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Abstract
Molecular communication is a core pillar of the Internet of

Bio-Nano Things. Exhaled breath, rich in water vapor, offers a
viable medium for air-based molecular communication. This paper
presents a low-cost, non-invasive approach using a DHT22 sensor
to classify breath patterns, namely Eupnea, Bradypnea, and Tachyp-
nea. Humidity and temperature signals from the mouth and nose
are processed using machine learning (ML). The model achieves
strong classification performance, showing that ML can effectively
distinguish breath patterns despite sensor constraints.

CCS Concepts
• Hardware → Sensors and actuators; • Applied computing
→ Health care information systems.
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1 Introduction
The Internet of Bio-Nano Things envisions nanoscale biological

and artificial devices communicating via molecular or terahertz
signals [1, 11], but its medical use faces challenges like miniatur-
ization and bio-compatibility. As a practical alternative, the Inter-
net of Bio Things leverages biological transmitters (e.g., humans)
and engineered receivers via air-based molecular communication
(ABMC) [5, 19]. This framework supports non-invasive breath-
based monitoring with existing sensing technologies and commu-
nication models, thereby bridging molecular communication (MC)
theory with real-world health applications.
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Exhaled breath contains a complex mix of biomarkers, including
gases like carbon dioxide, oxygen, nitrogen, and volatile organic
compounds (VOCs) [20], apart from aerosolized particles such as
water vapor, dust, and pollen [12]. Together, they reflect the physi-
ological and pathological states of a human body.

This paper presents a low-cost method for classifying Eupnea,
Bradypnea, and Tachypnea using a DHT22 humidity and tempera-
ture sensor. Even with modest fidelity, temporal humidity and tem-
perature changes reveal key health indicators when processed with
supervised machine learning (ML). The single-sensor, wearable-
compatible setup bridges theoretical ABMCmodels with real-world
respiratory monitoring.

The key contributions of our work include:
• Application of ABMC for decoding human breath patterns
using low-cost humidity and temperature sensing.

• Demonstration of accurate classification of three core respi-
ratory states using supervised ML pipeline based on stacking
classifiers, despite the simplicity of the DHT22 sensor.

• Aminimalistic and non-invasive framework that links ABMC
theory with practical health monitoring applications.

The remainder of this paper is organized as follows: Section 2
reviews related work on ABMC and breath analysis. Section 3
presents the proposed system model, mapping MC components to
physiological processes in exhaled breath. Section 4 describes the
three investigated respiratory patterns. Section 5 details the hard-
ware setup and data collection methodology. Section 6 introduces
the ML-based breath pattern classification model. Section 7 evalu-
ates the performance of the model. Finally, Section 8 concludes the
paper and outlines directions for future research.

2 Related Work
ABMC has emerged as a promising approach for health detection

and communication. Several studies have explored this potential
both in theory and in practice [5, 25].

The concept of MC using chemical or physical carriers has been
well established in the literature, particularly through foundational
works such as that of Farsad et al. [14]. They demonstrated a table-
top MC system using alcohol as a carrier. Although their work
pioneers practical MC systems, it focuses primarily on controlled
environments and symbolic message transfer, rather than physio-
logical monitoring.

Khalid et al. [16] introduced an approach conceptualizing human
breath as a viable information source for communication systems.
Their study largely illustrates the idea of using exhaled breath
comprising VOCs, water vapor, and pathogenic aerosols as infor-
mation carriers in an aerosol-based MC framework. However, their
work remains largely theoretical and simulation-based, focusing
on particle dynamics and spread.

https://doi.org/10.1145/3760544.3764127
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Figure 1: System model for analyzing the exhaled breath from a source via a channel to a sink.

Radogna et al. [23] developed a breath analyzer module inte-
grated into non-invasive ventilation setups for chronic obstructive
pulmonary disease monitoring. However, their approach uses multi-
ple sensors in a clinical context, where the system captures exhaled
breath data during home-assisted ventilotherapy sessions and trans-
mits them to healthcare providers for continuous evaluation.

Chen et al. [8] proposed a portable electronic nose system based
on a graphene-based chemiresistive sensor array for online ex-
haled breath analysis and non-invasive disease diagnosis. Their
approach demonstrates high classification accuracy for respiratory
diseases using ML and a specialized gas chamber design. However,
their system requires complex circuitry and expensive multi-sensor
integration for exhaled breath gas profiling.

