
XAInomaly: Explainable and Interpretable Deep Contractive Autoencoder for O-RAN
Traffic Anomaly Detection

Osman Tugay Basaran∗, Falko Dressler
School of Electrical Engineering and Computer Science, TU Berlin, Germany

Abstract

Generative Artificial Intelligence (AI) techniques have become integral part in advancing next generation wireless
communication systems by enabling sophisticated data modeling and feature extraction for enhanced network performance.
In the realm of open radio access networks (O-RAN), characterized by their disaggregated architecture and heterogeneous
components from multiple vendors, the deployment of generative models offers significant advantages for network
management such as traffic analysis, traffic forecasting and anomaly detection. However, the complex and dynamic nature
of O-RAN introduces challenges that necessitate not only accurate detection mechanisms but also reduced complexity,
scalability, and most importantly interpretability to facilitate effective network management. In this study, we introduce
the XAInomaly framework, an explainable and interpretable Semi-supervised (SS) Deep Contractive Autoencoder
(DeepCAE) design for anomaly detection in O-RAN. Our approach leverages the generative modeling capabilities of our
SS-DeepCAE model to learn compressed, robust representations of normal network behavior, which captures essential
features, enabling the identification of deviations indicative of anomalies. To address the black-box nature of deep learning
models, we propose reactive Explainable AI (XAI) technique called fastshap-C, which is providing transparency into the
model’s decision-making process and highlighting the features contributing to anomaly detection.

Keywords: Explainable and Trustworthy AI, Generative AI, O-RAN, Autoencoder, Anomaly Detection, Network
Management

1. Introduction

The rapid proliferation of wireless devices and the expo-
nential growth in data demand have necessitated continuous
innovation in cellular network architectures. Traditional
Radio Access Networks (RAN) have historically been de-
ployed as monolithic systems, where hardware and software
components are tightly integrated and sourced from single
vendors. While this approach has ensured reliability and
performance, it has also led to significant limitations in
terms of scalability, flexibility, and cost-effectiveness. The
proprietary nature of traditional RAN hinders interoper-
ability and slows down the adoption of new technologies,
making it challenging to meet the evolving requirements of
modern wireless communications.

To overcome these challenges, the industry has been
transitioning towards O-RAN architectures. O-RAN intro-
duces a paradigm shift by disaggregating the traditional
RAN components into modular, interoperable units with
open interfaces [1, 2]. This disaggregation allows network
operators to mix and match components from different
vendors, fostering a competitive ecosystem that drives

∗Corresponding author
Email addresses: basaran@ccs-labs.org (Osman Tugay

Basaran), dressler@ccs-labs.org (Falko Dressler)

innovation and reduces costs. O-RAN architectures are
also characterized by their support for virtualization and
software-defined networking (SDN), enabling dynamic re-
source allocation and more efficient network management.
The complexity and heterogeneity introduced by O-RAN ar-
chitectures, however, present new challenges in network op-
eration and maintenance. The integration of multi-vendor
components and the dynamic reconfiguration of network ele-
ments require advanced analytics and automation to ensure
optimal performance. AI and Machine Learning (ML) tech-
niques have emerged as key enablers in this context, offering
powerful tools for network optimization, self-organization,
and intelligent decision-making across different layers of
the network [3].

Generative AI (GenAI) models, in particular, have
shown great potential in modeling complex network be-
haviors and generating synthetic data for various applica-
tions. Techniques such as Generative Adversarial Networks
(GANs) [4] and Deep Autoencoder (DeepAE) can capture
intricate patterns in high-dimensional data, making them
suitable for tasks like traffic prediction, anomaly detec-
tion, and network simulation [5]. By leveraging generative
models, network operators can enhance the accuracy of
predictive analytics and improve the robustness of network
management strategies. In 5G/6G networks as well as
O-RAN scenarios [6], AI and generative models can be

Article published in Elsevier Computer Networks. (available online 10.1016/j.comnet.2025.111145)

deployed across multiple layers, including:
• Physical Layer: Enhancing signal processing algo-

rithms, adaptive beamforming, and channel estima-
tion.

• MAC and Network Layers: Optimizing scheduling,
resource allocation, and interference management.

• Application and Service Layers: Personalizing user
experiences, content caching, and service quality pre-
diction.

• Management and Orchestration Layers: Automating
network configuration, fault detection, and perfor-
mance optimization.

Anomalies in O-RAN traffic can stem from various
sources, including misconfigurations [7], user equipment
(UE) failures, software bugs, and security breaches such
as cyber-attacks. Early and accurate detection of these
anomalies is crucial to prevent service degradation, ensure
user satisfaction, and maintain the reliability of critical com-
munications, especially in the context of 5G+/6G networks
that support mission-critical applications. Traditional su-
pervised learning approaches for anomaly detection rely
heavily on large amounts of labeled data, which is often
impractical in real-world network environments due to the
rarity and unpredictability of anomalies. Moreover, the
manual labeling of network traffic data is labor-intensive
and prone to human error. Therefore, there is a pressing
need for models that can effectively detect anomalies with
minimal reliance on labeled datasets.

Semi-supervised learning models, particularly DeepAE,
offer a compelling solution to this challenge. However,
primary issue of standard DeepAE is focusing solely on
reconstructing input data [8] is their tendency to over-
fit to the training data, capturing both the underlying
patterns and the noise present in the data. Since their
objective is purely to minimize reconstruction error, they
may not learn robust or meaningful feature representa-
tions that generalize well to new, unseen data. This lack
of generalization is particularly problematic in anomaly
detection tasks within O-RAN environments, where the
data is high-dimensional, dynamic, and contains subtle
anomalies. Also, DeepAEs are often complex models with
large number of layers and parameters, which makes them
computationally intensive. This complexity translates to
longer training times, higher memory requirements, and
increased inference latency, which are challenging for real-
time, resource-constrained O-RAN environments in real life
deployments. Training these DeepAEs on high-dimensional
O-RAN data involves complex optimization, requiring a
large amount of labeled data to prevent overfitting and
extensive computational resources.

Considering the aforementioned challenges, we designed
SS-DeepCAE architecture in this study. DeepCAEs address
these drawbacks by introducing a contractive penalty into
the loss function. This penalty encourages the model to
learn smooth and robust feature representations by penaliz-
ing large sensitivities of the encoder activations with respect
to the input. DeepCAEs tend to have fewer parameters be-

6G

Network Layer XAI Layer User Layer

GenAI Layer

Figure 1: GenAI and XAI interaction between user and
network layer

cause they do not require complex mechanisms to counter
overfitting, such as dropout layers or heavy regularization.
This reduces the model’s computational demand, making it
more scalable and deployable within resource-constrained
O-RAN systems. Besides, DeepCAEs are better suited for
real-time applications due to their reduced sensitivity to
noise and more efficient learning of feature representations.
This adaptability is crucial for O-RAN, where anomaly de-
tection may require fast, on-the-fly assessments to maintain
network stability and performance. The lack of existing
literature on the use of DCAEs for O-RAN traffic anomaly
detection underscores the novelty of this approach. By
filling this gap, we aim to provide a robust framework that
leverages the strengths of DCAEs to address the unique
challenges posed by O-RAN networks.

While autoencoders are powerful, they are often crit-
icized for being “black boxes” due to their opaque inter-
nal workings [9]. In next generation wireless networks
such as 6G [10], this lack of transparency [11] poses sig-
nificant risks such as unoptimized network management,
poor maintenance, biased monitoring, unfair or subopti-
mal decisions. To address these concerns, integrating XAI
[12] techniques into the anomaly detection framework be-
comes essential [13]. As shown in the Figure 1, XAI aims to
make AI models more transparent by providing understand-
able explanations of their decisions. However, integrating
XAI design into O-RAN must be done with understanding
performance demands of use cases particularly for Ultra-
Reliable Low-Latency Communications (URLLC), impose
strict constraints on any deployed solutions. Domain-aware
XAI designs can optimize the trade-off between explain-
ability and computational efficiency by focusing explana-
tions on the most relevant features and events within the
O-RAN context. In this direction, we introduced novel
fastSHAP-C XAI algorithm in our previous work [14] for
xURLLC use case in O-RAN. However, in this study, we
used the DeepAE-based autoencoder that has complexity,
scalability and generalizability issues that we mentioned
above.

Therefore, there is a clear need for an emerging anomaly
detection solution that is performance friendly, effective
and trustworthy. In this work, our proposed XAInomaly
framework addresses these requirements by combining a
novel SS-DeepCAE model with fastSHAP-C XAI algorithm

2

tailored for the dynamic O-RAN traffic environment.

1.1. Our Contributions
The core outcomes of our study are summarized as new

contributions (“C") and new findings (“F") as follows:
C1. We propose the XAInomaly framework, which, for the

first time, unites GenAI and XAI design in O-RAN.
Our platform provides an interoperable SS-DeepCAE
model for the O-RAN traffic anomalies.

C2. We introduce novel fastSHAP-C XAI method that
obtain real-time SHAP values regarding O-RAN in-
telligence orchestration operations.

C3. We are the first to implement scalable, resource-
efficient SS-DeepCAE in O-RAN traffic anomaly de-
tection scenario.

F1. The ability of SS-DeepCAE to achieve high UAR with
minimal labeled data makes it highly scalable for
O-RAN environments, where labeled anomalies are
rare and costly to obtain.

F2. Our results show that fastSHAP-C provides 34% ad-
vance over its competitors in terms of runtime per-
formance.

The rest of the paper is organized as follows: In Sec-
tion 2 building blocks of O-RAN architecture, existing
GenAI and XAI implementations are presented (see Ta-
ble 1). Section 3 describes the proposed SS-DeepCAE model
in detail, including semi-supervised learning approach and
architecture. Section 4 describes proposed XAInomaly
framework with selected XAI interpretation methodology,
proposed fastSHAP-C algorithm and XAInomaly integra-
tion on O-RAN architecture. Section 5 includes datasets,
performance metrics, experiments with baseline models,
and hyper-parameter tuning stages. Section 6 consists of
performance results of the SS-DeepCAE anomaly detection
model and proposed novel XAI algorithm fastSHAP-C. Fi-
nally, Section 7 concludes the paper and discusses potential
directions for future work with challenges. Table 2 contains
important acronyms and definitions used throughout this
document.

