diffusion describes the random movement of the IMs due to
thermal energy, also termed Brownian motion, and occurs in
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Fig. 7: Visualization! of various channel characteristics and noise sources in
different breath analysis scenarios.

fluid-based media. Diffusion is stated as a potential method for
transporting IMs in MC systems due to its energy efficiency, as
it relies solely on the environment’s thermal energy [15]. The
rate of diffusion depends on the physical state of the propaga-
tion medium. In addition, a flow component is often present
in the fluid-based propagation medium, accelerating the dif-
fusion process in a directed way. This is especially helpful in
transporting IMs over larger distances with a more channelized
approach to reach a particular target. Together with diffusion,
this process is termed the advection-diffusion process. Based
on the diffusion process, the advection-diffusion process can
be modeled by introducing flow velocity components in each
spatial dimension. An initial drift velocity also impacts the
propagation of the IMs, changing their position before the
effect of diffusion or advection comes into play. Finally,
a gravitational force and a buoyant force may affect the
propagation of the IMs [8]. As these two forces act in opposite
directions, the resulting force on the IMs is the difference
between the two.

Besides propagation of IMs, interference significantly im-
pacts the received signal in MC channels. These channels
exhibit memory due to delayed IMs from previous emissions,
causing Inter-Symbol Interference (ISI). ISI occurs when
residual signals from past transmissions overlap with current
ones, altering IM concentration from a single transmitter.
In multi-transmitter systems, Co-Channel Interference (CCI)
also arises from signal overlap between different transmitters,
further complicating MC system performance.

B. Physical Channel Characteristics

ABMC in human-centric settings is highly affected by the
channel’s physical characteristics. These vary widely depend-
ing on the application, ranging from large, open indoor spaces
for ambient breath analysis to narrow, controlled pathways in
direct breath analysis devices. An overview is shown in Fig. 7.

1) Ambient Breath Analysis

In indoor settings, IMs disperse through both bounded
and unbounded spaces, with ventilation systems and dynamic
emissions influencing VOC distribution. As noted in [112],
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TABLE IV: Comparison of transmitter-side models discussed in Section III.

Approach Transmitter Part Emission Quantitative Considerations Key Limitation
Wells-Riley Well-mixed Mixed Typical g for SARS-CoV-2: 10-50 Neglects detailed emission effects
volume surrogate  respiration quanta h=' [109] close to the emitter

Impulse point Mouth/nose Single sneeze  Peak jet velocity 1.5-28.8 ms™! Finite jet duration and particle-size
source or cough (mean 10.2ms™"); jet width spectrum not captured
35-45mm; Re~2.04x10* [81]
Continuous point ~ Mouth/nose Single breath Breath duration t, <5s [77] Assumes constant flow, ignores
source inhalation profile
Sinusoidal point Mouth/nose Uninterrupted  Initial jet velocity 1-2ms™! [94]; Needs individual MV, RF, BSA;
source breathing propagation velocity turbulence not explicitly captured
up xBSA - RF [82]
Breath cloud Mouth/nose Speech, cough, Width/length grow with time; Requires empirical n,,, vortex
model sneeze Velocity reduction exponent modeling difficult, valid mostly for
N, ~0.75 [93] r<2m
Particle Exhaled aerosol VOC SARS-CoV-2 mean load: 4.9x107°  Size distribution decoupled from
concentration (from mouth/nose) metabolites, to 0.637 copies cm™> [89]; droplet airflow dynamics
model viral RNA median diameter 0.7 um (range
0.01-2 um) [91]
Weibel B Lower airways Transport Asymmetries can lead to deposition  Idealized geometry; relies on

airway-geometry
model

through the
body

errors of up to +10% between left
and right lung for larger
particles [110]

imaging for exact parameters

Face-mask leakage
extension

Mouth/nose behind

mask

Any exhalation
with a mask

Nominal filtration efficiency 95 %
(surgical), 97 % (N95) [101],

Gap geometry and fit variations not
modeled quantitatively

reduced by half or more for
inadequate mask fit [111]

modeling ventilation strategies helps predict VOC concentra-
tion changes and their impact on indoor air quality. Particle
loss due to diffusion, surface absorption, and settling is signifi-
cant, but certain ventilation methods can reduce particle flow to
critical zones, lowering concentrations in specific areas [113].

Obstacles like humans, furniture, and structures cause tur-
bulence and alter particle trajectories, contributing to channel
variability. Indoor sources, such as coffee machines or garbage
cans, release additional VOCs, changing IM composition
[112]. Noise sources, including heating, ventilation, and hu-
man movements, further disrupt airflow patterns, adding vari-
ability [113]. Therefore, modeling both steady and transient
air circulation changes is essential for accurately capturing the
distribution of target molecules.

2) Breath Analysis Devices

Unlike ambient breath analysis, breath analyzers (e.g.,
breathalyzers) use controlled channels, like short tubes, to
minimize particle loss and enhance detection precision. While
these environments limit interference, non-target VOCs from
the respiratory tract can still impact performance [77], requir-
ing specialized filters to isolate target compounds.

Noise sources in controlled breath analysis systems often
stem from user behavior and handling errors. Variations in
exhalation speed, volume, or technique affect airflow and
measurement accuracy, while transient events like coughing or
sneezing introduce aerosol surges [77]. Hence, effective device
design must account for both physical channel constraints and
human factors to ensure robust molecular detection in real-
world scenarios.

C. Noise Analysis and Interference

Noise and interference in the transmission channel arise
from background biomarkers, cross-drift, turbulence, temper-
ature changes, and obstacles, hindering accurate detection of
target biomarkers and their properties in exhaled breath.

1) Molecular Noise

Molecular noise in MC arises from collisions, reactions,
and thermal fluctuations, posing key challenges in diffusion-
based systems. Pierobon et al. [114] identify two primary noise
sources: particle sampling noise (from transmitter emission)
and particle counting noise (from signal propagation), modeled
using physical and stochastic approaches. Physical models
mathematically analyze noise processes, while stochastic mod-
els describe them via random processes. Later, Pierobon et
al. [115] introduce reception noise from ligand-receptor bind-
ing, modeled through ligand-receptor and stochastic chemical
kinetics. These approaches provide mathematical formulations
for noise source simulation and closed-form solutions for
stochastic noise modeling. Singhal ez al. [116] explore noise
at a microscopic level using Langevin force analysis. For
diffusion-based MC using molecule release time, an inverse
Gaussian distribution is used to model system noise, leading to
the development of the additive inverse Gaussian noise channel
model [117].

2) Environmental Interference

Environmental interference, such as VOCs from building
materials, furniture, and activities, can overlap with target
biomarkers, increasing false positives and requiring advanced
filtering [118]. Their emissions vary with environmental con-
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Fig. 8: Visualization? of the breath cloud model including the different phases
after violent expiratory events as well as fallout and evaporation effects.

ditions and material properties, making them a challenge to
model [112]. They closely resemble CCI, as described in
Section IV-A, since non-target molecules disrupt reception.

As discussed in Section IV-B2, large-scale ambient factors
like ventilation and human activity [113] make the propagation
channel highly dynamic. This necessitates adaptive real-time
or long-term averaging models that ignore short-term fluctua-
tions. These effects resemble ISI in MC (Section IV-A), where
lingering IMs impact current and future readings.

Finally, the detection systems introduce inherent noise due
to sensor variability affected by flow rate, binding efficiency,
and air velocity [118]. Sudden events such as coughing or
sneezing add further disruptions through burst particle emis-
sion into the channel [77].

D. Breath Cloud

The dynamics of the breath cloud are key to ABMC,
affecting the spread of exhaled particles. Fig. 8 depicts a
summary of the most important effects influencing the breath
cloud. The droplet behavior varies by size: large droplets
(>100 um) quickly settle due to gravity, while smaller ones
(<10 um) evaporate into airborne droplet nuclei that remain
suspended in air for long periods [119].

Buoyancy shapes the path of the exhaled breath cloud,
lifting it upward and helping smaller droplets travel farther.
The warm, humid microenvironment created by the breath
cloud also slows droplet evaporation by reducing moisture
loss. These thermo-hygrometric effects are essential for under-
standing droplet behavior and the propagation of the resultant
signal [92], [119].

The breath cloud expands self-similarly, keeping its ap-
proximate shape as it grows [119]. It is well established that
the cloud’s speed decreases with distance, while its radius
increases proportionally, making this pattern key to predicting
particle dispersion and spatial distribution.

Different respiratory and expiratory events uniquely shape
the dynamics of the breath cloud. Breathing produces slow,
stable clouds, while speaking increases droplet production and
spread. In contrast, violent expiratory events, such as coughing
and sneezing, create turbulent multiphase clouds that contain
hot, moist air and droplets of various sizes. These clouds
initially behave as momentum-driven jets before transitioning
into buoyancy-dominated puffs as they decelerate [92].

2Icons by Freepik.

During breathing, exhaled droplets are affected by gravity,
drag, evaporation, and turbulent dispersion. In abstract terms,
the weight force scales cubically with the droplet diameter
and depends on the density difference between the droplet
and the surrounding air, causing larger droplets to settle more
rapidly. The drag force, which scales with the square of the
diameter and the relative airflow velocity, exerts a stronger
influence on smaller droplets. Droplet evaporation is governed
by a convection-diffusion process. The droplet radius D,, over

time ¢ is
Dy(t) =/ Dj o — Kt, 9)

where D, ¢ is the initial droplet diameter and K is the evap-
oration rate [119]. Turbulent dispersion introduces additional
velocity fluctuations that further affect the trajectories of the
smallest droplets.