As we go beyond these initial works and analyze the limitations,
key challenges arise such as reliance on simulation frameworks,
controlled experimental setup, or complex, multi-sensor clinical
system. This paper addresses these issues by combining ABMC
with supervised ML in a single, low-cost DHT22 sensor platform.

3 System Model

In the following, we outline the analogy between the standard
communication model and an MC framework for health diagnos-
tics via exhaled breath. Figure 1 maps the transmitter, channel,
and receiver to their biological counterparts. The information
source represents the message origin, corresponding in ABMC to a
person’s metabolic or health state, such as diabetes, cancer, or infec-
tions, along with their location and severity. For example, acetone
may indicate diabetic ketoacidosis or a ketogenic diet, highlighting
the need to distinguish overlapping sources. Severity (e.g., disease
type or stage) offers deeper insights into progression and impact.

In exhaled breath analysis, source encoding describes how
metabolic processes translate health conditions into measurable
biomarkers of disease presence, location, and severity. Metabolic ac-
tivities generate biochemical signals encoded as discrete biomarkers,
e.g., acetone for diabetic ketoacidosis and nitric oxide for asthma-
related inflammation. This process compresses complex biological
signals into interpretable health data. Redundancy in channel en-
coding arises from repeated biomarker emissions at consistent
levels, reducing noise and errors. For example, multiple coughs act
as repetition coding to strengthen the signal.

Modulation refers to breath exhalation, where biomarker prop-
erties like type, concentration, timing, and spatial distribution [6]
encode health status, condition location, and severity. Irregular

breath patterns [17, 18] act as modulated signals reflecting physio-
logical or pathological changes.

The channel in breath analysis is the ambient air, where biomarker-
laden aerosols propagate via diffusion, advection, buoyancy, gravity,
and initial drift. External factors like airflow orwalls introduce noise
that unintentionally affects propagation.

For demodulation, sensors extract information from exhaled
biomarkers such as VOCs, nitrogen oxides, and CO2, which reflect
metabolic and physiological states. Metal-oxide gas sensors, for
example, detect and demodulate these signals based on biomarker
type, concentration, and timing. Accurate interpretation relies on
onboard computing for signal processing and pattern recognition,
often using ML techniques [27].

Channel decoding helps in the extraction of information from
exhaled biomarkers that have been affected by noise during trans-
mission. This involves applying error detection and/or correction
techniques to compensate for noise and distortions, thus improv-
ing the accuracy of the recovered information. Source decoding
maps the detected and demodulated biomarkers to their associ-
ated physiological conditions and anatomical origins. This step
involves analyzing raw biomarker data patterns, and then relating
them to established health conditions, metabolic abnormalities, or
inflammatory processes.

Finally, at the information sink, the decoded data represents
the individual’s physiological and pathological states, supporting
personalized medical decisions. However, effective integration re-
quires user training, as new workflows in electronic health record
systems can temporarily reduce efficiency [3].

Although the end-to-end system model treats exhaled biomark-
ers as information carriers originating from the source, our work
focuses specifically on the modulation and physical transport of
aerosolized water vapor, as highlighted by the red-dashed section
in Figure 1. This component directly shapes the signal patterns
received for detection and classification.

4 Breath Patterns
In this work, we investigated three distinct respiratory patterns,

namely, Eupnea, Bradypnea, and Tachypnea. These patterns not
only reflect underlying physiological or pathological states but also
influence the dynamics of exhaled signal generation and transmis-
sion from the perspective of ABMC.

Eupnea refers to normal, quiet, unlabored breathing that main-
tains gas exchange under resting metabolic demand. It is typically
defined by a respiratory rate (RR) of 12 to 20 breaths per minute
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Figure 2: Sensor assembly as used in our experiments. The
sensors are positioned close to mouth and nose.

with balanced inspiratory and expiratory phases [17]. Eupnea re-
flects proper function of respiratory centers in themedulla and pons,
along with healthy pulmonary and neuromuscular systems [26]. It
is driven by metabolic needs and regulated by chemoreceptor feed-
back to arterial blood gases [4]. As a reference pattern in pathologi-
cal assessment, Eupnea serves as the baseline for signal generation,
propagation, and detection in ABMC.