2. Background

This section provides a detailed overview of the key
components of the O-RAN architecture, GenAI and XAI
literature on O-RAN.

2.1. Principles of O-RAN
O-RAN architecture disaggregates traditional RAN

hardware into modular components with standardized in-
terfaces. O-CU is responsible for the higher layers of the
protocol stack, specifically the Packet Data Convergence
Protocol (PDCP) and Service Data Adaptation Protocol
(SDAP) layers. O-RAN Central Unit (O-CU) can be fur-
ther divided into O-CU-CP (Control Plane) and O-CU-UP
(User Plane) for enhanced scalability and flexibility. O-
RAN Distributed Unit (O-DU) manages the Radio Link

Control (RLC), Medium Access Control (MAC), and parts
of the Physical (PHY) layer [22]. It allocates radio re-
sources to UEs based on scheduling algorithms and handles
Hybrid Automatic Repeat reQuest (HARQ) for error cor-
rection. O-DU is typically located closer to the radio units
to meet stringent latency requirements. This allows to
perform time-sensitive computations required for real-time
operations of radio communications. O-RAN Radio Unit
(O-RU) encompasses the lower PHY layer and the Radio
Frequency (RF) components [23]. O-RU converts digital
signals to analog for transmission over the air and vice
versa. It also implements antenna array processing for
signal directionality for beamforming.

O-RU interfaces with the O-DU via the Open Fronthaul
(OFH) interface, which is standardized to allow interoper-
ability between different vendors’ equipment. 3rd Genera-
tion Partnership Project (3GPP) and O-RAN Alliance’s
standardized interfaces are a cornerstone of the O-RAN
architecture, ensuring interoperability and flexibility. E2 in-
terface connects the Near-Real-Time RAN Intelligent Con-
troller (Near-RT RIC) with the RAN components (O-CU
and O-DU), enabling real-time control and data exchange
[24]. A1 interface links the Non-Real-Time RAN Intelligent
Controller (Non-RT RIC) with the Near-Real-Time RAN
Intelligent Controller (Near-RT RIC), facilitating policy
management and model updates [25]. O1 interface con-
nects the Service Management and Orchestration (SMO)
with the RAN components for management and orchestra-
tion tasks [26]. OFH interface connects the O-DU with
the O-RU, supporting high-bandwidth, low-latency data
transfer.

SMO framework is a central element in the O-RAN
architecture responsible for the overall management and
orchestration of network services. It provides end-to-end
service lifecycle management, including provisioning, config-
uration, optimization, and assurance of network functions.
It allocates and optimizes physical and virtual resources
across the network. Also manages network slices to support
diverse service requirements with different performance and
resource needs. Hosts AI/ML models and analytics that
support intelligent decision-making across the network then
implement policies for network operations, security, and
compliance.

Non-RT RIC operates within the SMO framework and
provides non-real-time control and optimization of RAN
functions [27]. It leverages AI/ML algorithms to perform
tasks that do not require immediate responsiveness, typi-
cally with latency requirements greater than one second.
It generates and updates policies for RAN optimization,
which are communicated to the Near-RT RIC via the A1
interface. Performs extensive data collection and analysis
to understand network performance afterwards it develops
and refines AI/ML models based on long-term data analy-
sis. Near-RT RIC is a critical component responsible for
real-time and near-real-time control of RAN elements, with
latency requirements typically between 10 ms and 1 s. It
enables dynamic optimization of RAN resources to meet

3

Article Learning Category Learning Model Use Case Year Data Availability xApps Explainability

Fiandrino et al. [15] Supervised L. LSTM Traffic Management 2022 χ χ ✓

Mahrez et al. [16] Supervised L. RFO Traffic Anomalies 2023 ✓ ✓ χ

Alves et al. [17] Supervised L. MLP Traffic Anomalies 2023 ✓ χ χ

Fiandrino et al. [18] Supervised L. DRL Resource Allocation 2023 χ ✓ ✓

Khan et al. [19] Supervised L. DRL Resource Management 2024 χ χ ✓

Tassie et al. [20] Supervised L. CNN Traffic Classification 2024 χ ✓ ✓

Basaran et al. [21] Semi-Supervised L. DeepAE Traffic Anomalies 2023 ✓ ✓ χ

Our Work Semi-Supervised L. DeepCAE Traffic Anomalies 2024 ✓ ✓ ✓

Table 1: Literature review on different O-RAN use cases with generative and explainable AI

Acronym Definition Acronym Definition

3GPP 3rd Generation Partnership Project O-RU O-RAN Radio Unit
5G Fifth Generation Mobile Network PDCP Packet Data Convergence Protocol
6G Sixth Generation Mobile Network PHY Physical
AI Artificial Intelligence QoE Quality of Experience
AD xApp Anomaly Detection xApp QoS Quality of Service
CNN Convolutional Neural Network RAN Radio Access Networks
CS Confidence Score RF Radio Frequency
DL Deep Learning rApps RAN Applications
DeepAE Deep Autoencoder RFO Random Forest
DeepCAE Deep Contractive Autoencoder ReLU Rectified Linear Unit
DRL Deep Reinforcement Learning RLC Radio Link Control
EM Error Metric SDAP Service Data Adaptation Protocol
GenAI Generative AI SGD Stochastic Gradient Descent
GANs Generative Adversarial Networks SHAP SHapley Additive exPlanations
HARQ Hybrid Automatic Repeat reQuest SLA-VAE Semi-supervised VAE
LSTM Long Short-term Memory SMO Service Management and Orchestration
O-RAN Open Radio Access Networks SS Semi-supervised
MAC Medium Access Control SS-DeepCAE Semi-supervised Deep Contractive Autoen.
MSE Mean Squared Error t-SNE t-Distributed Stochastic Neighbor Embedding
ML Machine Learning TS xApp Traffic Steering xApp
Near-RT RIC Near-Real-Time RAN Intelligent Controller UE User Equipment
Non-RT RIC Non-Real-Time RAN Intelligent Controller URLLC Ultra-Reliable Low-Latency Communications
O-CU O-RAN Central Unit VAEs Variational Autoencoders
O-DU O-RAN Distributed Unit XAI Explainable AI
OFH Open Fronthaul xApps eXtended applications

Table 2: List of important acronyms and their definitions

immediate performance objectives. It adjusts parameters
such as scheduling, power control, and beamforming in
time sensitive manner.

RAN applications are software modules that provide
specialized functionalities within the O-RAN architecture.
They are categorized into RAN applications (rApps) and
eXtended applications (xApps) based on their operational
time scales and hosting environments. rApps are RAN
applications that run on the Non-RT RIC within the SMO

framework. They perform non-real-time functions such as
network planning with long-term optimization of network
topology and configurations, forecasting network behavior
and traffic patterns, automated adjustment of network
settings based on policies and analytics. As shown in
Figure 2, our proposed xApps hosted on the Near-RT
RIC, designed for real-time and near-real-time operations
[28]. They are useful for dynamic distribution of traffic
to optimize network utilization, immediate adjustments to

4

Figure 2: O-RAN reference architecture with XAInomaly

meet Quality of Service (QoS) requirements for different
services.

2.2. GenAI and XAI Literature on O-RAN
GenAI studies on wireless communication systems are

quite common in the literature [29–31]. GenAI models,
such as GANs, Variational Autoencoders (VAEs), and
DeepAEs, have demonstrated significant capabilities in
modeling complex data distributions and generating syn-
thetic data. Similarly, GenAI studies on O-RAN are quite
numerous however, XAI research is still scarce, but gaining
momentum recently. In Table 1, we gathered and sum-
marized the current GenAI and XAI research on O-RAN.
Studies focused on resource allocation, traffic anomalies
and management use cases.

In resource allocation studies, Khan et al. [19] explores
the application of XAI within distinct 6G use cases, with
a focus on a Deep Reinforcement Learning (DRL) solu-
tion designed for vehicular network scenarios. Specifically,
the authors utilized SHAP values to analyze feature con-
tributions. However, a major challenge lies in the high
complexity and dimensionality of DRL models, which often
involve many layers and parameters, making interpreta-
tion difficult. This complexity can result in explanations
that either oversimplify and miss important details or are
too intricate for end-users to easily grasp. Moreover, in
a vehicular use case, the XAI model must provide real-
time evaluations, a requirement that conventional SHAP
algorithms struggle to meet in practical settings due to
computational demands. In [18], the authors present EX-
PLORA, an innovative framework designed to improve the
explainability of AI/ML models within Open RAN systems.
This study highlights the critical need for transparency and
interpretability in decentralized networks like Open RAN,
where complex decisions are often made at the network
edge.

Different models have been designed specifically for traf-
fic management studies. When the studies are examined,
it is seen that most of the models are supervised learning
based solutions such as Random Forest (RF), Multilayer
Perceptron (MLP), Convolutional Neural Network (CNN)
[16, 17, 20].However, considering heterogeneous compo-
nents of O-RAN, especially the specific interfaces and data
flows, extensive data labeling is quite costly and challeng-
ing. Fiandrino et al. [15] further investigate the application
of XAI and robustness in 6G networks, acknowledging the
challenges that remain, particularly in achieving a balance
between explainability and robustness while providing ex-
planations that are both precise and accessible to diverse
stakeholders, such as network operators and end-users. A
use case involving a 4G network examines the LRP and
SHAP algorithms, with shared results on execution time
and resource usage. The findings reveal that CPU usage
poses a significant limitation, indicating the need for the
development of more advanced, domain-specific XAI al-
gorithms. This motivated our research into creating XAI
solutions capable of managing the real-time data demands
of 6G xURLLC communications.