Violent expiratory events like coughing and sneezing pro-
duce exhaled clouds with two phases [92]. In the initial
jet phase, high momentum of the exhaled breath propels
the cloud forward, with the cloud radius increasing roughly
linearly with distance. As the cloud slows, buoyancy takes
over, transitioning to the puff phase at a characteristic time

I
=B
where Iy represents the initial momentum and By the buoyant
force. Droplets eventually settle when their terminal settling
speed, determined by gravitational acceleration, droplet diam-
eter, dynamic viscosity, and density differences, is reached.

Bourouiba et al. [92] present the Stokes settling speed,
showing that larger droplets descend faster due to their size
and density difference from air.

Furthermore, Bourouiba et al. [92] present a formula for
the Stokes settling speed, at which droplets start descending,
depending most importantly on the droplet diameter and the
difference between droplet and surrounding air density. They
also propose a continuous fallout model to describe how
suspended particle numbers decrease over time, highlighting
the interplay between droplet settling and cloud expansion.

The formation of a turbulent multiphase flow in the breath
cloud is a hallmark of violent respiratory events. This complex
flow contains droplets of various sizes entrained within hot,
moist air, creating challenges for accurately predicting droplet
trajectories and evaporation rates. Detailed models [92], [119]
help understand these dynamics, facilitating better predictions
of droplet behavior and channel characteristics.

E. Channel Modeling

This section reviews channel modeling in ABMC, focusing
on aerosol transmission systems. A summary can also be
found in Table V. Here, the human respiratory tract acts
as the transmitter, releasing IMs via breathing, coughing, or
sneezing (Section III), with breathing being a key source of
continuous dispersion. To model this scenario, several atmo-
spheric dispersion models can be adapted for MC applications,
offering effective tools to describe molecular propagation in
such channels.

The Gaussian plume model describes the steady-state
distribution of continuously emitted particles, assuming a

t* (10)



IEEE COMMUNICATIONS SURVEYS & TUTORIALS

Gaussian spread in horizontal and vertical directions. It factors
in wind speed, atmospheric stability, and emission rate. Thus,
the concentration of IMs at a point (x,y, 2) downwind from
a source with height H can be given as

Q y?
Cla,y,2) = —2—exp [~
(2,9,2) 2100 ,u P 202

() em(-5) o

where () is the emission rate, u the wind speed, and o,
and o, represent horizontal and vertical dispersion parameters,
respectively [120], [121].

Lagrangian Particle Dispersion (LPD) models simulate
trajectories of individual IMs, accounting for turbulent diffu-
sion and advection processes based on local wind fields and
turbulence parameters. LPD models help predict stochastic
molecular behaviors such as propagation delay and signal
attenuation [122].

CFD models numerically solve fluid flow equations, captur-
ing complex effects such as vortices and boundary interactions.
These simulations are especially useful in environments with
obstacles, incorporating molecular dispersion under complex
airflow conditions [123].

The Hybrid Single-Particle Lagrangian Integrated Trajec-
tory (HYSPLIT) model combines Eulerian and Lagrangian
methodologies to simulate long-range transport, dispersion,
and deposition of airborne IMs, if adapted for MC, taking
into account changing atmospheric conditions [124].

The California Puff (CALPUFF) modeling system, like
the HYSPLIT model, is a non-steady-state dispersion model
used by the United States Environmental Protection Agency to
capture time- and space-varying meteorological effects influ-
encing IM transport and transformation. Within MC systems,
CALPUFF can help characterize dynamic channels affected
by available weather conditions [125].

Artificial neural network-based models use trained neural
networks to capture complex dispersion patterns from turbu-
lent flows. Leveraging experimental or simulation data, these
models predict IM behavior, offering a data-driven addition to
traditional physical models in ABMC [126].

V. AIR-BASED MOLECULAR COMMUNICATION RECEIVER
ENGINEERING

In a communication-theoretic model, the interpretation of
exhaled breath depends on its application. Hence, a distinction
is made between natural and engineered MC receivers. Natural
receivers, such as the olfactory systems in humans, animals,
and microbial interactions, process breath for biological or
environmental purposes. As they are not designed for med-
ical analysis, they are beyond the scope of this work. The
interested reader can refer to Aktas et al. [14] on odor-based
communication in nature.

In comparison, engineered receivers are built systems for
a purpose, in this case, to detect, analyze, and interpret the
physical and chemical properties of exhaled breath. This work
explicitly focuses on engineered receivers for non-invasive
breath analysis for medical applications. The reception process
on the receiver side can be distinguished into three parts: A)

breath sampling, B) disease detection through sensors, and C)
decision making [3], [120]. While the breath sampling is dis-
cussed in Section V-A, Section V-B presents various biomarker
detection techniques and sensing technologies, Section V-C
focuses on disease detection (utilizing the surveyed sensors in
Section V-B) and decision making. Data set availability for
analyzing the exhaled breath is reported in Section V-C and
different approaches for modeling the receiver are discussed
in Section V-D.
A. Exhaled Breath Sampling

Controlling the exhaled breath sampling rate is a key
aspect of the receiver’s front end [120]. Several methods,
categorized as i) filters, ii) condensation, iii) electrostatic
precipitation, and iv) solid and liquid impactors, are commonly
used [127], [128]. The suitability of a breath sampling method
depends on the selected biomarkers and the chosen analysis
technique [129]. Sensors often exhibit noisy behavior and
systematic drift [130], which needs to be addressed through
sophisticated processing.

1) Filters

This method captures biomarkers from exhaled breath by
passing it through a filter material [131]. Filter efficacy de-
pends on mechanisms such as interception, inertial impaction,
diffusion, gravitational settling, and electrostatic attraction. Fil-
ters vary in pore size, material, and thickness, enabling long-
term sampling of particles ranging from 10-900nm [128].
Different approaches using filters for pathogen detection are
described in the literature. For instance, Malik et al. [131] use
an electret air filter-based device to determine differences in
the viral load of SARS-CoV-2 in exhaled breath compared to
pharyngeal swabs.

2) Sampling via Condensation

By cooling exhaled air onto inert surfaces, water vapor con-
denses, allowing the collection of biomarkers from the exhaled
breath. Ten minutes of tidal breathing produces 1-3mL of
breath condensate [132]. Exhaled Breath Condensate (EBC)
collection can be integrated into face masks [133] or Point-
Of-Care (POC) devices with detection sensors [134]. EBC can
contain respiratory pathogens like SARS-CoV-2, rhinovirus,
and mycobacterium tuberculosis [132] and proteins/enzymes
reflecting lung health [135]. It aids in diagnosing, monitoring
disease, and evaluating treatment efficacy.

3) Electrostatic Precipitation

Electrostatic precipitation involves passing a particle-laden
gas through electrodes with a high-voltage potential, causing
the particles to migrate to one electrode based on their
precharge [136]. This method samples particles in the 2—
100 nm range [137]. In a pilot study, Ladhani et al. [127] use
an electrostatic sampling of exhaled breath to detect pathogens
Staphylococcus aureus in a primary care setting.

4) Solid and Liquid Impactors

Unlike filters, which capture particles through multiple
deposition mechanisms, impactors use inertial impaction to
separate particles by size. Filters collect a broad range of
particle sizes, while impactors enable size fractionation, mak-
ing them useful for distinguishing between different respi-
ratory particle sizes. Solid impactors, such as slit, cyclone,
or Andersen samplers, accelerate particles through narrow
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TABLE V: Qualitative comparison of channel models discussed in Section IV-E.

Approach Typical Scale/Use-case

Model Principle

Key Limitation

Gaussian
plume [120], [121]

Outdoor or large indoor spaces,
steady breathing source

Analytic Eulerian solution with
Gaussian spread

Assumes constant wind, flat terrain,
steady emission

LPD models [122] Near-field, stochastic

delay/attenuation

Tracks individual particle
trajectories under advection and
stochastic turbulence

Computationally expensive for large
particle sets; requires turbulence
statistics

CFD models [123] Room-scale or complex-geometry

channels

Numerical Navier-Stokes solver
with Euler-Lagrange or
passive-scalar dispersion

High computational cost; sensitive
to mesh resolution and boundary
conditions

HYSPLIT hybrid
puft/particle [124]

Regional/long-range (>10km)
transport

Adaptive Eulerian-Lagrangian
puffs/particles driven by
time-varying meteorology

Indoor micro-scale poorly captured;
relies on external numerical weather
prediction data

CALPUFF
non-steady puff [125]

Time-varying outdoor channels with
terrain and obstacles

Puffs driven by three-dimensional
wind; non-steady dispersion

Many tunable parameters; limited
applicability for indoor use

ANN/data-driven
surrogate [126]

Any scale with sufficient training
data

Neural network learns mapping
from input features (e.g., wind,
distance) to concentration field

Needs large amounts of labeled
data; generalization outside training
domain is uncertain

openings, forcing them to collide with a surface for separation.
Filters are then washed or used for plaque assays [128].
Starkenborg et al. [138] combine a portable silicon sieve-
based breath sampler with molecular analysis to detect SARS-
CoV-2 at the point of need. Liquid impactors, like all-glass
impingers, direct particles through a narrow orifice into a
liquid medium, capturing larger ones by impact and smaller
ones via diffusion [128].

B. Detection Technologies

The research community has explored popular detection
technologies that efficiently help monitor biomarkers in ex-
haled breath. In the following, we present an overview of
common detection technologies and explain the functionality
of the sensors and technologies.