Bradypnea denotes an abnormally slow RR, typically defined
as fewer than 12 breaths per minute in adults [17]. Physiological
states such as deep sleep, meditation, or yogic breathingmay feature
Bradypnea without pathological consequence. However, Bradypnea
can be symptomatic of serious conditions such as opioid overdose,
brainstem injury, and hypothyroidism [2, 7, 13].

Tachypnea is defined as rapid breathing with RR exceeding 20
breaths per minute in adults [17]. Physiologically, it may arise dur-
ing exercise, anxiety, or emotional arousal, while pathologically it
is common in conditions such as pneumonia, pulmonary embolism,
sepsis, and diabetic ketoacidosis [24].

5 Hardware Setup and Data Collection

We use a DHT22 sensor with Arduino Uno (digital pin D3)
to monitor humidity and temperature variations during Eupnea,
Bradypnea, and Tachypnea, sampling data every 2 s. The sensor
is mounted on a flexible gooseneck approximately 3 cm from the
subject’s nose or mouth to capture rapid changes in humidity and
temperature in breath, while minimizing ambient interference (cf.
Figure 2). Data were collected from three healthy adults (two males,
one female, aged 25–35), with non-Eupnea patterns artificially emu-
lated. The DHT22 provides a low-cost, non-invasive way to capture
physiological signals linked to different breath patterns.

The channel impulse response was measured at the mouth and
nose by averaging 10 trials over short span in order to reduce envi-
ronmental variability. Using the DHT22 sensor, humidity and tem-
perature during exhalation were recorded and baseline-corrected.
As shown in Figure 3, mouth readings are typically higher due to
greater exhaled volume, airflow, and heat exchange characteristics.

Humidity and temperaturewere recorded for Eupnea, Bradypnea,
and Tachypnea from both mouth and nose. Each 70 s trial begins
with a 10 s resting baseline. Figure 4 presents five representative
Eupnea trials recorded from both the mouth and nose, illustrating
the temporal trends. Due to sensor response limitations, humidity
gradually increases and plateaus, while temperature shows a steady
rise, reflecting exhaled thermal patterns.

6 Breath Pattern Classification Model
At the receiver, we classify breath patterns, namely, Eupnea,

Bradypnea, and Tachypnea using a proposed ML model trained on
time-series humidity and temperature data from the DHT22 sensor.
Each breath pattern is treated as a distinct modulation pattern
similar to symbol encoding in ABMC systems.

We collected a data set consisting of 645 multivariate time-series
recordings of respiratory activity from the mouth (271 samples) and
nose (374 samples), labeled as Eupnea, Bradypnea, or Tachypnea.
Each trial, saved in a separate file, represents a single breathing
session similar to the trials shown in Figure 4. To preserve data
integrity and ensure controlled sampling across different breath
patterns, we included all trials that matched predefined filename
prefixes and grouped them by class. We loaded each trial in a struc-
tured format with an identifier and uniformly increasing time index
to support time-series analysis. Finally, we numerically encoded the
class labels using a predefined label mapping dictionary to ensure
consistent representation of target labels. This annotated data set
forms the foundation for feature extraction.

The primary goal is to build a robust and interpretable model
to distinguish between Eupnea, Bradypnea, and Tachypnea using
features extracted from raw time-series data. The model takes mul-
tivariate time-series data as input, represented as X ∈ R𝑇×𝑑 , where
𝑇 is the number of time steps and 𝑑 is the number of sensor out-
puts (humidity and temperature) for each sample. For each signal,
a feature extraction mapping Φ is applied to generate a feature
vector x = Φ(X) ∈ R𝑝 , where 𝑝 is the number of extracted features.
Specifically,

x = Φ(X) =
[
𝜙1 (X), 𝜙2 (X), . . . , 𝜙𝑝 (X)

]
, (1)

where Φ denotes a set of statistical, temporal, and spectral func-
tions applied to the time-series input X to extract a 𝑝-dimensional
feature vector x ∈ R𝑝 . Each component 𝜙 𝑗 (X) corresponds to a spe-
cific feature such as mean, variance, autocorrelation, entropy, etc.
We implement this transformation using the tsfresh library [10],
which automatically extracts 419 features for mouth samples (180
from humidity, 239 from temperature) and 243 for nose samples
(148 from humidity, 95 from temperature). After extracting features,
we impute missing values, standardize the feature matrix to ensure
uniform scaling, and clean the column names to ensure they follow
valid naming conventions.