3. Semi-supervised DeepCAE Design for O-RAN
Anomaly Detection

3.1. Overview of Our Semi-Supervised L. Approach
In the context of anomaly detection within O-RAN

networks, semi-supervised learning is particularly advan-
tageous due to the scarcity of labeled anomalous data.
Semi-supervised learning leverages both labeled and unla-
beled data during training, improving the model’s ability
to generalize and detect unseen anomalies [32]. In our
approach, the majority of the training data consists of
unlabeled normal traffic patterns, while a small subset is
labeled to guide the learning process. Given the labeled
dataset

Dl = {(xi, yi)}Nl
i=1 (1)

where xi ∈ Rn represents the input features, and yi ∈ {0, 1}
is the label indicating normal (0) or anomalous (1) traffic.
Given also the unlabeled dataset

Du = {xi}Nl+Nu

i=Nl+1 (2)

where Nu ≫ Nl, reflecting the abundance of unlabeled
data. The total dataset is

D = Dl ∪ Du (3)

with total samples N = Nl +Nu.
Our objective is to train a model that can

1○ Reconstruct normal traffic patterns accurately.
2○ Learn robust and contractive latent representations

to detect anomalies.
3○ Incorporate very few label information to improve

anomaly detection performance.
4○ Generalize well to detect unseen anomalies.

5

3.2. Proposed DeepCAE Architecture
Our DeepCAE introduces a regularization term that

penalizes the sensitivity of the encoder’s output to small
perturbations in the input [33]. This encourages the
model to learn robust representations that capture essential
features. Architecture consists of two main components

1. Encoder (E): Transforms the input data x ∈ Rn into
a latent representation z ∈ Rm, where m < n.

2. Decoder (D): Reconstructs the input data from the
latent representation, producing x̂ ∈ Rn.

DeepCAE is trained to minimize the reconstruction
error between x and x̂, effectively learning the underlying
structure of the data. The encoder E maps input data x
to a latent representation z

z = E(x; θe) = fe(Wex+ be) (4)

where θe = {We,be} represents the encoder parameters.
In layer-wise form, the encoder can be expressed as

h(l) = f (l)(W(l)h(l−1) + b(l)) (5)

for l = 1, 2, . . . , Le, where: h(0) = x, h(Le) = z, W(l)

and b(l) are weights and biases for layer l, f (l)(·) is the
activation function. 1 Decoder D reconstructs the input
from z:

x̂ = D(z; θd) = fd(Wdz+ bd) (6)

where θd = {Wd,bd} represents the decoder parameters.
Similarly, in layer-wise form:

h(l) = f (l)(W(l)h(l−1) + b(l)) (7)

for l = Le + 1, Le + 2, . . . , L, with: h(Le) = z, h(L) = x̂.

3.2.1. Loss Functions
For all samples (both labeled and unlabeled), we com-

pute the reconstruction loss to train the autoencoder to
accurately reconstruct normal input patterns:

ℓrecon(xi, x̂i) = ∥xi − x̂i∥22 (8)

To encourage robustness in the latent representation,
we introduce a contractive penalty based on the Frobenius
norm of the Jacobian of the encoder activations with respect
to the input [34]:

ℓcontractive(xi) = λc

∥∥∥∥∂E(xi; θe)

∂xi

∥∥∥∥2
F

(9)

1Activation function selected as Rectified Linear Unit (ReLU)
because ReLU inherently induces sparsity by outputting zero for any
negative input, which encourages the model to learn sparse represen-
tations. Sparse features are often more effective for distinguishing
normal data from anomalies, as they can emphasize essential patterns
while suppressing noise. Also, ReLU mitigates the vanishing gradient
problem common with saturating activations (e.g., sigmoid or tanh),
which allows for deeper networks to learn effectively. In anomaly
detection, deeper layers are beneficial for capturing complex patterns
and subtle distinctions between normal and anomalous data.

where: λc is the regularization parameter controlling the
strength of the penalty. ∥·∥2F denotes the squared Frobenius
norm. For the deep encoder, the Jacobian Ji is:

Ji =

∂zi
∂xi

= W(l)diag
(
f ′(l−1)(W(l−1)xi + b(l−1))

)
W(l−1)

(10)
where f ′(l−1)(·) is the derivative of the activation function in
the first layer. For very few labeled samples, we introduce a
cross-entropy loss2 to incorporate the label information into
the training process. We first map the latent representation
z to a prediction ŷ

ℓcro(yi, ŷi) = −[yi log ŷi + (1− yi) log(1− ŷi)] (11)

Then total loss function combines the reconstruction
loss and supervised loss

L =
1

N

N∑
i=1

[ℓrecon(xi, x̂i) + ℓcontractive(xi)+

αi · ℓcro(yi, ŷi)]
(12)

where

αi =

{
λ, if i ≤ Nl

0, if i > Nl

(13)

and λ is a hyper-parameter controlling the influence of the
cross-entropy loss.

3.2.2. Optimization and Batch Training
We optimize the combined parameters θ = {θe, θd} by

minimizing the total loss L using gradient-based optimiza-
tion methods, such as Adam or SGD with momentum. 3

The update rule is:

θ ← θ − η∇θL (14)

where η is the learning rate. The gradient of the contractive
penalty requires computing the derivative of the Frobenius
norm:

∇θeℓcontractive(xi) = 2λc

(
∂E(xi; θe)

∂xi

)⊤
∂2E(xi; θe)

∂xi∂θe
(15)

Efficient computation techniques, automatic differenti-
ation, are employed to compute these gradients. During
training, we use mini-batches that contain both labeled and
unlabeled samples. Each batch is constructed by sampling
Bl labeled and Bu unlabeled samples, ensuring that the
model learns from both types of data in each iteration.

2Typically, a sigmoid function is used in the output layer, which
can lead to a saturation effect in the loss function, causing it to
plateau. This saturation hampers gradient-based learning algorithms,
limiting their ability to make progress. To mitigate this issue, in-
corporating a logarithmic term in the objective function counteracts
the exponential nature of the sigmoid function, facilitating effective
gradient flow. Consequently, binary cross-entropy loss is preferred
over Mean Squared Error (MSE) since it incorporates a logarithmic
term, unlike MSE [5].

3Although we do not discuss here, we also remark that the Adam
optimizer is selected [35].

6

3.2.3. Anomaly Detection During Inference
After training, we use the model to detect anomalies in

new data. For an input x, we compute the reconstruction
error:

RE(x) = ∥x− x̂∥22 (16)

If RE(x) exceeds a threshold τ , we classify x as anomalous:

Anomaly Indicator =

{
1, if RE(x) > τ

0, otherwise
(17)

Anomalies may result in larger norms of the latent repre-
sentation due to the contractive penalty:

Latent Norm = ∥z∥2 (18)

Therefore, we can define an anomaly score combining re-
construction error and latent norm:

Anomaly Score = γ · RE(x) + (1− γ) · ∥z∥2 (19)

where γ ∈ [0, 1] balances the contributions. Model classifies
x as anomalous if the Anomaly Score exceeds a thresh-
old. The latent representation z provides a compressed
embedding:

m = dim(z) < n = dim(x) (20)

Our contractive penalty ensures that z is less sensitive to
small input variations, enhancing robustness.

4. Proposed Design: XAInomaly Framework

In this section, we introduce our fastSHAP-C algorithm,
an efficient and interpretable method designed to explain
the predictions of our DeepCAE used for anomaly detection
in O-RAN networks. The algorithm extends the existing
fastSHAP method by incorporating a Confidence Score
CS and an Error Metric EM to assess the reliability and
accuracy of the explanations, which is critical for 5G+/6G
O-RAN applications.

4.1. Selecting XAI Interpretation Methods
In our implementation, we have designed fastSHAP-C

algorithm with Global Model-Agnostic, and Reactive XAI
perspective.

4.1.1. Global Model-Agnostic XAI Interpretation
Global interperation provide explanations that encom-

pass the overall behavior of our model across the entire
dataset. This reduces computational overhead, allowing for
efficient processing of vast amounts of data and ensuring
that the XAI system remains performant as the network
complexity grows.

Let f : Rd → R be our DeepCAE model, where d is the
number of features. The goal of a global explanation is to

compute the expected contribution of each feature i to the
model’s output over the data distribution D(x)

ϕglobal
i = Ex∼D(x) [ϕi(x)] (21)

where ϕi(x) is the Shapley value of feature i for input
x, representing the contribution of feature i to the pre-
diction at x. In fastSHAP-C, we approximate the global
Shapley values by training an explainer function ϕfast(x; θ)
parameterized by θ to predict ϕi(x) for any input x

ϕi(x) ≈ ϕfast,i(x; θ) (22)

By learning θ over the entire dataset, we ensure that
the explainer captures the global behavior of the model.
Model-agnostic XAI methods do not rely on the internal
structure or parameters of the predictive model. Instead,
they use input-output behavior to generate explanations.
Our fastSHAP-C algorithm treats DeepCAE model f(x)
as a black box. The Shapley values are computed based
on the model’s predictions for different subsets of features
without requiring access to the model’s internals. The value
function v(S) for a subset of features S ⊆ {1, 2, . . . , d} is
defined as

v(S) = Ex′∼D(x)

[
f(xS ∪ x′

S̄)
]

(23)

where

• xS is the vector containing the values of features in
S from x.

• x′
S̄

is a sample from the background distribution for
features not in S.

• S̄ denotes the complement of S.

Shapley value ϕi(x) for feature i is computed as

ϕi(x) =
∑

S⊆N\{i}

|S|!(d− |S| − 1)!

d!
(v(S ∪ {i})− v(S))

(24)
This formulation does not depend on the model’s architec-
ture, making fastSHAP-C model-agnostic.

4.1.2. Reactive XAI Interpretation
Reactive XAI methods generate explanations simulta-

neously with the model’s predictions, providing immediate
insights. In the dynamic and time-sensitive context of
O-RAN networks, real-time explanations enable prompt
understanding and response to anomalies. It supports
immediate decision-making processes, such as triggering
mitigation strategies or adjusting network parameters. In
fastSHAP-C, the explainer ϕfast(x; θ) is designed to pro-
duce Shapley value estimates rapidly for any input x by
leveraging the pre-trained parameters θ

ϕ(x) = ϕfast(x; θ) (25)

Since ϕfast is a learned function, computing ϕ(x) involves
a simple forward pass, allowing for real-time explanations.