Metal-oxide sensors are widely used for gas detection
due to their high sensitivity, broad gas range, and cost-
effectiveness [150]. They detect gases by measuring resistance
changes in metal-oxide layers like tin dioxide or zinc oxide.
Operating at temperatures up to 450 °C enhances their sensitiv-
ity [151]. Their applications span environmental monitoring,
industrial safety, healthcare, and automotive industries [152].
While they offer high sensitivity and robustness, challenges
include temperature and humidity sensitivity, long-term drift,
and high power consumption [153]. Advances focus on nanos-
tructured metal-oxides, the incorporation of noble metal cata-
lysts, and improved portability [154].

Conducting polymers, such as polyaniline, polypyrrole,
and polythiophene, conduct electricity through conjugated
m-electron systems, making them ideal for sensor applica-
tions [142]. Their conductivity changes upon interaction with
gases or VOCs [155]. Conducting polymers are synthesized
via chemical or electrochemical polymerization, and can be
processed into various forms like thin films and nanostruc-
tures [156]. Their applications can be found in environmental
monitoring, medical diagnostics, and industrial safety, offer-
ing high sensitivity, selectivity, and room-temperature opera-
tion [157]. Despite advantages such as mechanical flexibility
and ease of fabrication, challenges like environmental sensi-

tivity and long-term stability persist [158]. Recent advances in
nanocomposites and molecularly imprinted polymers improve
stability, sensitivity, and integration into portable and wearable
devices [159].

Quartz Crystal Microbalance (QCM) sensors detect tiny
mass changes by measuring shifts in resonant frequency [160].
They rely on the piezoelectric effect, where quartz crystals
oscillate at a specific frequency that varies with surface mass
changes [161]. QCM sensors are widely used in chemistry,
biology, and environmental monitoring; however, they face
challenges like environmental sensitivity [162] and surface
fouling [163]. Advances in nanoparticles and molecularly
imprinted polymers enhance their sensitivity, selectivity, and
versatility [164], [165].

Surface Acoustic Wave (SAW) sensors detect target
biomarkers by measuring changes in acoustic waves traveling
along a piezoelectric substrate [166]. These sensors use the
piezoelectric effect to generate and detect mechanical vibra-
tions, with interactions altering wave properties like frequency,
phase, and amplitude [167]. This enables high sensitivity to
mass loading, viscosity, and conductivity changes [168]. SAW
sensors are widely used in chemical and biological sensing,
environmental monitoring, and medical diagnostics [166].
Challenges like environmental sensitivity and surface fouling
persist [169], but advancements in materials [170], surface
functionalization [171], and microfluidic integration aim to
improve performance [172].

Mass spectrometers identify and quantify chemical com-
pounds by analyzing their mass-to-charge ratio [173]. They
operate through ionization, ion separation, and detection, using
techniques like electron and electrospray ionization [174].
Used across diverse scientific disciplines, mass spectrometers
find applications in the areas of chemical analysis, environ-
mental monitoring, clinical diagnostics, and forensics [175].
They offer high sensitivity and specificity, but face chal-
lenges like cost, complexity, and sample preparation require-
ments [176], [177]. Recent advancements focus on enhancing
their sensitivity, resolution, automation, and miniaturization
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TABLE VI: Comparison of the technologies for the detection of biomarkers. ’ppm’, ’ppb’, and ’ppt’ denote ’parts-per-million’, ’parts-per-billion’, and

"parts-per-trillion.”

Detection Technology Functionality Sensitivity Selectivity Response Time Operating
Conditions
Metal-oxide sensors Resistance change ppm — low Moderate, Seconds to minutes  High temperatures

in metal-oxide layers

ppb [139], [140]

cross-sensitivity to
other gases common
without
functionalization

(commonly 200 °C
to 400 °C), sensitive
to humidity
variations [141]

Conducting polymers

Conductivity
change upon gas
interaction

ppm — ppb
(advanced nanocom-
posites) [142]

Variable, improved
via polymer design
and nanocomposites

Seconds [142]

Room-temperature
operation

QCM sensors

Mass change
detection via
resonant frequency
shifts

ppm — low ppb [143]

Variable, tailored via
selective coating

Seconds [143]

Room-temperature
operation

SAW sensors

Changes in acoustic
wave properties

ppm — low ppb [144]

Variable, tailored via
selective layers

Seconds [145]

Ambient to moderate
temperature with

along piezoelectric thermal
substrate compensation for
stability
Mass spectrometers Mass-to-charge ppb — ppt [146], Excellent (molecular Milliseconds to Controlled-
ratio measurements  [147] resolution) seconds [148] temperature

operation, vacuum

Optical sensors Changes in optical
properties, e.g.,

polarization, phase

ppb — ppt [147]

High, tunable via
specific wavelength

Milliseconds [147] Room-temperature

operation

Gas chromatography Separation based on
interactions with

stationary phase

ppb — ppt [149]

Excellent due to Minutes
physical separation

before detection

Requires controlled
column oven
temperature,
typically 30°C to
300°C

for portable applications, thereby expanding their utility in
multiple fields [178], [179].

Optical sensors convert light into electrical signals by
detecting changes in light properties such as intensity, wave-
length, phase, or polarization [180]. They consist of a light
source, sensing element, and detector, with interactions leading
to absorption, reflection, fluorescence, or scattering. Types
include absorption-based, fluorescence, surface plasmon res-
onance, fiber optic, and photonic crystal sensors [181]-[183].
They are fabricated using materials like semiconductors, met-
als, and polymers [184], employing techniques such as pho-
tolithography and chemical vapor deposition [185]. Applica-
tions span environmental monitoring, biomedical diagnostics,
industrial process control, food safety, and security [186],
[187]. Advantages include high sensitivity, fast response time,
non-destructive analysis, and versatility, while challenges in-
volve environmental interference, fabrication complexity, cost,
and the need for regular calibration [181]. Recent advance-
ments focus on enhancing sensitivity and miniaturization,
leveraging nanophotonics, plasmonics, and advanced materials
for next-generation optical sensors with improved perfor-
mance.

Gas chromatography is a widely employed technique for
separating and analyzing volatile compounds, and it can be
integrated with the aforementioned sensors to create a versatile
analytical platform [188], [189]. In gas chromatography, a

continuous flow of an inert or non-reactive gas, known as
the mobile phase, transports the vaporized sample mixture
through a narrow tube called the column. The column’s inner
surface is coated with a stationary phase, and the separation
occurs based on the chemical and physical properties of the
sample components and their interactions with the stationary
phase. As a result, individual components traverse the column
at different rates and reach the coupled sensor at distinct
times. For further details on gas chromatography principles
and operation, readers are referred to [190].

In addition to the widely deployed detection technologies,
several emerging and engineered sensor classes offer new
capabilities for exhaled breath analysis in MC and health
diagnostics. These technologies address ongoing challenges
in sensitivity, selectivity, miniaturization, and integration with
bio-cyber interfaces in the [oBT framework.

Graphene-based sensors have gained significant attention
due to graphene’s unique combination of high surface area,
electrical conductivity, and chemical tunability [191]. These
sensors operate via modulation of charge carrier mobility
when gas molecules adsorb onto the graphene surface. Func-
tionalization with metal nanoparticles or selective polymers
further improves specificity to disease-related biomarkers such
as acetone, NHg, and nitrogen dioxide [192]. Graphene sensors
offer real-time detection at sub-ppm levels and are especially
promising for applications like diabetes and asthma monitor-
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ing [193]. While many prototypes have demonstrated high per-
formance under laboratory conditions, commercial adoption is
still limited due to fabrication complexity, environmental drift,
and long-term reliability [194].

Electronic noses (e-noses) are inspired by the mammalian
olfactory system and consist of cross-reactive sensor arrays
that capture VOC fingerprints. These devices do not aim to
identify individual compounds but rather learns composite
patterns through signal processing and ML techniques such
as principal component analysis, support vector machine, and
neural networks [195]. E-noses have shown promise in classi-
fying disease states like cancer and infectious diseases based
on complex breath signatures [196]. They can integrate various
sensor types, including metal-oxide sensors, polymers, or
nanocomposites [197]. Although some commercial devices are
available [198], e-noses still face practical challenges related
to sensor drift, calibration needs, and generalization across
diverse user populations and environmental contexts [199].

Micro-Electro-Mechanical Systems (MEMS)-based sen-
sors utilize miniaturized mechanical structures fabricated on
silicon substrates to measure breath parameters such as flow,
pressure, and gas composition [200]. Techniques include
thermal sensors, resonant mass sensors, and cantilever-based
platforms [201], [202], all of which offer excellent integration
with Complementary Metal-Oxide Semiconductor (CMOS)
electronics for low-power, real-time operation. MEMS sensors
support wearable formats and mobile health platforms due to
their small footprint and scalability. Recent innovations also
enable integration of MEMS devices with wireless transmis-
sion and local edge computing [203]. Their key strengths
lie in high temporal resolution, robustness, and suitability
for embedded systems, although cross-sensitivity and thermal
stability remain active research areas [204], [205].

Two-dimensional material-based sensors also represent
a fast-evolving frontier [206]. These sensors leverage atom-
ically thin materials such as molybdenum disulfide (MoS2),
black phosphorus, and hexagonal boron nitride. Compared
to graphene, these materials offer tunable band gaps and
enhanced interaction specificity, which allows for more se-
lective detection of VOCs in breath samples [207]. Their
high surface-to-volume ratio provides ultra-sensitive response
characteristics, although most developments remain in the
prototype or lab-scale demonstration phase. Functionalization
and integration into stable sensor platforms are key to moving
these sensors toward commercialization [208].