We design the model pipeline to minimize information leakage,
handle class imbalance, and boost performance via ensemble learn-
ing. To ensure balanced class representation, stratified sampling is
applied when splitting the data. The mouth data set includes 216
training and 55 testing samples, while the nose data set has 299
training and 75 testing samples. For interpretability, we use SHapley
Additive exPlanations (SHAP)1 with a tuned LightGBM classifier
to assess feature importance. SHAP provides trial-level insights,
identifies non-linear interactions, and highlights weak/redundant
features, critical for high-dimensional time-series data. SHAP sum-
mary plots and heat maps show model behavior across respiratory
classes. To reduce dimensionality, we select the top 20 features
ranked by the magnitude of their SHAP values, represented as

𝑆 = Top20
(
|𝜙1 |, |𝜙2 |, . . . , |𝜙𝑝 |

)
. (2)

1https://pypi.org/project/shap/

https://pypi.org/project/shap/
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Figure 3: Channel impulse response averaged over 10 trials and baseline corrected for both mouth and nose.
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Figure 4: Humidity and temperature trends for Eupnea over 5 trials each from mouth and nose.

This results in a compact, efficient, and interpretable feature set
used to retrain the model without compromising accuracy.

We use the reduced feature set to construct a stacked ensemble
classifier, employing XGBoost [9] and CatBoost [22] as base learners
and Random Forest [21] asmeta-learner. In this pipeline, the outputs
of𝑘 base classifiersℎ1, ℎ2, . . . , ℎ𝑘 (here,𝑘 = 2) are provided as inputs
to a meta-learner, which combines their predictions to produce the
final output. For each trial, the subvector x𝑆 ⊂ x, containing the
SHAP-selected subset of features, is provided as input to both base
classifiers. The ensemble prediction is then computed as

𝐻 (x𝑆 ) = 𝑓 (ℎ1 (x𝑆 ), ℎ2 (x𝑆 )) , (3)

where x𝑆 is the SHAP-selected feature subset, and 𝑓 denotes the
Random Forest meta-learner. This setup combines base model out-
puts with SHAP-selected features enhancing model diversity and

Table 1: Summary of most relevant ML parameters.

Component Parameter Value / Description

LightGBM n_estimators 300–1000
Classifier learning_rate 0.05
(for SHAP- max_depth 4–6
based feature subsample 0.8
selection) colsample_bytree 0.8

reg_alpha, reg_lambda 0.1–1.0
Hyperparameter Tuning GridSearchCV (mouth only)

Data Split Train-Test Ratio 80% train / 20% test
Stratification Yes (to maintain class balance)

Feature Selection Method SHAP-based ranking (top 20)
Engineering Data Balancing SMOTE (after feature selection)
Ensemble Method StackingClassifier
Strategy Base Models XGBoost, CatBoost

Cross-validation StratifiedKFold (n_splits=5)
Random Forest n_estimators 150
Meta Classifier max_depth 3

classification. To address class imbalance, we apply synthetic mi-
nority over-sampling technique (SMOTE)2 to the training data. We
train and validate the stacked model using stratified 5-fold cross-
validation (CV), ensuring robustness and generalization across dif-
ferent subsets of the data. The final prediction 𝑦 = 𝐻 (x𝑆 ) is evalu-
ated using CV accuracy, test accuracy, class-wise receiver operating
characteristic area under the curve (ROC-AUC) scores, and con-
fusion matrix analysis. The key parameters of the ML model are
summarized in Table 1.

7 Performance Evaluation
In the following, we present selected results and evaluate the

performance of the ML model in classifying breath patterns using
mouth and nose data. Themodel, trained on SHAP-selected features,
is assessed using CV and test set metrics to evaluate accuracy [15]
and interpretability. All sensor data and the Python code used for
model evaluation are publicly available under CC BY and MIT
licenses3.