7

Algorithm 1: fastSHAP-C Training
1 Input: Value function fx,y, learning rate α
2 Output: fastSHAP explainer ϕfast(x, y; θ)
3 initialize ϕfast(x, y; θ)
4 while not converged do
5 sample x ∼ p(x), y ∼ Unif(y), s ∼ p(s)

6 predict ϕ̂← ϕfast(x, y; θ)
7 if normalize then
8 set ϕ̂← ϕ̂+ d−1(fx,y(1)− fx,y(0)− 1T ϕ̂)

9 calculate

10 L ← (fx,y(s)− fx,y(0)− sT ϕ̂)2

11 update θ ← θ − α∇θL

12 CS ← 1
n

∑n
i=1

∣∣∣fx,y(si)− fx,y(0)− sTi ϕ̂
∣∣∣

13 EM← 1
n

∑n
i=1

(
fx,y(si)− sTi ϕ̂

)2

14 return ϕfast(x, y; θ), CS, EM

4.2. Proposed fastSHAP-C Algorithm
fastSHAP-C algorithm aims to approximate the Shap-

ley values for feature attribution in a computationally
efficient manner. Traditional SHAP methods can be com-
putationally intensive, especially for models with high-
dimensional input data, as is common in O-RAN traffic
analysis. fastSHAP-C addresses this challenge by learning
a universal explainer that approximates Shapley values for
similar data points without needing to optimize separately
for each input and incorporating Confidence Score (CS)
and Error Metric (EM) to quantify the reliability and accu-
racy of the explanations. Inputs and steps of fastSHAP-C
algorithm (cf. Algorithm 1) are as follows:

1○ Model fx,y: The value function representing the pre-
diction model (autoencoder) for input x and output
y.

2○ Learning Rate α: The step size used in the optimiza-
tion algorithm.

3○ Data Sample x: The input data point to be explained.
4○ Background Dataset X: A set of samples representing

the background data distribution.
5○ Number of Samples M : The number of subsets sam-

pled for approximation.

1. Initialize:

ϕi(x) = 0 ∀i
f(x) = f(x)

f̂(x) = 0

2. Sampling: For each sample m from 1 to M : Sample
a subset S ⊆ {1, 2, . . . , d} uniformly at random.

3. Marginal Contribution: For each feature i: Compute
the marginal contribution of feature i given the subset
S:

∆fi(S) = f(S ∪ {i})− f(S) (26)

Update the Shapley value:

ϕi(x) = ϕi(x) +
∆fi(S)

M
(27)

4. Calculate CS:
First compute the reconstructed prediction;

f̂(x) =

d∑
i=1

ϕi(x) (28)

CS =
1

n

n∑
k=1

∣∣∣f(xk)− f̂(xk)
∣∣∣ (29)

The CS quantifies the average absolute discrepancy
between the true model output difference and the
explainer’s approximation over n samples. A lower
CS indicates higher confidence in the explanations.

5. Calculate EM: Compute the error between the actual
and reconstructed predictions:

EM =
1

n

n∑
k=1

(
f(xk)− f̂(xk)

)2

(30)

EM measures the mean squared error between the
true model output and the explainer’s approximation.
A lower EM signifies higher accuracy of the explainer.

6. Output: Return the Shapley values ϕi(x), CS, and
EM.

The loss function L measures the discrepancy between
the true model output and the approximation provided by
the explainer

L =
(
fx,y(s)− fx,y(0)− s⊤ϕ̂

)2

(31)

where
1○ fx,y(s): The model output when features in subset s

are present.
2○ fx,y(0): The model output when no features are

present (baseline prediction).
3○ s⊤ϕ̂: The linear combination of predicted Shapley

values corresponding to the subset s.
Using gradient descent, we update the explainer parameters
θ

θ ← θ − α∇θL (32)

4.3. XAInomaly Integration on O-RAN
Our XAInomaly framework is integrated into the O-

RAN architecture via Anomaly Detection xApp (AD xApp)
and Reactive-XAI xApp as seen in the Figure 3. AD
xAppis central to the anomaly detection process. It con-
tinuously monitors UE data, detects anomalies using our
SS=DeepCAE model, and identifies UEs exhibiting unusual
traffic behavior, degraded performance. Once an anomaly

8

Figure 3: Integration of XAInomaly framework to O-RAN

is detected, the AD xApp logs this information to the In-
fluxDB database for record-keeping and further analysis.
It then sends the anomalous UE information to the Traffic
Steering xApp (TS xApp) via Reliable Message Routing
(RMR). AD xApp also interacts with the Reactive XAI
xApp by responding to model parameter requests and to
calculate SHAP values, which enable explainability for the
detected anomalies.

TS xApp is responsible for managing and optimizing
UE traffic based on detected anomalies. Upon receiving
the list of anomalous UEs from the AD xApp, it requests
predictions from the Quality of Experience (QoE) Predic-
tor xApp to determine potential throughput for each UE.
TS xApp requests CS for the anomaly detection process
from the Reactive XAI xApp. This score, calculated by
fastSHAP-C, helps gauge the reliability of the anomaly de-
tection, allowing TS xApp to factor in the confidence level
of detected anomalies during handover decisions. Based on
the throughput predictions provided by the QoE Predictor
xApp, TS xApp decides whether to hand over a UE to a
neighboring cell with better performance metrics (higher
predicted throughput). TS xApp works collaboratively
with both the AD xApp and the QoE xApp to make intel-
ligent traffic management decisions and improve network
efficiency.

O-RAN Software Community’s E-release of the Near-RT
RIC4 and E2 Agent has been integrated into our XAIno-
maly framework to manage E2 Service Model (E2SM) func-
tionalities, facilitating communication between the Near-
RT RIC and E2 nodes. E2SM-KPM is used to gather and
report essential KPIs and measurements from the RAN
to the Near-RT RIC. This continuous flow of real-time
metrics enables the RIC to maintain a close watch on net-

4OSC Near Realtime RIC, https://wiki.o-ran-sc.org/display/
RICP/2022-05-24+Release+E

Figure 4: Dimensionality reduction on our high-dimensional
unbalanced data (yellow color represent anomalous samples,
blue color represents non-anomalous samples)

work performance. Anomaly detection and optimization
decisions are then enacted through the E2SM-RC (RAN
Control) model, which transmits control policies back to
the RAN. By combining E2SM-KPM and E2SM-RC for
policy implementation, this setup empowers the Near-RT
RIC to make data-driven decisions that optimize network
performance in real-time. E2 Simulator provides simulated
RAN data through E2 (E2-KPM 2.0M) messages, enabling
the testing of the xApps. It supplies critical information
on key performance metrics (KPIs) to the xApps.

5. Experimental Analysis

5.1. Dataset
O-RAN dataset5 was collected from various UE sources,

including cars, train passengers, pedestrians, and people
waiting. It comprises 10,000 samples that capture impor-
tant features such as RSRP, RSRQ, RSSINR, Physical
Resource Block (PRB) usage, and Throughput. Addi-
tionally, it includes contextual features like timestamp,
NRCellIdentity, DU-id, and UE-id. The dataset also has a
binary label (0 or 1) indicating the presence or absence of an
anomaly, with approximately 25% of the samples labeled as
anomalies, highlighting an imbalanced dataset. In Figure 4,
the dataset’s classes are visualized using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique [36],
which reduces high-dimensional data into a two-dimensional
view. The figure clearly shows how anomaly samples are
scattered and sparsely located, underscoring the need for a
robust model to effectively classify this minority class.

5.2. Selected Anomaly Detection Metrics for SS-DeepCAE

We employed six standard metrics to assess the efficacy
of anomaly detection [37]: Accuracy (ACC), representing
the ratio of correctly classified instances; Precision (PR),
indicating the ratio of positive instances that are accurately
identified as positive; Recall (RE), which reflects the ratio
of actual positive instances that are correctly recognized;
F1 Score (F1), defined as the harmonic mean of precision

5Access to the documented data by O-RAN Alliance is pro-
vided at https://github.com/o-ran-sc/ric-app-ad/blob/master/
src/ue.csv

9

 https://wiki.o-ran-sc.org/display/RICP/2022-05-24+ Release+E
 https://wiki.o-ran-sc.org/display/RICP/2022-05-24+ Release+E
https://github.com/o-ran-sc/ric-app-ad/blob/master/src/ue.csv
https://github.com/o-ran-sc/ric-app-ad/blob/master/src/ue.csv

and recall; Area Under Curve (AUC), which gauges the
model’s ability to differentiate between positive and nega-
tive instances and Unweighted Average Recall (UAR) also
known as Unweighted Average Accuracy, is the sum of
class-wise accuracy (recall) divided by number of classes.

5.3. Selected XAI Metrics for fastSHAP-C

To enhance the interpretability and trustworthiness
of our SS-DeepCAE for anomaly detection in O-RAN net-
works, we integrate specific XAI metrics into fastSHAP-C
algorithm. Key XAI metrics incorporated are:

1○ Confidence Score CS: CS is assessing the reliabil-
ity and robustness of the explanations generated by
fastSHAP-C. It measures the consistency between the
model’s predictions and the explanations provided
by the model. A high CS indicates that the explana-
tions are accurate and align closely with the model’s
behavior, fostering trust in the model’s predictions.
Let f(x) denote the model’s prediction for input x,
and ϕ(x) represent the vector of feature importances
(Shapley values) provided by fastSHAP-C for input x.
The reconstructed prediction using the explanations
is given by

f̂(x) =

d∑
i=1

ϕi(x) (33)

where d is the number of features. CS is defined as
the average absolute difference between the model’s
actual prediction and the reconstructed prediction

CS =
1

n

n∑
i=1

∣∣∣f(xi)− f̂(xi)
∣∣∣ (34)

where n is the number of samples, xi is the i-th
sample, and f̂(xi) is the reconstructed prediction
for xi. A lower CS signifies higher reliability of the
explanations, as the reconstructed predictions closely
match the actual model outputs.

2○ Sensitivity: It quantifies the degree to which the ex-
planations provided by fastSHAP-C are affected by
small changes in the input data or model parameters.
It assesses the robustness of the model by evaluating
how much the explanations vary in response to per-
turbations in the input features. For input xi, the
sensitivity λ(xi) is defined as

λ(xi) = max
xj∈Bϵ(xi)

∥ϕ(xi)− ϕ(xj)∥2
∥xi − xj∥2

(35)

where

• Bϵ(xi) is an ϵ-neighborhood around xi, repre-
senting inputs within a small perturbation of
xi.