Colorimetric Sensor Arrays (CSAs) are another notable
technology where chemically responsive dyes change color
upon exposure to specific gases or VOCs [209]. These sensors
provide a visually intuitive method for breath analysis without
the need for electronics or power sources. Arrays can be
printed on paper or polymer substrates and imaged using
low-cost cameras or smartphones [210]. CSAs tend to offer
low-cost, disposable options for preliminary screening or field
diagnostics [211]. Moreover, commercially available CSAs
have demonstrated their effectiveness in detecting a wide range
of hazardous gases in industrial settings [212].

Flexible and wearable sensors, often fabricated on sub-
strates like polydimethylsiloxane or polyethylene terephtha-

late, are engineered for continuous, unobtrusive health moni-
toring [213]. Inkjet printing, textile integration, and stretchable
electronics enable seamless incorporation into wearables such
as masks, patches, or clothing [214]. These sensors monitor
dynamic breath variables, including VOC levels and humid-
ity [215], and are vital for real-time health tracking. Com-
mercially, these sensors are revolutionizing the telemedicine
and home healthcare industry by enabling continuous remote
monitoring of health metrics beyond clinical settings [216].
However, their widespread adoption faces challenges, includ-
ing balancing mechanical durability and electrical sensitivity,
minimizing crosstalk when integrating multiple sensors in
compact spaces, and addressing the incompatibility of rigid
power and communication modules with flexible electronic
platforms [217].

Nanowire and nanorod-based sensors utilize one-
dimensional nanostructures made of materials such as zinc
oxide, tin dioxide, or titanium dioxide [218]. Due to their
quantum confinement effects and high aspect ratios, these
sensors exhibit excellent sensitivity and fast kinetics for breath
biomarker detection [218]. They are often integrated into
field-effect transistor platforms or chemiresistive sensor ar-
rays [219], [220]. Although commercial availability is still
limited, lab-scale implementations show promise in detecting
trace amounts of acetone, NHg, or ethanol in complex breath
mixtures [221].

Electrochemical biosensors operate by detecting redox re-
actions induced by target molecules interacting with function-
alized electrodes [222]. These reactions produce measurable
electrical signals that correlate with analyte concentration.
Such biosensors can detect gaseous and liquid biomarkers and
are especially useful for metabolic diseases such as diabetes,
where exhaled acetone levels indicate ketosis [223]. Modern
electrochemical sensors leverage nanomaterials for increased
surface area and specificity and can be embedded in portable or
wearable formats for real-time diagnostics [224]. Some forms
have already been commercialized in glucose meters and are
now being adapted for breath-based analysis [225].

1) Enabling Technologies for Advanced Breath Detection

Besides emerging sensor types, several aspects will influ-
ence the further research in advanced breath disease detection.

VOC Detection Sensitivity and Advancements

To detect low concentrations of biomarkers effectively, such
as in medical diagnostics, e.g., breath analysis, sensors must
achieve sensitivities in the parts-per-million (ppm) range or
even lower. Exemplarily, the acetone concentration in the
exhaled breath of healthy individuals ranges from 0.39 to
1.09 ppm [226], whereas NHj3 reaches approximately 960
ppb in the exhaled breath of healthy individuals [227]. In
some advanced diagnostic scenarios, even parts-per-trillion
(ppt) sensitivity is necessary (1.6 ppt for interleukin-6 in
the exhaled breath of healthy individuals) [228]. Overall,
the required sensitivity depends on the specific biomarker
being detected. While lab-based technologies, such as gas
chromatography and mass spectrometers, offer extremely low
detection limits, they are bulky, costly, and not suited for
portable or continuous monitoring. Advancements in detection
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and sensor technologies, more specifically sensor technology,
are needed, such as:

(i) Miniaturization and Integration: Development of
portable and compact systems (e.g., miniaturized gas chro-
matography systems, lab-on-a-chip platforms) with integrated
preconcentration units and microfluidics to enhance sensitiv-
ity [229].

(ii)) New Materials: The use of nanostructured sensing
films, e.g., In-doped LaFeO3, which enables down to 1 ppb
detection of formaldehyde “due to high sensitivity and good
stability” [230].

(iii) Multi-Sensor Arrays: To interpret complex VOC
profiles, given a low concentration of the VOCs to detect, elec-
tronic noses integrating an Artificial Intelligence (Al)-driven
data analysis are needed for further pushing the boundaries of
the detection and sensor technology [27], [203], [231].

(iv) Plasmonic and Optical Sensor Technology: To
enable an ultra-sensitive detection in the low sensitivity levels,
plasmonic and optical technologies can enhance the sensitivity
thresholds by further integration into the sensing technol-
ogy [232].

(v) Artificial Intelligence-Enhanced Pattern Recognition:
Advanced signal processing, utilizing ML, can enhance detec-
tion limits and improve classification between VOC mixtures,
which is crucial for accurately interpreting complex biological
samples, even for non-experts [233].

Long-Term Sensor Stability

To ensure long-term stability and reliable performance of
the sensors, it is essential to take measures addressing a wide
range of environmental factors. These include temperature
fluctuations, humidity, particulate contamination, sensor drift,
electromagnetic interference, and mechanical or operational
stress.

To address these challenges, multiple strategies can be im-
plemented. One such method is the selection of robust material
such as nanostructured metal oxides and chemically cross-
linked polymers, which exhibit greater resistance to humidity
and thermal variations [234], [235]. Protective coatings, such
as hydrophobic nanoporous membranes, shield sensitive layers
from contaminants while maintaining selective permeability to
target biomarkers [236]. In sensors like QCM and SAW, which
are more susceptible to temperature variations [237], [238],
compensation techniques often involving reference channels
or dual-mode oscillators are employed [237], [239]. Integrated
micro-heaters and on-chip temperature regulation are common
in metal-oxide sensors to ensure consistent operating condi-
tions and accelerate recovery [240]. Modern sensor systems
also employ on-board calibration, involving either reference
gases or algorithmic baseline correction using signal pro-
cessing and ML models [241]. Sensor redundancy and data
fusion, when combined with Al, can enhance robustness by
compensating for drift and cross-sensitivity [242]. For portable
or wearable POC platforms, modular packaging and encapsu-
lation are crucial to isolate the sensor from moisture ingress,
mechanical vibration, and electromagnetic interference [243].
C. Detecting Diseases

Detecting diseases in exhaled breath includes detecting
specific IMs, such as biomarkers or microbial DNA sequences,

and physical breath parameters, such as breathing patterns,
temperature, or humidity. Breath analysis may even reveal
genetic material [244], which is beyond the scope of this
survey; however, it can be highly relevant in terms of security
considerations. This survey highlights selected relevant studies
focusing on biomarkers and microbial DNA to illustrate de-
tection possibilities, given the vast research in this field [245,
Fig. 1].

1) Detection through Specific Information Molecules

One major avenue of research for disease detection in
exhaled breath is to utilize targeted molecular analysis, and
identify IMs that correspond to specific diseases. The detection
of specific IMs can be split into the fields of biomarkers
and microbial DNA, which will both be highlighted in this
section. Closely related to the detection itself is the difficulty
of obtaining data sets. Therefore, in this section, existing
databases related to analyzing the exhaled breath are also
highlighted based on the IM.

a) Biomarkers

Diabetes: Early studies used iodine titration to detect breath
acetone, linking it to diabetes [246]. Reviews confirm higher
acetone levels in Type I diabetes but not in Type II [226],
[247], [248]. However, classification based on acetone alone
is unreliable [247]. Additional compounds like 3-hydroxy-
butan-2-one and butane-2,3-dione have been identified [247].
Advances in sensor-based detection further refine breath anal-
ysis [245].

Asthma: Harkins er al. [249] compare NO concentration
in the exhaled breath of asthmatic patients to control subjects.
The clinical trial in [249] demonstrates that asthmatic patients
with an exacerbation have a higher mean concentration of NO
in the exhaled breath than patients without an exacerbation.

Cystic Fibrosis: Hydrogen cyanide in exhaled breath serves
as a marker for Pseudomonas aeruginosa infection in cystic
fibrosis patients [250]. Smith et al. [251] confirm its presence
in both mouth and nasal exhalations, correlating its levels with
the bacterium, which also produces hydrogen cyanide in vitro.

Lung Cancer: Dent er al. [252] identify distinct VOC
patterns and genetic changes in lung cancer patients’ exhaled
breath condensate. A study by Sakumura e al. [253] shows
89.0% accuracy in lung cancer screening using gas chro-
matography and mass spectrometry to detect five VOCs. A
comprehensive review by Buszewski et al. [254] categorizes
lung cancer biomarkers into six classes: alcohols, aldehydes,
ketones, hydrocarbons, esters, and heterocycles. Moreover,
elevated interleukin-6 levels in exhaled breath may also serve
as an early detection marker [255].

Colorectal Cancer: A study on methane concentration
in the exhaled breath of colorectal cancer patients reveals
that 80% of patients have higher methane levels than con-
trol subjects, suggesting a difference in anaerobic intestinal
flora [256]. However, subsequent research does not confirm
a correlation between elevated methane levels and colorectal
cancer, with 63% of patients and 56% of controls showing
detectable methane concentrations in their breath [256], [257].