7.1 Results
Figure 5 summarizes the performance of the ensemble model

for the mouth-based data. The learning curve in Figure 5a shows
rapid training accuracy saturation close to 100% with increasing
number of training samples, indicating a good fit of the model to the
training data. Additionally, the CV accuracy also steadily increases
to 93.7% with increasing number of training samples, indicating
the generalizability of the model. The final test accuracy of 94.6 %
closely matches CV performance, confirming strong generalization
of the model. The narrowing gap between training and CV accuracy

2https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.
SMOTE.html
3https://doi.org/10.5281/zenodo.15697086

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://doi.org/10.5281/zenodo.15697086
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Figure 5: Performance of the ensemble model for the mouth-based data set.
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Figure 6: Performance of the ensemble model for the nose-based data set.

further suggests model stability. Figure 5b shows receiver operating
characteristic (ROC) curves for Eupnea, Bradypnea, and Tachypnea,
with high area under the curve (AUC) values of 0.98 for both Eupnea
and Bradypnea, and 0.99 for Tachypnea, reflecting excellent class
separability, while maintaining low false positive and false nega-
tive rates. Additionally, the ROC curves lie well above the random
classifier baseline, confirming reliable and robust predictions of the
model across varying classification thresholds. Moreover, Figure 5c
shows a class-wise confusion matrix with minimal errors, where
Bradypnea, Eupnea, and Tachypnea are represented by “B”, “E”, and
“T”, respectively. This validates the effectiveness of SHAP-selected
features and the model’s robustness on mouth-derived data.

Figure 6 summarizes the performance of the ensemble model
trained on nose-based data. As shown in Figure 6a, training accu-
racy stays high at around 93% suggesting that the model fits the
training data well. The CV accuracy steadily rises and converges to
a mean of 85.1 %, with the final test accuracy reaching 86.7 %, indi-
cating moderate generalization. Although a gap persists between
the training and CV accuracy, the convergence trend suggests that
the model benefits from increased training data and does not suffer
from severe over-fitting. Moreover, the alignment of CV accuracy

with test accuracy indicates reasonably good generalization. Fig-
ure 6b shows high class-wise AUCs, i.e., 0.93 for Eupnea, 0.99 for
Bradypnea, and 0.92 for Tachypnea, confirming robust class separa-
tion. Moreover, all the ROC curves remain well above the random
classifier baseline, demonstrating reliability and robustness of the
model across varying classification thresholds. The confusion ma-
trix in Figure 6c shows that while most misclassifications occur
between Eupnea and Tachypnea, Bradypnea is identified with per-
fect accuracy. Overall, the model still performs reliably across all
respiratory classes using nose-derived data.

7.2 Discussion
The results indicate that the ensemble model generalizes well,

with no evidence of classical over-fitting. The small gap between
training and CV accuracies, along with their steady alignment
with test accuracy, indicates good model generalizability. This is
attributed to the use of SHAP-based feature selection, the stacked
ensemble approach, and class balancing with SMOTE. Classification
performance is notably better for the mouth-derived data set than
for the nose-derived data set, despite its smaller size. This can be
explained due to the nature of airflow, as mouth breath typically
results in higher exhaled volume and more distinct modulation of
temperature and humidity. From an ABMC point of view, the mouth
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serves as a more effective transmitter, offering a stronger encoding
of information on respiratory patterns. In contrast, the nose-based
model, although not hyperparameter-tuned, still demonstrates ro-
bust performance, confirming that both transmission paths carry
usable features for breath pattern classification.

8 Conclusion
In this paper, we studied the possibility to identify breath ab-

normalities using an air-based molecular communication (ABMC)
approach in combination with machine learning (ML). Our work
highlights the potential of a low-cost, modest-fidelity, and non-
invasive sensor for classifying human respiratory patterns. Breath
patterns are treated as modulated signals from the transmitter (hu-
man) and decoded at the receiver (sensor) using ML algorithms.
Despite using a simple DHT22 sensor, meaningful physiological in-
formation can be extracted from humidity and temperature signals.
This approach bridges theoretical ABMC concepts with practical
implementation, offering a scalable and affordable solution to con-
tinuous respiratory monitoring.

Future work will expand to include more breath patterns and
integrate additional components of the communication model to
develop a complete end-to-end system for health diagnostics and
metabolic process detection. It will also employ more responsive
sensors to improve accuracy and capture finer variations in breath
biomarkers for enhanced health monitoring.
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