• ϕ(xi) and ϕ(xj) are the explanations for xi and
xj , respectively.

• ∥·∥2 denotes the Euclidean norm.

A lower sensitivity value indicates that the expla-
nations are stable and robust to small input per-
turbations, which is essential in dynamic O-RAN
environments where network conditions can fluctu-
ate.

3○ Log-odds: Metric evaluates the importance or rel-
evance of each feature in influencing the model’s
predictions. It measures the change in the log-odds
of the predicted outcome when a particular feature is
present or absent, providing insights into the feature’s
impact on the model’s decision-making process. For
a feature p, the log-odds is computed as

log − odds(p) = − 1

L

L∑
i=1

log
Pr(ŷ|x(p)

i)

Pr(ŷ|xi)
(36)

where

• L is the total number of samples.

• x
(p)
i is the input xi with feature p removed or

altered.
• ŷi is the model’s predicted output for input xi.

• Pr(ŷi|x(p)
i) and Pr(ŷi|xi) are the probabilities of

the predicted outcome given the modified and
original inputs, respectively.

A positive log−odds value indicates that the presence
of feature p increases the likelihood of the predicted
outcome, whereas a negative value suggests it de-
creases the likelihood.

5.4. Hyper-parameter Tuning
Hyper-parameter tuning is a critical step in developing

effective learning models, particularly for complex architec-
tures like autoencoders. A well-structured tuning process
ensures that finding the optimal combination of parameters
that yields the best model performance. Robust tuning
can significantly improve the performance of the model
leading to more accurate anomaly detection and better
generalization. Furthermore, optimized hyper-parameters
help the model converge faster and more efficiently, saving
computational resources for resource-constrained O-RAN
networks. It helps prevent overfitting or underfitting by
finding hyper-parameters that strike the right balance be-
tween model complexity and learning capability. Given
the complexity of our problem, systematic method called
GridSearchCV [38] is selected in our tuning process. Grid
search automates the search for optimal hyper-parameters
by exhaustively testing all combinations in a predefined
parameter grid. The parameters to be tuned and their
respective ranges (parameter space) are seen in Table 3.
Selected input size of 20, corresponding to the full set of
available features in our dataset.

Considering that each feature may carry significant
information relevant to anomaly detection in O-RAN traffic,
it was crucial to utilize the complete feature set to capture
the complex patterns present in high-dimensional data.

10

Hyper-param. Search Space Selected Parameter

Input size [2, 4, 8, 16, 20, 32] 20
Hidden layers [1, 2, 3] 2
Hidden layer s. [0.5, 1.5, 2.0, 3.0, 5.0] 3.0 x Input Size
Learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01] 0.001
Batch size [32, 64, 128, 256, 512] 64 (Mini-batch)
Reconstruction Loss [MAE, MSE, sMAPE] MSE
Training steps [1000, 5000, 10,000, 20,000, 40,000] 10,000
Optimizer [RMSprop, SGD, Adam] Adam

Table 3: Hyper-parameter tuning stage of SS-DeepCAE

GridSearchCV decides 2 hidden layers in the encoder and
decoder parts. This choice balances model complexity
and representational capacity. Mathematically, deeper
networks can approximate more complex functions due to
their ability to represent higher-order interactions among
features [39]. However, increasing the number of layers also
increases the risk of overfitting and computational cost.

In the context of O-RAN, where real-time processing is
essential, a model with 2 hidden layers provides sufficient
depth to learn meaningful representations while maintain-
ing computational efficiency. Hidden layer size selected to
be 3 times the input size, resulting in 60 neurons for the
first hidden layer. This scaling ensures that the network
has enough capacity to capture the intricate structures
in the data without introducing unnecessary parameters.
The subsequent layers reduce the dimensionality, forming
a bottleneck that forces the model to learn compressed
representations. A learning rate of 0.001 was chosen, which
is a common default value for the Adam optimizer. This
rate offers a good balance between convergence speed and
the stability of the optimization process. A too high learn-
ing rate might cause the optimizer to overshoot minima,
while a too low rate could result in slow convergence or
getting stuck in local minima. Mini-batch size selected
64. Mini-batch gradient descent helps in smoothing the
optimization landscape and accelerates convergence com-
pared to stochastic gradient descent [40]. A batch size of 64
provides a good trade-off between computational efficiency
and the robustness of parameter updates.

Mean Squared Error (MSE) was selected as the recon-
struction loss function. MSE penalizes larger errors more
than smaller ones due to the squaring term, making it suit-
able for capturing significant deviations in reconstruction,
which is critical in anomaly detection. Adam optimizer was
chosen for its adaptive learning rate capabilities and gen-
erally good performance across various tasks. It combines
the advantages of both AdaGrad and RMSprop, adjusting
the learning rate for each parameter dynamically, which
is beneficial for training deep neural networks. Rectified
Linear Units (ReLU) were used as the activation function
in all layers except the output layer. ReLU is simple to
compute, leading to faster training times. Unlike sigmoid
or tanh activations, ReLU does not saturate in the positive
region, helping to mitigate the vanishing gradient problem
in deeper networks [41]. Also, ReLU induces sparsity in

SS-DeepCAE Layers Output Shape Parameters

input_1 (InputLayer) (None, 20) 0
dense_1 (encoded) (None, 64) 1344
dense_2 (encoded) (None, 32) 2080
dense_3 (bottleneck) (None, 16) 528
dense_4 (bottleneck) (None, 16) 272
dense_5 (decoded) (None, 32) 544
dense_6 (decoded) (None, 64) 2112
dense_7 (Dense) (None, 20) 1300

Total Params: 24,452
Trainable Params: 8,180
Nontrainable Params: 0
Optimizer Params: 16,362

Table 4: SS-DeepCAE model summary with parameters

activations, as negative inputs are mapped to zero. This
sparsity can enhance feature learning and reduce overfit-
ting. The total number of trainable parameters is 8,180,
which is relatively low given the model’s capacity. This
low complexity is advantageous for deployment in O-RAN
systems, where computational resources may be limited,
and low latency is essential.

The O-RAN environment presents unique challenges
due to its disaggregated architecture and the heterogeneity
of components. High-dimensional data streams require
models that can effectively capture complex patterns with-
out incurring significant computational overhead. Our
SS-DeepCAE model in Table 4 addresses these challenges
by; 2 encoder and 2 decoder layers provide sufficient depth
to model non-linear relationships in the data while keeping
the model lightweight. The bottleneck layer compresses
data to a lower-dimensional space, which is critical for
identifying anomalies as deviations from learned normal
patterns. Contractive Loss enhances the model’s robust-
ness to noise and variations in the input, which is common
in real-world network traffic data.

5.5. Baseline Models
5.5.1. Baseline Models for our SS-DeepCAE Model

All baseline models whose performance we compared
with SS-DeepCAE model implemented as semi-supervised.
We consider the following baselines:

1. Vanilla Autoencoder: Vanilla autoencoder can be
described in it is most basic form as a neural net-
work comprising three layers, which includes a single
hidden layer. The input and output of this network
are identical, and the objective is to learn the pro-
cess of reconstructing the input. This is typically
achieved through the utilization of the Adam opti-
mizer in conjunction with the mean squared error
loss function.

2. LSTM-Autoencoder [42]: This architecture consists
of three layers; an LSTM encoder featuring 256 units
with a dropout rate of 20%, an LSTM decoder in-
corporating 512 units also with a 20% dropout rate,

11

and a dense output layer that matches the number
of units to the length of the small time series.

3. SLA-VAE [43]: Model defines anomalies based on
their feature extraction module, then introduces semi-
supervised VAE to identify anomalies in multivariate
time series. Authors adopt the reconstruction error
to detect anomalies. Their module consists of two
steps. First, they compute the reconstructed output
with semi-supervised VAE, and then calculate the
reconstruction error for each observation.

4. DeepAE [21]: It is our first model that helps us
understand the problems brought by DeepAE and
motivated us to develop new scalable, less complex
model which we clarified in Section 1. It is a high-
power deep autoencoder model with a structure con-
sisting of shallow layers to be symmetrical in the
encoder and decoder parts. It has 30, 491 trainable,
806 non-trainable, 60, 984 optimizer and 92.281 total
parameters. Compared to proposed SS-DeepCAE, it
has almost 4 times more parameters.

5.5.2. Baseline Models for our XAI Method fastSHAP-C
We consider the following baselines for our fastSHAP-C

XAI algorithm:

1. kernelSHAP [44]: This approach involves analyzing
the predictions made by machine learning models
through the lens of Shapley values, which originate
from cooperative game theory. The primary objective
is to equitably assign the contribution of each fea-
ture to the overall prediction of the machine learning
model.

2. fastSHAP [45]: Algorithm serves as an effective ap-
proximation technique for calculating Shapley values.
Its primary objective is to expedite the computation
of Shapley values, which can be resource-intensive
when dealing with intricate models and extensive
datasets. fastSHAP utilizes a differentiable surro-
gate model that is trained to estimate Shapley values,
thereby considerably decreasing the time required for
computation.

6. Results and Discussion

In this section, we analyze SS-DeepCAE model’s perfor-
mance. Then continue by interpreting the SHAP values to
gain insights into the behavior of the SS-DeepCAE model,
which functions as an AD xApp. This analysis helps reveal
how specific features contribute to the model’s anomaly
detection decisions, enhancing our understanding of it is
inner workings. Following this interpretability assessment,
we conduct a comprehensive performance benchmarking
of our novel fastSHAP-C implementation within the XAIn-
omaly framework. We compare the results against ker-
nelSHAP and fastSHAP, which are commonly utilized in

0 200 400 600 800 1000
Epochs

101

102

Lo
ss

Validation Loss
Training Loss

(a) Training/Validation Loss.

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

180 200

0.78
0.80

(b) Training/Validation Accuracy.

Figure 5: Training and validation loss-accuracy curves over
epochs

recent research, to evaluate fastSHAP-C’s effectiveness and
improvements in both speed and resource efficiency.