Kidney Disease: The study in [258] on biomarkers in the
exhaled breath of chronic kidney disease patients identifies
triethylamine, aliphatic hydrocarbons, and sulfur components
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in their breath, which are absent or at lower levels in control
subjects. These findings [258] suggest that these compounds
may indicate chronic kidney disease or coexisting conditions.

Myocardial Infarction: Weitz et al. [259] identify pentane
in the exhaled breath of myocardial infarction patients, al-
though also present in the exhaled breath of control subjects.
Further research finds no significant difference in pentane
concentrations between patients and controls [260], but a
higher concentration of isoprene is observed in the patients’
exhaled breath [260].

Obstructive Sleep Apnea: Olopade et al. [261] discuss
increased pentane and NO levels in the breath of obstructive
sleep apnea patients post-sleep, unlike controls. Additionally,
controls show elevated oral NO pre- and post-sleep. Carpag-
nano et al. [228] report higher interleukin-6 and 8-isoprostane
levels in sleep apnea patients, correlating with disease severity.

Renal Failure: Davies et al. [227] show that patients with
chronic renal failure, especially those on Continuous Ambu-
latory Peritoneal Dialysis (CAPD), display elevated levels of
NHj in exhaled breath. Similarly, hemodialysis patients also
show increased NH3 and ethylene levels [262]. Kearney et
al. [263] report lower breath NHg in H. pylori-positive patients
compared to uninfected controls.

Liver Disease: Isoprene is identified as a biomarker for
liver disease, detectable in the exhaled breath [264]. Its for-
mation occurs “along the mevalonic pathway in cholesterol
synthesis” [264], [265].

Schizophrenia: Phillips, Sabas & Greenberg present
in [266] a study showing that the mean alveolar gradient of
pentane and carbon disulfide in the exhaled breath of patients
suffering from schizophrenia is higher compared to the exhaled
breath of control subjects.

Ulcerative Colitis: Sedghier al. [267] investigate ethane lev-
els in the exhaled breath of ulcerative colitis patients. Reactive
oxygen species can damage tissues during colitis, triggering
“lipid peroxidation of omega-3 and omega-6 fatty acids” [267].
Ethane, a byproduct of this process, is determined to measure
this peroxidation. The results of the study reveal elevated levels
in colitis patients compared to control subjects.

Although smoking is not a disease, it increases the risk of
stroke and cancer, making it relevant to this work. Vasthare
et al. review carbon monoxide sensors for detecting smokers
via exhaled breath analysis [268]. These sensors effectively
distinguish smokers from non-smokers and support smoking
cessation programs [268]. Furthermore, Ryter et al. [269]
identify carbon monoxide as a breath marker for oxidative
stress or “stimulation by pro-inflammatory cytokines” [265],
for example, in smoking cessation.

b) Microbial DNA

Bacterial Infections: During breathing, different bacte-
rial pathogens can be emitted, including, among others,
Hemophilus influenzae, Escherichia coli, and Legionella pneu-
mophila. Hemophilus influenzae, for example, can cause pneu-
monia and meningitis. The study in [270] demonstrates their
detection in the exhaled breath using a protocol that inte-
grates the collection of EBC and loop-mediated isothermal
amplification. In [271], a respirator is proposed to detect
mycobacterial DNA in exhaled breath samples. The proposed

respirator includes an exhalation reservoir, a microfluidic chip,
recombinase polymerase amplification assays, and lateral flow
assays, enabling the detection of Mycobacterium tuberculosis
DNA directly from exhaled breath samples.

Viral Infections: Besides bacterial infections, viral in-
fections can be detected by analyzing the exhaled breath.
Studies, primarily published during or after the COVID-
19 pandemic, demonstrate that SARS-CoV-2 RNA can be
detected in exhaled breath samples using Polymerase Chain
Reactions (PCRs) [134], [138], [272]. Therefore, EBC has
also been explored as a diagnostic medium, as it contains
lower respiratory droplets, potentially improving detection
sensitivity for SARS-CoV-2 [54], [273]. Apart from SARS-
CoV-2, for example, the Influenza virus RNA is detected in
exhaled breath using Quantitative Polymerase Chain Reaction
(qPCR) [274]. Additionally, exhaled breath is used to detect
Human papillomavirus, known as HPV, in the EBC of lung
cancer patients [275].

Fungal Infections: Fungal infections are mainly detected
by analyzing the exhaled breath in terms of VOCs [276].
Besides, for detecting fungi, the EBC is used [277]-[279],
whereby most of the studies focus on Aspergillus [278], [279],
a genus of mold (fungus) that includes a wide variety of
species. One of the most well-known and clinically significant
species is Aspergillus fumigatus. It can cause aspergillosis,
which affects the lungs and other organs. The most com-
mon form of aspergillosis is invasive pulmonary aspergillo-
sis, which primarily affects immunocompromised individuals,
such as those with cancer or organ transplants.

¢) Data Set Availability

For a diagnostic validation, structured and well-documented
data sets are crucial. BreathBase®Data [280] and the Human
Breathomics Data Base (HBDB) [281] are key databases in
this field. BreathBase®Data holds over 160,000 breath profiles
with clinical data, covering conditions like cancer, COPD,
asthma, and interstitial lung diseases. The HBDB, on the other
hand, catalogs 1,143 VOCs linked to 60 diseases, sourced from
2,766 studies, using text mining to map breath compounds to
diseases and biochemical pathways [281].

2) Detection through Physical Breath Parameters

Besides detecting specific IMs, various diseases can be
detected through more physical and superficial parameters,
whose detection techniques are more easily available without
extensive molecular analysis.

a) Physical Properties

Besides detecting disease by analyzing IMs in the exhaled
breath, the physical properties of the exhaled breath, such
as temperature and humidity, can also be used for disease
detection.

Temperature: Popov [44] identifies Exhaled Breath Tem-
perature (EBT) as a potential disease marker. Studies show
elevated EBT in asthmatic patients, decreasing with asthma
control [55], [282]-[284], and lower EBT in COPD, rising
during exacerbations [285]-[287]. Higher EBT also correlates
with non-small-cell lung cancer severity [288], [289]. The
study in [290] reveals that EBT rises before ear temperature
in infections, making it a potential early diagnostic marker.
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Humidity: Breath humidity reflects respiratory tract hy-
dration, mucus production, and fluid balance [56], aiding in
detecting conditions like cystic fibrosis, chronic bronchitis,
and heart failure. However, it plays a minor role in disease
diagnosis. Instead, humidity can affect detection reliability by
acting as a cross-reactive parameter [291], [292], potentially
interfering with VOCs analysis in diabetes monitoring [291].

b) Spatial Origins

The spatial origin of exhaled breath (nasal or oral) impacts
both oral and systemic health. Differentiating between the
spatial origin, i.e., nasal or oral breathing, involves analyzing
VOCs, temperature, breathing patterns, and acoustic signals.
VOC concentration and composition varies based on the ex-
halation route [293]. Utilizing thermography can differentiate
between nasal and oral breathing by monitoring the tempera-
ture changes in the two facial regions [294]. Apart from the
surveyed sensors in Section V-B, acoustic sensors can also help
distinguish between nasal and mouth breathing by analyzing
breath sounds. [295] demonstrated that the spatial origins can
be distinguished using acoustic sensors placed on specific body
locations, followed by signal processing.

c) Flow Rate

A wide range of sensors can detect disease based on the
dynamics of breath flow, specifically breath rate, such as
temperature, pressure, strain, acoustic, or optical sensors [296].
Distinct patterns in the respiratory rate and rhythm in the
exhaled breath can indicate specific respiratory conditions, for
example, associated with disorders such as Biot’s respiration,
tachypnea, bradypnea, and Cheyne-Stokes respiration [297],
[298]. Analyzing breath patterns may also help diagnose neu-
rological diseases, such as Parkinson’s disease through noc-
turnal patterns [299] or Alzheimer’s disease through changes
in breath rate [300].

D. Receiver Modeling

For the various sensor types listed in Section V-B, the actual
form between the concentration of target molecules C' and
the measured response can vary depending on the underlying
physical or chemical transduction mechanism, but a generic
approximation that has been widely adopted in the literature
can be expressed as

AM =~ KC?,

where KC and « are sensor specific parameters. For example, in
metal-oxide sensors, AM corresponds to the change in sensor
resistance, with K as the gas-specific response coefficient
and « as the sensitivity parameter [301]. In QCM and SAW
sensors, AM represents the frequency shift due to deposited
gas mass, with C dependent on the crystal electrode area, the
shear modulus of quartz, and quartz density [302]. For mass
spectrometers, /C is an instrument-specific sensitivity factor
influenced by ionization efficiency, transmission efficiency,
and detector response. When AM represents the change in
absorbance for optical sensors, K is determined by the molar
absorptivity and light path length as described by the Beer-
Lambert law [303].
VI. EXPERIMENTAL TESTBED SETUPS

This section discusses experimental platforms for air-based

communication from the MC community and other fields

12)
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(e.g., medicine and epidemiology) in Section VI-A and Sec-
tion VI-B, respectively. Here, the MC testbeds refer to those
clearly defining a communication system. While previous sur-
veys, for example, [2], emphasize environmental constraints,
this review focuses on equipment rather than communication
performance. Testbeds from other fields are incorporated for
their relevance, though this review is not exhaustive. Instead,
representative platforms are highlighted to compare testbeds
and explore cross-domain insights in Section VI-C. The com-
parison of surveyed testbeds can be found in Table VIIL.

A. Testbeds from the Molecular Communication Field

The ABMC testbed by Farsad ef al. [16] is the first of its
kind, using an electronic sprayer to release alcohol molecules
detected by metal oxide sensors. This platform is helpful for
initially studying engineered ABMC systems. A key finding
from the experiments is the system’s nonlinear behavior, chal-
lenging traditional linear MC models and highlighting the need
for new analytical approaches. Building on this work, Koo et
al. [306] enhance the platform with additional spray nozzles
and metal oxide sensors, creating a Multiple-Input Multiple-
Output (MIMO) MC system. This setup enables the study of
multiple individual cases and the determination of interlink
interference. In addition, by introducing distinct biomarkers
per transmitter, this setup could investigate interference in
cases where sensors lack specificity and support the design of
algorithms to accurately decode signals from multiple sources.

Unlike the static transmitters in [16], [306], Qui et al. [304]
explore mobility by mounting an electronic sprayer on a robot.
Similar to the work in [16], alcohol molecules are released and
detected by a metal oxide sensor. This testbed reveals mobility-
induced transmission errors, necessitating the development of
forward error correction codes for reliable communication in
mobile MC systems. By emulating human movement, this
platform provides a framework for studying dynamic scenarios
and bridging static-mobile transmitter modeling.

Purnamadjaja er al. [301] present a mobile ABMC system
where a robot leader releases pheromones to influence other
mobile robots equipped with metal oxide sensors. Inspired
by queen bee pheromones, this system demonstrates how air-
based signaling can guide coordinated actions. The concept
of leader-follower dynamics offers valuable inspiration for
mobile distributed sensing systems aimed at detecting exhaled
breath biomarkers. In hospitals or crowded spaces, a “central
sensor” could detect critical biomarkers and relay data to mo-
bile sensors, enabling spatial mapping of targeted biomarkers
for disease monitoring and outbreak detection.

Shakya et al. [308] investigate a vapor propagation system
using temporally modulated chemical plumes to correlate
signals with transmitted patterns. This approach enhances
detection at meter-scale distances, even with non-selective
sensors. Their testbed features an electronically controlled
transmitter that releases isopropanol vapor in binary patterns
via a solenoid valve into a 2.5 cm acrylic tube with adjustable
wind speeds. High-speed photoionization detectors measure
vapor concentrations, enabling the detection of 1ppb iso-
propanol against a 1 ppm ethanol background in turbulence,
demonstrating potential for low-cost chemical sensing and
source localization. Ozmen et al. [309] extend this to MC,
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TABLE VII: Categorization of experimental testbeds by transmitter and receiver setup.

System Subject References
Electronic sprayer MC [16], [304], [305]
Transmitter Pump-driven system [301], [306]-[310]
Manikin Non-MC [311]-[314]
Human [801, [811, [315]-[319]
Metal oxide sensor I\N/I(ErijC Eg]” [301], [304], [306]
High-speed camera I\NA&-MC {;8]5]
Mass spectrometer [307]
Photoionization sensor MC [308], [309]
Receiver Surface acoustic wave sensor [310]
CMOS-MEMS gas sensor [311]
Aerosol monitors [312], [313], [315]
PCR and viral plaque assay [314]
Microscope slides Non-MC | [315]
Particle image velocimetry [81], [316], [317]
Schlieren imaging [318]
Chemiresistive thin film [319]

achieving low bit error rates at data rates up to 40bit/s at
a distance of up to 1.4m. With high temporal sensitivity,
the system enables selective identification of disease-related
biomarkers, supporting non-invasive diagnostics.

Cole et al. [310] investigate MC as an infochemical commu-
nication system inspired by insect pheromone biosynthesis and
detection. They develop chemoemitters that generate precise
pheromone signals using VOCs and chemoreceivers modeled
after insect olfactory systems with SAW devices. Preliminary
results demonstrate the integration of these synthetic mod-
ules into a “moth-on-a-chip” system, highlighting potential
applications in pest management and swarm robotics. Simi-
lar chemoreceiver principles can be applied to detect VOCs
in exhaled breath, where SAW devices selectively capture
biomarkers linked to metabolic processes or disease states.
These interactions produce measurable acoustic wave changes,
enabling non-invasive health monitoring.

Giannoukos et al. [307] explore scent-based MC, develop-
ing an advanced odor emitter for controlled olfactory trans-
mission. Using a portable mass spectrometer, they generate,
encode, and spatially encrypt VOCs like acetone and toluene in
dynamic patterns over tubular chambers up to 3 m. They also
examine signal modulation via flow rate and temperature, with
applications in entertainment, security, and medicine. This
work is extended in [320], where chemical signals encoded
with the American Standard Code for Information Interchange
transmit digital information via odors over 4m, using On-
Off Keying (OOK) and Concentration Shift Keying (CSK)
for secure communication. Similarly, in [321], a controlled
tubular transmission safely transports biomarkers like bacteria
and viruses to a mass spectrometer for analysis, reducing
environmental exposure.

Bhattacharjee et al. [305] develop a macroscopic ABMC
testbed using fluorescein for data transmission in industrial
networks. A spray nozzle serves as the transmitter, with high-
speed cameras enabling detection over centimeter-to-meter
distances. Inspired by this, Schurwanz et al. [10] apply MC
concepts to respiratory particle transmission from coughing,
speaking, and breathing. Fluorescent dye simulates aerosol
dispersion, with the Pogona simulator [322] assessing trans-
mission scenarios. Results confirm the effectiveness of masks
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Fig. 9: Illustration of a particle image velocimetry (PIV) setup.

and ventilation in reducing aerosol spread. Schurwanz et
al. [323] further model viral transmission as a multiuser MC
system, where infected individuals broadcast pathogen-laden
particles. Infection follows a threshold detection model, with
viral load affecting disease severity, guiding strategies to limit
information transfer between infected and healthy individuals.

B. Testbeds from Other Fields

Xie et al. [315] investigate the emission of respiratory
particles by healthy individuals during talking and cough-
ing using a sealed box. In the experiments, large particles
are captured on microscope slides and water-sensitive paper,
which change color upon contact, while smaller particles are
analyzed in real-time with a dust monitor to determine their
size distribution.

Gupta et al. [80] measure exhalation airflow using a spirom-
eter with capillary tubes, where a pressure drop across the
tubes indicates flow rate according to Poiseuille’s law. The
direction of airflow is visualized using 120 Hz photography
with cigarette smoke as a tracer.

Particle Image Velocimetry (PIV) is widely used to visual-
ize exhaled airflow, employing a double-pulsed laser, optics,
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Fig. 10: Illustration of a Schlieren imaging setup.

particle seeding, and a camera, as shown in Fig. 9. Introduced
into the airflow, tiny seeding particles serve as tracers that
follow the flow without altering its dynamics. Successive laser-
illuminated images are captured, and flow velocity vectors are
computed based on particle displacement patterns between
frames. In the past, PIV has also been used to measure
cough airflow velocity [316], cough jet characteristics [81],
and exhaled air speed during coughing and speaking [317].
Furthermore, Chao ef al. [317] use Interferometric Mie Imag-
ing (IMI) with PIV to measure particle size, revealing mean
diameter of cough droplets to be 13.5 um with a concentration
of 2.4-5.2cm™, and the mean diameter of speech droplets to
be 16 um with a concentration range of 0.004-0.223 cm™.

Schlieren imaging is another effective way of visualizing
exhaled airflow by detecting light refraction due to density
differences between exhaled and ambient air, as demonstrated
by Tang et al. [318] (cf. Fig. 10). This method evaluates the
efficacy of interventions like tissue barriers in reducing the
transmission of air-based infections. For example, layering
four tissue sheets effectively contains sneeze puffs, demon-
strating the benefits of simple protective measures [318].

Zhang et al. [312] investigate ventilation effects on res-
piratory particle dispersion using a thermal manikin (30 °C)
and a commercial particle generator. A test chamber with a
ventilation system serves as the propagation channel, with
particle concentrations measured at various locations. Findings
highlight ventilation’s role in reducing particle spread from
coughing and breathing through the nose.

Perell6-Roig et al. [311] develop a portable CMOS—-MEMS
gas sensor for detecting VOCs, targeting acetone for non-
invasive diabetes diagnosis. Fabricated with 0.35 um CMOS
technology, the system uses two 4-anchored MEMS plate
resonators with poly-4-vinylheduorocumyl alcohol coating to
enhance acetone selectivity while reducing butane interference.
Experiments show a manifold increase in acetone response
with a detection limit as low as 20 ppb, demonstrating its po-
tential for cost-effective breath analysis and POC diagnostics.

Jaeschke et al. [231] present a compact e-nose for breath
analysis with a modular design that supports up to thirty metal
oxide sensors. Its temperature-controlled chamber detects ace-
tone, isoprene, pentane, and isopropanol, with integrated pres-
sure, humidity, and temperature sensors. Pattern recognition
enables VOC discrimination in varying humidity, highlighting
its potential as a POC diagnostic tool.
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Additionally, Shang et al. [319] introduce a portable,
wireless breath sensor array system for non-invasive lung
cancer screening. It integrates chemiresistive thin films of
gold nanoparticles, wireless transduction, and flow control
for breath sampling. The system detects cancer-specific VOC
with a 6ppb limit, showing high sensitivity and selectivity.
Simulations confirm tunable chemiresistive responses, while
experiments with spiked human breath samples validate dis-
ease discrimination. Its stable performance, portability, and
cost-effectiveness highlight its potential as a POC tool for early
lung cancer detection.