6.1. Performance Results of SS-DeepCAE Model
6.1.1. Training and Validation Performance

The performance of the SS-DeepCAE model is visualized
through the loss and accuracy curves over the training
epochs as seen in Figure 5, providing insights into the
model’s learning behavior and generalization capabilities.
Both the training and validation loss curves, plotted on a
logarithmic scale, demonstrate a steep decline during the
initial epochs, indicative of the model effectively capturing
the foundational patterns in the data. This behavior is
mirrored in the accuracy curves, where both training and
validation accuracy exhibit a rapid increase in the early
stages, highlighting the model’s efficiency in learning critical
features for anomaly detection. As training progresses, the
slopes of the loss curves begin to flatten after approximately
200 epochs, signaling a transition to fine-tuning the model’s
representations. By around 600 epochs, the loss curves
stabilize, indicating convergence. Notably, the training and
validation loss curves remain closely aligned throughout
the training process, which suggests that the model is not
overfitting.

This alignment is particularly important in real-world O-
RAN AI/ML models deployment, where generalization to
unseen data is critical. The accuracy curves provide further
evidence of the model’s strong performance. Both training
and validation accuracy improve steadily, with the training
accuracy eventually reaching 90% and validation accuracy
stabilizing at approximately 82%. The gap between these
curves remains small, demonstrating good generalization

12

CAE1 CAE2 CAE3 CAE4 CAE5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
Lo

ss

Normal
Abnormal

CAE1 CAE2 CAE3 CAE4 CAE5
Number of Layers

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

Figure 6: Reconstruction error distribution for SS-DeepCAE
with different layer size (Upper Graph) Precision distribu-
tion of SS-DeepCAE with different layer size (Lower Graph)

without overfitting. The zoomed section of the accuracy
curve, focusing on epochs 180 to 200, reveals a critical
learning phase where validation accuracy rapidly improves
from approximately 70% to 80%. This sharp increase
suggests that the model transitions to capturing more
complex or higher-order patterns in the data during this
phase.

6.1.2. Analysis of Reconstruction Loss and Precision with
Varying Layer Sizes

In Figure 6, the provided graphs illustrate the perfor-
mance of the SS-DeepCAE model across different layer con-
figurations (CAE1 to CAE5) in terms of reconstruction loss
and precision. The results clearly indicate that CAE2, which
represents a model with two layers in both the encoder and
decoder, delivers the best trade-off between reconstruction
error and precision.

The reconstruction loss, depicted in the upper graph,
compares the model’s ability to differentiate between nor-
mal (yellow) and abnormal (red) samples across various
configurations. CAE2 exhibits the narrowest distribution
of reconstruction errors for both normal and abnormal
samples, indicating it is superior ability to capture the
underlying structure of normal network behavior while ef-
fectively separating abnormal instances. Smaller spread
of the reconstruction loss for CAE2 suggests that it pro-
vides a robust and consistent representation of the input

data, minimizing overfitting while maintaining sensitivity
to anomalies. As the number of layers increases (CAE3,
CAE4, CAE5), the reconstruction error for both normal and
abnormal samples grows, and the distributions widen. This
behavior is indicative of increased model complexity, which
introduces noise and reduces the model’s ability to gener-
alize effectively. For CAE5, the reconstruction loss overlaps
significantly between normal and abnormal samples, show-
ing the model’s reduced ability to distinguish anomalies.
This suggests that the added complexity fails to improve
the latent representations and instead hampers the model’s
performance.

The precision distribution, shown in the lower graph,
evaluates the model’s ability to correctly identify anoma-
lies as the layer size varies. CAE2 demonstrates the high-
est median precision, along with the tightest interquartile
range (IQR). This indicates that the two-layer architecture
achieves the optimal balance between model capacity and
generalization, making it the most effective configuration
for anomaly detection. As the number of layers increases
beyond two, the precision drops significantly. The wider
IQRs in these configurations indicate variability in model
performance, which may be attributed to overfitting or
the inability to effectively optimize the additional param-
eters introduced by deeper architectures. Particularly in
CAE5, the median precision is markedly lower, and the
distribution indicates poor anomaly detection capability.
This reinforces that additional layers do not necessarily
translate to better performance and may instead lead to
diminished returns. While CAE1 avoids overfitting by keep-
ing the architecture simple, it is lower precision compared
to CAE2 highlights the trade-off between model complexity
and expressive power. A single-layer configuration lacks
sufficient depth to capture the complex relationships in
high-dimensional O-RAN data, leading to missed anomalies
and reduced precision.

6.1.3. Performance Comparison with Baseline Models
Provided results evaluates SS-DeepCAE against various

baseline architectures, cross four key metrics as can be seen
in Figure 7. These metrics are analyzed with respect to
the increasing percentage of labeled samples in training.
The results demonstrate that the proposed model consis-
tently outperforms the baselines, particularly in scenarios
with limited labeled data, making it a highly effective so-
lution for semi-supervised anomaly detection in O-RAN
environments.

SS-DeepCAE achieves the highest accuracy, surpass-
ing 95% with just 10-12% labeled samples. It is accuracy
consistently outpaces the baselines, particularly in the low-
labeled-data regime (4–10% labeled samples), where it
maintains a significant margin over the others. Superior
accuracy is attributed to the contractive penalty in our
SS-DeepCAE’s loss function design, which enhances the
model’s ability to learn robust and smooth feature rep-
resentations that generalize well to unseen data. This is

13

4 6 8 10 12 14 16 18
Ratio (%) of Labeled Samples in Training

60

70

80

90

100

Ac
cu

ra
cy

Vanilla-AE
LSTM-AE
SLA-VAE
DeepAE
SS-DeepCAE(ours)

(a) Accuracy Results

4 6 8 10 12 14 16 18
Ratio (%) of Labeled Samples in Training

60

65

70

75

80

85

90

95

100

Pr
ec

isi
on

Vanilla-AE
LSTM-AE
SLA-VAE
DeepAE
SS-DeepCAE(ours)

(b) Precision Results

4 6 8 10 12 14 16 18
Ratio (%) of Labeled Samples in Training

55

60

65

70

75

80

85

90

95

F1
-s

co
re

Vanilla-AE
LSTM-AE
SLA-VAE
DeepAE
SS-DeepCAE(ours)

(c) F1-Score Results

4 6 8 10 12 14 16 18
Ratio (%) of Labeled Samples in Training

60

70

80

90
AU

C

Vanilla-AE
LSTM-AE
SLA-VAE
DeepAE
SS-DeepCAE(ours)

(d) AUC Results

Figure 7: Accuracy, Precision, F1-score, and AUC variation curves of models with different ratio labeled samples

of Labeled Samples from Dataset

Models 100 300 500 800 1000 # All

Vanilla Autoencoder 43.46±(2.1) 46.67±(2.2) 48.14±(0.8) 51.27±(2.3) 58.73±(0.9) 65.13±(1.6)

LSTM-Autoencoder [42] 59.82±(1.3) 62.22±(1.8) 65.71±(0.9) 68.17±(0.5) 71.33±(2.1) 76.63±(0.9)

SLA-VAE [43] 64.56±(1.9) 68.57±(1.2) 71.32±(0.7) 75.19±(2.1) 81.13±(1.1) 85.43±(1.3)

DeepAE [21] 71.72±(1.5) 74.48±(1.9) 75.72±(2.1) 76.39±(0.7) 83.33±(1.8) 88.66±(1.8)

SS-DeepCAE (ours) 80.17±(0.6) 82.67±(1.2) 85.12±(1.1) 86.39±(1.7) 91.33±(1.4) 91.17±(0.6)

Table 5: Average UAR with standard deviation on test set (different amount of labeled samples in training)

especially advantageous in high-dimensional, noisy and lack
of labeled data.

Our model significantly outperforming the baselines at
higher labeled ratios. Even with as little as 6% labeled
data, it maintains precision above 90%. Precision measures
the fraction of correctly identified anomalies among all
instances flagged as anomalous. The SS-DeepCAE’s ability
to reduce false positives is enhanced by its semi-supervised
learning approach, which effectively separates normal and
abnormal traffic patterns in the latent space. DeepAE
performs well at higher labeled data ratios but struggles in

the low-labeled regime, indicating its tendency to overfit to
the available labeled data. Vanilla-AE and SLA-VAE lag
behind due to their inability to handle high-dimensional
data efficiently without extensive supervision.

F1-score captures the trade-off between precision and
recall. SS-DeepCAE’s contractive loss enables the model
to maintain high recall by learning representations that
are robust to minor variations in the input, ensuring that
true anomalies are not overlooked. High AUC underscores
the effectiveness of the bottleneck layer in the SS-DeepCAE
architecture, which compresses high-dimensional input data

14

into a meaningful latent representation, enabling the model
to consistently rank anomalies higher than normal samples.

In Table 5, we present UAR results for six labeled sam-
ple configurations, which capture a range starting from a
small number of labeled samples (100) up to the total set,
illustrating how SS-DeepCAE evolves from a data-scarce
scenario to one where abundant labeled data is available.
We focus on UAR at these discrete points because it ro-
bustly highlights performance in imbalanced conditions,
especially relevant for anomaly detection, where the mi-
nority class (anomalies) can be overwhelmed by normal
data. By showcasing UAR at successively larger subsets of
labeled data, we illustrate our model’s trajectory in learn-
ing critical features of anomalous samples under varying
degrees of label availability. Meanwhile, Accuracy, Preci-
sion, F1-score, and AUC are also reported at lower labeled
ratios (down to 4–10%) to underscore the consistency of
our approach across different metrics and further validate
the effectiveness of SS-DeepCAE. Taken together, these eval-
uations provide a comprehensive view of how the model
scales and performs as labeled sample sizes incrementally
increase, rather than focusing only on full labeled samples.
UAR results emphasize the superiority of our model, partic-
ularly in scenarios with limited labeled data, and its ability
to converge to high performance levels without requiring
substantial increases in labeled data.

SS-DeepCAE consistently outperforms all baseline mod-
els across all labeled sample sizes. With only 100 labeled
samples, SS-DeepCAE achieves a UAR of 80.17 ± 0.6, sig-
nificantly higher than the next best-performing model,
DeepAE (71.72 ± 1.5). This trend persists as the num-
ber of labeled samples increases, culminating in 91.17 ±
0.6 when using the full dataset, outperforming DeepAE
(88.66 ± 1.8) and SLA-VAE (85.43 ± 1.3). Performance
of SS-DeepCAE begins to stabilize after 800 labeled sam-
ples, with a marginal increase in UAR beyond this point.
For instance, UAR improves from 86.39± 1.4 (800 labeled
samples) to 91.17± 0.6 (full dataset).