Lommel et al. [313] introduce a method to study virus
spread via aerosols in indoor settings using an emitter manikin
releasing NaCl-water tracer particles. Recipients measure in-
haled tracer levels at different distances, enabling real-time
evaluation of protection measures like ventilation. This is
supported by an analytical model that predicts time-dependent
aerosol concentrations based on distance. Schulz et al. [324]
extend this system to study aerosol dispersion in theatres,
opera houses, arenas, and lecture halls.

Noti et al. [314] present an investigation on the effects of hu-
midity on influenza-laden aerosols in a simulated exam room
with coughing and breathing manikins. For examination, a bio-
aerosol sampler is used to fractionate the aerosol. Infectious
and noninfectious virus amounts are measured via real-time
quantitative polymerase chain reaction and viral plaque assay.

To investigate the interpersonal particle transport in an
aircraft cabin mockup, Zhang et al. in [325] use a particle
generator and nanofiber air filters. Arizona test dust is used in
a fan-driven particle generator to measure the size-dependent
particle removal efficiency of the filtration units.

C. Similarities and Differences of the Testbeds

ABMC and non-MC platforms share a focus on controlled
signal detection but differ in objectives. For instance, MC
systems, like those by Farsad et al. [16] and Koo et al. [306],
use electronic sprays and sensors for molecular diffusion stud-
ies, while non-MC platforms, such as Gupta’s spirometer [80]
and Adrian’s PIV setup [326], analyze airflow and particle
dynamics. MC testbeds prioritize encoding and transmission,
as shown by Shakya et al. [308] and Ozmen et al. [309],
while non-MC systems focus on real-time monitoring, exem-
plified by Schlieren imaging [318] and CMOS-MEMS gas
sensors [311].

Advancements in sensor technology and airflow modeling
can enhance MC platforms. High-sensitivity VOC detection
in breath analysis [231], [319] could improve biomarker de-
tection, while PIV and Schlieren imaging offer insights into
molecular signal dynamics. Likewise, MC techniques in signal
modulation and interference management [304], [306] could
benefit targeted drug delivery and swarm robotics. Cross-
disciplinary collaboration can drive innovations in communi-
cation, diagnostics, and environmental monitoring.

VII. OPEN CHALLENGES AND FUTURE RESEARCH
ROADMAP

Exhaled breath contains biomarkers that provide insights
into respiratory diseases, infections, and metabolic processes.
Within the IoBT, this data enables non-invasive detection
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TABLE VIII: Open challenges pertaining to non-invasive diagnosis of human health anomalies by detecting exhaled breath biomarkers.

Life Sciences Underlying Factors

Engineering Sciences

Underlying Factors

Target Group B
Diversity

Demographic, lifestyle, and

regional variability

« Baseline variations and
comorbidities

o Sensor calibration and ML
model variability

e Need for standardization

Stochastic Channel Modeling « Environmental variability

modeling
o Stochastic and
simulation-based models
« Dynamic model research

Standardized « Different sampling protocols System Reliability and Resilience « Noise and sensor instability
Breath Sample « Influence of interfering agents o Channel distortions
Collection o Data integrity
o Adaptive environment-resilient
techniques
Disease Specificity « Non-unique VOCs Real-Time Monitoring o Time-bound communication
o Lack of distinct breath « Low-latency data processing
signatures « Edge computing
o Negative latency systems
Binders o Opver-reliance on binding Network Architecture and o [oBT system integration
agents Protocols « Interoperable data formats

o New reliable binders for
emerging diseases

o Health record and decision
system compatibility
« Population scalability

Biomarker o Trace biomarker detection
Concentration and « High-sensitivity sensors

Inbound Communication o Lungs as IM receivers

« Internal biomarker sensing

Quantification « Pathogen detection and o Exposure to allergens or toxins
differentiation « Bio-compatible sensor

o Increased system complexity
Clinical « Multifactorial symptoms Calibration o Sensor degradation
Decision-Making « Biomarker interpretation « Sensor material innovation

o Self-calibration algorithms
Disease « Anomaly detection and Data Privacy Concerns « Sensitive health data exposure
Remediation response o Data leaks and false diagnoses

Feedback o Adaptive feedback mechanism
« Bio-compatibility and control

« Potential targeted bio-threats
o Encryption and anonymization

Regulatory « Approval by regulatory bodies
Challenges o Lack of standardized protocols
« Absence of “gold standard”

Sample Collection o Dust or pathogen interference

« Long sampling time

Portability of Devices o POC usability constraints

o In situ detection
« Lab-free operations

and real-time monitoring, supporting precise diagnosis and
treatment. However, as the field is still emerging, challenges
remain for life sciences and engineering communities, from
understanding biomarker complexities to overcoming hurdles
in sensing, communication, and data analysis. This section
discusses these challenges in detail with a summary presented
in Table VIIL.

A. Challenges for Life Sciences

1) Target Group Diversity

Detecting health conditions through exhaled breath is chal-
lenging due to metabolic, physiological, and environmen-
tal variability across ages, sex, and regions [327], [328].
Diet, lifestyle, and local disease prevalence further complicate
biomarker interpretation [329]. Baseline differences and co-
existing conditions can obscure disease markers, while sensor
calibration and ML models variability add complexity. There-

fore, standardizing breath collection and ensuring adaptable
diagnostic models against various diversities are essential for
accuracy.

2) Standardized Breath Sample Collection

The variety of breath sampling methodologies and protocols
leads to great disparities in breath sampling and can affect
analysis. Table IX summarizes impact factors in the breath
sample collection and possible impacts on diagnostic accu-
racy. The impact factors are due to differences in sampling
protocols (e.g., sampling time) and interference in real-world
settings (e.g., ambient air) and result in different diagnostic
inaccuracies. A standardized sampling protocol for exhaled
breath would enable comparison across different analyses;
however, this is not feasible due to the significant variability in
exhaled breath analytics [331], [334]. In the literature, some
guidelines for certain methods or applications are available.
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TABLE IX: Impact factors and their impacts on diagnostic accuracy in exhaled breath sampling protocols.

Factor Category Underlying Factors

Effects on Diagnostic Accuracy

Sampling Flow Rate and

Volume [330]-[332] sampling time versus volume

Breathing pattern, sampling of single or multiple breaths,

Biomarker concentration, sample size, and
sample origin

Breath Type [330], [331]

End-tidal and alveolar breath, timing of sample
collection, mouth and nose exhalation, use of nose clip

Biomarker composition and changes due to
microbial activity

Contamination [330], [333]

Salivary contamination, contaminants in ambient air

Increased biomarker levels, false signals due
to contamination

Individual
Variables [331]-[333]

Airway caliber and lung function, circadian rhythm,
blood pressure, age and sex, menstrual cycle, systemic

Variability in exhaled biomarkers

diseases, respiratory tract infections, diet, and smoking

External Influence [331],
[333]

Ambient air, temperature

Background contamination, biomarker
transformation, dilution due to condensation

For the measurement of NO in exhaled mouth or nose breath,
the American Thoracic Society released guidelines regarding
the collection of breath samples [332]. The American Thoracic
Society/European Respiratory Society published recommenda-
tions for EBC sampling and analysis [330], [333]. Winters et
al. [335] decreased the variability of the volume of EBC using
visual and audio signals to set the inhalation and exhalation
volumes and the frequency of the individuals. The ReCIVA®
breath sampler is a standardized non-invasive device that
collects VOCs in sorbent tubes by controlling flow rate, breath
volume, and COg-guided breath phase selection, ensuring
consistent sampling [336]. While recent advancements such
as new sampling devices and protocol-guided breath sampling
have reduced intra- and inter-assay variability, the absence
of universal standards continues to limit comparability across
studies and hinders the clinical translation of breath-based
diagnostics.

3) Disease Specificity

Disease specificity in breath-based diagnosis is challenging
as many inflammatory disorders, infections, and metabolic
issues produce similar VOCs and byproducts. Although the
concentration levels vary, their differentiation remains com-
plex. For instance, CO release makes asthma and COPD hard
to differentiate [49]. Common VOCs like acetone arise from
standard biological processes, complicating diagnosis [337].
Some diseases even lack distinct breath signatures, requiring
additional diagnostic tools for accuracy.

4) Binders

Many breath diagnostic devices rely on implementing bind-
ing agents such as antibodies or aptamers to specifically recog-
nize pathogens. These binders act as one of the bottlenecks in
developing breath diagnostic devices. The emergence of new
diseases and variants leads to the need to develop new reliable
and exceptionally stable binders [338].

5) Biomarker Concentration and Quantification

Low biomarker concentrations in exhaled breath make de-
tection challenging, requiring highly sensitive sensors. Quanti-
tative measurement is crucial for monitoring disease treatment
and severity [339]. Hence, breath sensors must detect and dif-
ferentiate various pathogens (e.g., respiratory syncytial virus,
influenza) for broader health applications.

6) Clinical Decision-Making

Interpreting biomarkers may play a significant role in
clinical decision-making, particularly in complex diagnostic
environments where multifactorial conditions or overlapping
symptoms are present. Biomarkers can provide objective and,
more importantly, quantifiable data, e.g., for supporting a
diagnosis or monitoring a chosen treatment. Therefore, even
if multiple factors or symptoms complicate the diagnosis,
integrating a biomarker analysis allows clinicians to move be-
yond symptom-based treatments or assessments toward a per-
sonalized, precision-medicine approach. However, interpreting
biomarkers faces challenges, such as individual variability or
the influence of confounding factors, e.g., age or sex.

7) Disease Remediation Feedback

The IoBNT envisions swarming nanodevices for health
monitoring and treatment [18]. Challenges include detecting
anomalies in exhaled breath and coordinating responses, such
as targeted drug delivery [340], toxin removal, and tissue
repair. A robust feedback system is needed to relay biomarker
data, ensuring real-time adaptation while addressing bio-
compatibility and control issues.

8) Regulatory Challenges

For breath diagnostics to reach the clinic, they have to
be approved by the regional authorities (e.g., USA: Food
and Drug Administration (FDA), EU: European Medicines
Agency (EMA), which requires significant time, resources, and
strategic planning [341]. During approval, breath diagnostics
often face significant challenges due to the lack of standardized
sampling and analysis protocols. Additionally, often no "gold
standard" exists to benchmark the new breath test against,
which results in a gap between new approaches and actual
translation into the clinic.

B. Challenges for Engineering Sciences

1) Stochastic Channel Modeling

This survey revealed the inherent complexity and dynamic
nature of the breath communication channel, driven by en-
vironmental [112], [113] and physiological [77] variability. A
primary lesson learned is that accurate modeling of turbulence,
airflow dynamics [92], [119], and environmental disturbances
can be extremely challenging. Hence, broad stochastic mod-
els [120] and detailed simulations [123] are crucial for accu-
rate biomarker detection. Additionally, research into dynamic
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models [122], [124] is needed to ensure consistent and reliable
diagnoses despite these varying factors.

2) System Reliability and Resilience

In parallel to the channel models, we have identified sev-
eral factors of instability for breath-based ABMC, including
dynamic environments [113], [119], molecular noise [115],
[117], sensor sensitivity [301], and differences in channel
geometry [77]. Ensuring reliable and resilient exhaled breath
monitoring and analysis requires addressing signal weakening,
interference, and network disruptions, particularly at the en-
gineered receiver side. Reliability translates to data integrity,
fault tolerance, and consistent performance under varying
conditions, while resilience allows recovery from failures and
ensures long-term adaptability and operability. Key strategies
include error detection and correction, mitigating false diag-
noses, redundant data transmission, and adaptive techniques to
maintain communication despite environmental challenges.

3) Real-Time Monitoring

Breath-based disease detection faces significant challenges
in enabling real-time monitoring and response [233], [328]. In
the context of health-critical applications, real-time monitoring
refers not merely to fast sensing, but to the timely acquisi-
tion, processing, and communication of diagnostic information
within strict temporal constraints. For exhaled breath analysis
systems to function reliably in this context, the entire sensing-
to-decision pipeline must be optimized for low-latency per-
formance. This includes not only sensor response time and
signal processing delays, but also the network communica-
tion latency, particularly in distributed or wearable deploy-
ments [342]. In order to mitigate these issues, edge computing
has emerged as a key enabler, allowing preliminary signal
processing and anomaly detection to be performed locally near
the sensor node [342], [343]. Edge inference can significantly
reduce end-to-end latency and support low-power real-time
analytics. Moreover, communication-aware system design us-
ing priority-based task scheduling [344], quality-of-service-
oriented media access control protocols [345], and adaptive
data reduction techniques (e.g., event-driven sampling or com-
pressed sensing) can further improve responsiveness [346]. In
time-critical scenarios, predictive frameworks such as negative
latency [347], which anticipate critical system states before
they occur, may enable preemptive alerts for silent or subclini-
cal phases of disease. Importantly, real-time guarantees require
not just low average latency but also bounded worst-case
latency [348], which is crucial in clinical applications such
as pre-surgical monitoring, infection detection, or metabolic
tracking.

4) Network Architecture and Protocols

We propose a macro-scale communication approach for
ABMC breath analysis. Integrating this system into an IoBT
requires only a few adaptations to network architectures
and protocols due to the use of macroscale communication
channels and commercially available sensing technology. We
believe a first practical step can be taken towards a future
TIoBNT, which could still take years of research, regulation,
and standardization to be commercialized. Instead of requiring
novel bio-cyber interfaces [20], [21], and significant progress
in creating networks from bio-nano machines [18], the [oBT
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is more easily connected to existing network infrastructure.
However, some challenges remain. Exhaled breath analysis
in the IoBT will require integrating molecular sensors, RF-
based communication, and various sensors within wireless and
cloud networks to improve real-time diagnostics. Challenges
include defining architectures, standardizing protocols, ensur-
ing interoperability, and managing data transmission, including
compatibility with electronic health records [28] and clinical
decision support systems. Overcoming this problem demands
the establishment of universal data formats and communication
protocols. Additionally, scaling this system to millions of users
requires efficient big data management, secure communication,
and advanced analytics for accurate diagnostics.

5) Inbound Communication

This survey examines health diagnostics by detecting spe-
cific IMs and breath parameters in an outbound communica-
tion system. We have identified the human as a transmitter
of IMs, the respiratory system and surrounding space as a
channel, and engineered sensors as the receivers, making
diseases and conditions within the human body the commu-
nicable information. However, a different perspective could
also consider the inbound communication system, where the
URT and the lungs act as a natural channel and receiver for
IMs like pollen or pollutants from the outside environment,
with polluters such as cars or trees acting as the transmitters.
The lung, specifically the alveoli, facilitates gas exchange.
Inhaled external IMs need to be processed by the human respi-
ratory system, and health issues can arise during this process.
However, inbound communication analysis could involve the
detection of biomarkers inside the body to assess external
influences, such as harmful exogenous gases or allergens,
such as pollen. The engineered system now resides inside the
human body, requiring miniaturized bio-compatible sensors.
Examples from recent research include inhalable nanosensors
for the early detection of lung cancer [349], as well as
ingestible capsules for sensing inside the gut [350], opening
up new avenues for biomarker sensing from environmental
influences on human health. Progress in these areas could
bridge the gap between an IoBT and IoBNT, however, adding
significantly to the system complexity. Reliable molecular data
transmission and accurate correlations between biomarkers
and external gases within this type of system add another
significant dimension that should be the focus of a future
survey.

6) Calibration

Many breath biomarker sensors require calibration to enable
quantification. They rely on the commercial availability of
the target biomarker in sufficient quality [351]. Calibration
is usually performed in a laboratory setting and might not
be transferred to real-world settings due to different environ-
mental conditions. Additionally, breath biomarker sensors face
calibration drift due to aging, environment, and contamina-
tion [130]. Advancements in sensor materials, design, and self-
calibration algorithms are essential to maintaining accuracy.

7) Data Privacy Concerns

The vast selection of identifiable diseases and conditions
we discussed in this survey underscores significant privacy
risks associated with the inherently sensitive nature of breath
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biomarker data. Intercepting exhaled breath can expose sen-
sitive health data, posing privacy risks. Patient confidentiality
and data security must be integrated at all stages, from sensor
design to data management and transmission protocols, to
prevent tampering that could lead to data leaks or false
diagnoses. Breath analysis may also reveal genetic material
from pathogens [244], raising security concerns. Malicious
actors could exploit stolen data for targeted bio-threats. Strong
encryption, restricted access, data anonymization, and strict
biosecurity protocols are essential to mitigate these risks.

8) Sample Collection

In addition to the need for further standardization, current
breath sample collection methods often suffer from limited
practicality. Biomarkers in exhaled breath are typically cap-
tured using filters, sorbent materials, or condensers. However,
these methods are challenged by the presence of interfering
particles such as dust, aerosols, or pathogens, which may
lead to filter clogging, contamination, or inaccurate read-
ings [118]. Moreover, the inherently low concentrations of
breath biomarkers necessitate the collection of large sample
volumes, often resulting in prolonged sampling durations that
hinder feasibility in clinical or point-of-care settings. To enable
broader implementation of breath-based diagnostics, there is
a need for improved sampling technologies that are both
robust and user-friendly with acceptable sampling times, while
ensuring analytical sensitivity and reproducibility.

9) Portability of Devices

Sensors and devices for exhaled breath analysis must be
efficient, robust, cost-effective, and portable for POC use.
Future efforts should focus on applying novel technologies
for in situ detection in clinical settings [118]. To ensure prac-
ticality, sensors and setups should be reusable, user-friendly,
and operate without laboratory equipment.

VIII. CONCLUSION

This work provides an extensive survey of exhaled breath
through the lens of MC, highlighting key biomarkers, physical
properties, and spatial origins within the human respiratory
system. Detailed models of particle generation from coughing,
sneezing, and breathing are discussed, alongside key propa-
gation mechanisms such as diffusion, advection, gravitational
forces, and buoyancy within ABMC channels. Additionally,
the survey reviews engineered receiver techniques, including
breath sampling methods, sensor technologies, and decision-
making processes for accurate disease detection.

The integration of ABMC with exhaled breath is a ma-
jor research topic linking engineered communication systems
and biological entities to create interactive health-monitoring
networks. Leveraging natural physiological processes and ad-
vanced sensor technologies could enhance personalized health-
care, improve patient outcomes, and facilitate more acces-
sible and efficient diagnostics. Despite highlighting signifi-
cant advancements, the survey also outlines ongoing chal-
lenges and open research directions in modeling accuracy,
system robustness, environmental interference management,
and practical testbed implementations. Standardization efforts
and interdisciplinary collaborations between MC researchers,
medical experts, and engineers will be crucial for translating
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findings into clinical practice. By systematically addressing
these challenges, the application of breath analysis within
an IoBT framework will advance non-invasive diagnostic
methodologies and personalized healthcare solutions.
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