This saturation suggests that the SS-DeepCAE effec-
tively utilizes both labeled and unlabeled data, achieving
robust representations that do not heavily rely on addi-
tional labeled samples. Beyond 800 labeled samples, the
model’s UAR begins to plateau, indicating that the ad-
ditional labeled data provides diminishing returns. This
suggests that the model’s reliance on labeled data is signifi-
cantly reduced, making it ideal for scenarios where labeling
is expensive or infeasible. The ability of SS-DeepCAE to
achieve high UAR with minimal labeled data makes it
highly scalable for O-RAN environments, where labeled
anomalies are rare and costly to obtain. This efficiency
ensures that the model can be deployed quickly without
the need for extensive labeling efforts.

6.1.4. Model Complexity Analysis for Resource-Constrained
Environments

While our proposed SS-DeepCAE model significantly re-
duces the number of trainable parameters compared to

standard DeeAEs, it is still crucial to assess its compu-
tational footprint for real-world O-RAN deployments. A
detailed breakdown of the total parameters and memory
usage is given in Tables 4 and 8, illustrating that the
encoder-decoder structure with contractive regularization
strikes a balance between model capacity and efficiency.
In resource-constrained environments (e.g., edge nodes or
small-footprint Near-RT RIC deployments), three aspects
are particularly relevant:

Parameters and Memory Usage: Fewer network layers
and careful bottleneck design decrease the total number of
parameters, thereby lowering memory requirements. Our
architecture keeps the parameters at a level that remains
feasible for on-device or near-edge processing without ne-
cessitating large GPU clusters.

Inference Latency: The contractive penalty induces
smoother and more robust representations, helping the
model converge faster at inference time. However, deeper
models, if deployed, will incur higher latency. Depending
on the desired latency budget (e.g., sub-second decisions in
O-RAN anomaly detection), there may be a need to prune
layers or reduce dimensionality.

Model Convergence Time: In some O-RAN scenarios,
particularly in micro-data centers or edge servers, limited
energy availability constrains continuous training. By using
contractive regularization, our model tends to converge in
fewer epochs and can be partially fine-tuned or updated
incrementally, mitigating energy consumption overhead.

For future complexity trade-offs, employing adaptive
network architectures, where deeper layers are skipped
if the detection confidence is sufficiently high, offers a
route to adjust computational complexity based on real-
time demands. Tailoring SS-DeepCAE through pruning
weights or entire neurons associated with lower-priority
sub-tasks can significantly reduce overhead while retaining
high accuracy.

6.2. Performance Results of fastSHAP-C
In this section, we particularly examine the explainabil-

ity and interpretability capacity of proposed fastSHAP-C
algorithm and compared its performance with baseline mod-
els specified in Section 5.5.2. We also ran our fastSHAP-C
method on our new anomaly detection model SS-DeepCAE
and observed the results.

6.2.1. SHAP Values and Feature Contributions
The process of calculating SHAP values is typically

NP-hard, which can result in high convergence times and
increased complexity in obtaining solutions. To address
this challenge, we implemented kernelSHAP as our baseline
model to compute SHAP values and gain insights into how
each feature contributes to the model’s predictions. Start-
ing with results in Figure 8, we present a SHAP summary
plot that depicts the contribution of each input feature to
our SS-DeepCAE anomaly detection model’s output. On
the horizontal axis, the “SHAP value” measures how much

15

Figure 8: Explaining feature contributions with SHAP
values

each feature, for a given sample, shifts the model’s predic-
tion toward anomalous (positive SHAP) or toward normal
(negative SHAP). Each point represents a specific instance
in the dataset, color-coded from blue (lower feature val-
ues) to red (higher feature values). Features at the top
of Figure 8 are generally those that, on average, have the
greatest overall impact on the model’s decisions; features
appearing toward the bottom have less global influence or
tend to have specialized significance for particular types
of anomalies. The most influential metrics in this O-RAN
setting emerge as “RF.serving.RSRP,” “RF.serving.RSRQ,”
and “RF.serving.RSSINR.” These correspond to critical
RF measurements from the serving cell. Observing the
SHAP values on Figure 8, data points with lower RSRP
(blue coloring) tend to push the model toward labeling the
sample as an anomaly (larger positive SHAP on the hori-
zontal axis). This aligns with real-world domain knowledge:
coverage holes or sub-optimal power levels often manifest
as performance degradations that trigger anomaly alerts.

Likewise, RF.serving.RSRQ offers an integrated mea-
sure of signal quality by considering both signal strength
and interference. In an O-RAN context, when RSRQ is
too low or fluctuates drastically, the network’s capacity for
maintaining stable connections diminishes. As shown in
Figure 8, instances with poor RSRQ values also exhibit
prominent positive SHAP attributions, confirming that
degraded signal quality is a major contributor to anomaly
classification. Moreover, RF.serving.RSSINR indicates how
much stronger the useful signal is compared to interference
plus background noise. Markedly low RSSINR translates
to heightened interference scenarios – an important element
in diagnosing anomalies tied to poor spectral efficiency or
environmental blockages. When RSSINR is low (indicated
by blue or purple in Figure 8), the associated SHAP value
tends to push the outcome toward anomalous. Beyond
the serving cell metrics, “rsrp_nb,” “rsrq_nb,” and “rss-
inr_nb” represent analogous RF measurements (RSRP,
RSRQ, RSSINR) captured from neighboring cells. These
features aid in understanding whether a user equipment
(UE) in distress might connect better to nearby cells or if
poor coverage is widespread.

Features

High Reconstruction Error X1

Explanatory X2, X3

Explaining Anomaly X1, X2, X3

Table 6: Explainability with model features

In Figure 8, outlier points colored red (high neighbor-
RSRP or neighbor-RSSINR) sometimes have negative SHAP
values, indicating that strong neighboring signals can re-
duce anomaly likelihood, even if the serving cell metrics are
suboptimal, because the network can potentially initiate
a handover. Conversely, low values for these neighbor-cell
metrics reinforce an anomaly label, as the UE lacks al-
ternatives to recover service quality. By aligning model
explanations with known domain-specific mechanics, SHAP
values offers a transparent window into how each feature
drives the model’s anomaly decisions. Such interpretability
is crucial for O-RAN operators who not only require real-
time alerts but also actionable insights into why those alerts
happen. In practice, these SHAP attributions can inform
xApps when adjusting handover thresholds, recalibrating
power control, or orchestrating beamforming to counteract
the underlying conditions that lead to anomalies.

Results shown in Table 6 reveal that RF.serving.RSRPv
(X1) consistently emerges as the most influential feature
determining whether UE behavior is flagged as anomalous.
From an explainability standpoint, the high Shapley values
associated with X1 indicate that even marginal fluctuations
in the Reference Signal Received Power (RSRP) can sig-
nificantly alter the model’s anomaly score. In other words,
when X1 shifts from moderate to low values, the model’s
confidence that the UE is experiencing an anomalous condi-
tion increases sharply. This aligns with domain knowledge:
as RSRP falls, the UE’s link quality deteriorates, poten-
tially leading to dropped connections and handover failures.
Similarly, RF.serving.RSRQ (X2) and RF.serving.RSSINR
(X3) exhibit notable Shapley contributions, indicating that
both metrics frequently influence the final anomaly clas-
sification. Specifically, X2 encapsulates Reference Signal
Received Quality, which ties signal strength to prevailing
interference; low RSRQ therefore suggests an environment
of pronounced interference or noise. High feature attribu-
tions for X2 imply that the model has learned to associate
elevated interference with abnormal network states – an
interpretation that is critical for proactive troubleshooting
of congested or interference-prone cells.

In parallel, X3 tracks the Received Signal Strength In-
dicator to Noise Ratio (RSSINR). Large Shapley values for
X3 generally appear when the RSSINR dips below a certain
threshold, reinforcing the notion that poor signal-to-noise
conditions are a key driver of anomalous UE performance.
This effect can be especially acute if X1 is already bor-
derline, meaning that coverage is insufficient to maintain
reliable throughput in the face of rising interference. Under
these circumstances, the model’s explainability outputs

16

highlight that both a weak signal (X1) and high interfer-
ence (X2, X3) jointly account for triggering anomalies. The
combination of X1, X2, and X3 points to a situation in
which a single metric alone may not provide a complete
explanation for anomalous behavior. Instead, the model
relies on how these RF indicators interact. If one of them
degrades notably, the Shapley values for the remaining
features can become more or less pronounced, depending
on the network context (e.g., mobility events, cell-edge
conditions).

Such insight is vital for network administrators who
wish to prioritize interventions. For instance, a decline
in RSRP alone might warrant load balancing or neighbor-
ing cell reconfiguration, whereas combined degradation in
RSRP, RSRQ, and RSSINR could mandate more aggressive
actions, such as adjusting handover thresholds or improving
interference management schemes. By revealing the relative
importance of X1, X2, and X3 in the anomaly detection
pipeline, the XAInomaly framework equips operators with
actionable, data-driven explanations for performance drops.
When these three features are flagged simultaneously, they
strongly indicate a high-risk scenario, guiding timely inter-
ventions that ensure consistent QoS and network stability.

6.2.2. Benchmarking fastSHAP-C with Baseline Models
First benchmark analysis focused on top-1 accuracy

results for exclusion and inclusion of most informative
features. We anaylzed performance of fastSHAP-C with
baseline models commonly used in recent studies. To clearly
show our benchmarking methodology; x ∈ Rd denote an
input to our model f(x), where d is the number of features.
Each explainability method M assigns importance scores
ϕ
(M)
j (x) to every feature j ∈ {1, 2, . . . , d}. In the exclusion

scenario, we remove a fixed percentage κ% of the most crit-
ical features according to their importance values ϕ

(M)
j (x).

Formally, we define the set of excluded features for method
M at percentage κ as:

SM,κ(x) =
{
j
∣∣∣ j ∈ arg max

J⊆{1,...,d}, |J|=⌊κ·d⌋

∑
k∈J

ϕ
(M)
k (x)

}
(37)

We then measure the model’s top-1 accuracy when
these features in SM,κ(x) are removed across the dataset.
Figure 9a indicates that once a moderate fraction of top-
ranked features is removed, fastSHAP-C (green dashed line)
undergoes a pronounced drop in accuracy. Initially (i.e., for
small κ), fastSHAP-C remains comparable to kernelSHAP
and fastSHAP, but as κ increases beyond 20–30%, its slope
becomes steeper. This pattern suggests that fastSHAP-C
prioritizes a handful of features with high ϕ

(M)
j (x) values

more distinctly than kernelSHAP. Hence, as soon as these
high-priority features are removed, the model’s predictive
power declines faster compared to a method that distributes
importance more evenly. This does not necessarily indicate
a fundamental lack of robustness; rather, it may reflect a
more “selective” allocation of large attributions to certain
features.

0 20 40 60 80 100
Exclusion %

0.2

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

KernelSHAP
FastSHAP
FastSHAP-C

(a) Exclusion curve.

0 20 40 60 80 100
Inclusion %

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
Ac

cu
ra

cy

KernelSHAP
FastSHAP
FastSHAP-C

(b) Inclusion curve.

Figure 9: Exclusion and Inclusion Curves for top-1 Accu-
racy

In contrast, Figure 9b (inclusion curve) shows how
fastSHAP-C steadily outperforms both kernelSHAP and
fastSHAP as features are added back (from 0% up to 100%),
which is formalized by retaining only the set

RM,κ(x) =
{
j
∣∣∣ ϕ(M)

j (x)among the largest ⌊κ ·d⌋values
}

(38)
The steep climb in accuracy at low-inclusion percent-

ages (0–20%) indicates that fastSHAP-C is highly effective
at ranking crucial features—once these are retained, the
model recovers its predictive capabilities more quickly. This
observation, juxtaposed with the sharper drop in the ex-
clusion curve, emphasizes that fastSHAP-C pinpoints the
most impactful features early on, but also amplifies their
importance relative to secondary features.

To ascertain whether fastSHAP-C’s efficiency compro-
mises its accuracy in feature identification, we performed
an additional experiment focusing on the single most impor-
tant feature for each data instance. Let ϕ(M)

j (x) denote the
attribution to feature j. For each instance x, we extract

ĵM (x) = argmax
j

ϕ
(M)
j (x), (39)

i.e., the feature that method M deems most crucial. Em-
pirically, fastSHAP-C’s top-1 choices match those of ker-
nelSHAP and fastSHAP in a significant fraction of cases
(above 80% in our experiments). In about 5–10% of cases,
fastSHAP-C picks a different feature, but closer inspection
revealed that these are typically instances where multiple
features share similar importance values. This result sug-
gests that while fastSHAP-C occasionally diverges from
kernelSHAP or fastSHAP, the divergence usually arises in
“tie” situations rather than systematic misidentification of
crucial features.

While kernelSHAP (yellow line) maintains high accu-
racy when only a small portion of features is excluded, it
experiences a steady accuracy decline as more features are
removed. Similarly, fastSHAP (red line) shows a down-
ward trend, though with a slightly steeper accuracy drop
than kernelSHAP, suggesting it may be less robust when
essential features are excluded. The fastSHAP-C algorithm
(green dashed line) starts with slightly lower accuracy than
kernelSHAP and fastSHAP but demonstrates a comparable
accuracy drop-off. However, fastSHAP-C performs better
than fastSHAP in the mid-range feature exclusion (20-70%).

17

Algorithm Exclusion AUC Inclusion AUC

kernelSHAP 10.53 (10.17, 11.03) 4.96 (4.56, 5.47)
fastSHAP 6.89 (6.73, 7.65) 5.79 (5.58, 5.93)
fastSHAP-C 6.6 (5.73, 4.65) 6.79 (5.53, 5.96)

Table 7: Exclusion and inclusion AUCs (log − odds(p))

The inclusion curve on the right graph shows how model’s
top-1 accuracy improves as more important features are
added back into the input. While kernelSHAP’s accuracy
increases steadily with feature inclusion, it lags slightly be-
hind both fastSHAP and fastSHAP-C in the initial phase
(0-20% inclusion). In contrast, fastSHAP’s accuracy rises
more quickly in the early inclusion phase, suggesting an
efficient selection of key features initially. Throughout
the entire inclusion range, fastSHAP-C (green dashed line)
outperforms both kernelSHAP and fastSHAP, ultimately
achieving the highest accuracy as the inclusion percentage
increases. While kernelSHAP maintains higher accuracy
during exclusion but has a slower start in inclusion, fast-
SHAP shows faster initial gains in inclusion yet drops faster
during exclusion.

These findings collectively indicate that fastSHAP-C’s
computational advantages do not come at the cost of
misidentifying globally important features. Indeed, the
slightly more pronounced drop in accuracy for large-scale
exclusions can be attributed to fastSHAP-C’s tendency to
concentrate importance on a smaller subset of features.
Once those high-importance features are removed, the
model’s performance deteriorates quickly; yet when those
same features are included (even in the early inclusion
range), fastSHAP-C fosters a rapid regain in predictive
accuracy. From a theoretical standpoint, we observe that
each method ϕ

(M)
j approximates (or directly implements,

in the case of kernelSHAP) a variant of Shapley-value attri-
butions. Although approximate methods like fastSHAP-C
use learned surrogates or other heuristics to speed up com-
putations, the overlap analysis highlights that these approx-
imations do not drastically alter the top-ranked features.
Hence, the accelerated runtime does not systematically
reduce correctness in pinpointing the features that have
the strongest impact on f(x).

Also, we evaluated performance through exclusion and
inclusion metrics, which were calculated based on log-odds
values. These metrics yield nuanced insights into the dis-
criminatory power of each XAI framework across partic-
ular data subsets. When Table 7 examined, proposed
fastSHAP-C achieves the lowest mean Exclusion AUC of
6.6, with a confidence interval of (5.73, 7.650). This is
marginally lower than fastSHAP, which has a mean of 6.89
and a confidence interval of (6.73, 7.65). The overlap in con-
fidence intervals between fastSHAP-C and fastSHAP sug-
gests that their performances are statistically similar, but
fastSHAP-C has a slight edge in reducing the influence of
excluded features. KernelSHAP, on the other hand, shows
a significantly higher mean Exclusion AUC of 10.53, with a

narrow confidence interval of [10.17, 11.03], indicating that
it is highly sensitive to feature exclusions. This high sensi-
tivity, while potentially valuable in feature-rich tasks, could
be a drawback in anomaly detection where robustness to
irrelevant features is key. Besides our XAI algorithm demon-
strates a clear advantage with the highest mean Inclusion
AUC (6.79) and a confidence interval (5.53,5.96) that, im-
portantly, does not overlap significantly with kernelSHAP’s
interval (4.56,5.47). This suggests a statistically significant
improvement over kernelSHAP in inclusion-based explain-
ability. Compared to fastSHAP, which achieves a mean
of 5.79 (confidence interval: 5.58,5.93), fastSHAP-C also
shows notable improvement. This improvement could make
fastSHAP-C particularly valuable in scenarios where identi-
fying the critical features contributing to anomalies is more
important than assessing the impact of excluding irrelevant
ones.

6.2.3. Performance Results of fastSHAP-C on Baseline
Models and SS-DeepCAE

In this section, resource utilization and runtime per-
formance of fastSHAP-C is examined specifically with re-
spect to the baseline models, our autoencoder models. We
benchmarked using the lowest and highest performance
servers available to us and the authors [15]. Server-1 was
equipped with an Intel®Core™ i7-6800K CPU @3.40GHz
(12 cores) and 64 GB of RAM which representing a stan-
dard computing environment, while Server-2 utilized an
Intel®Xeon®Gold 6240R CPU @2.40GHz (97 cores) repre-
senting a high-performance computing environment. Build-
ing upon our previous work DeepAE, we integrated our
novel fastSHAP-C algorithm with SS-DeepCAE. The objec-
tive is to evaluate how fastSHAP-C enhances performance
efficiency on SS-DeepCAE compared to both the traditional
SHAP algorithms and the earlier DeepAE model. The
performance metrics, detailed in Tables 8 and 9, illustrate
significant improvements in computational efficiency and
resource utilization with proposed XAInomaly solution.

Table 8 demonstrates that applying fastSHAP-C to
SS-DeepCAE significantly reduces execution times compared
to its application on DeepAE and the baseline SHAP meth-
ods. On Server-1, the execution time for 1-hour profiling de-
creased from 6.56 seconds (using fastSHAP-C on DeepAE)
to 5.79 seconds on SS-DeepCAE, marking an 11.7% improve-
ment. For 6-hour profiling, the time reduced from 15.87
seconds to 11.21 seconds, a substantial 29.3% enhancement.
Similar trends are observed on Server 2, with execution
times dropping from 3.90 seconds to 3.50 seconds for 1-
hour profiling and from 10.05 seconds to 8.23 seconds for
6-hour profiling. On Server-1, for 1-hour profiling, the mean
CPU utilization decreased from 13.5% (using fastSHAP-C
on DeepAE) to 9.65%, representing a 28.5% reduction.
Similarly, on Server-2, the mean CPU utilization reduced
from 3.44% to 3.4%. While the percentage reduction on
Server-2 appears marginal, it is important to consider the
higher core count and computational capacity, which in-
herently reduces the percentage utilization. The memory

18

Server Time CPU Memory

1 h 6 h 1 h 6 h 1 h 6 h

(s) (s) Mean Std Mean Std Mean Std Mean Std

Server 1 (SHAP, DeepAE) 11.74 62.00 29.8% 8.3% 36.8% 16.7% 1.5% 0.1% 2.6% 0.2%
Server 2 (SHAP, DeepAE) 10.52 58.28 7.66% 3.82% 12.3% 3.8% 1.6% 0.2% 2.4% 0.1%

Server 1 (SHAP, SS-DeepCAE) 10.13 37.25 21.3% 7.7% 27.1% 11.2% 1.5% 0.1% 2.5% 0.4%

Server 2 (SHAP, SS-DeepCAE) 8.21 29.18 4.43% 5.26% 8.7% 4.6% 1.4% 0.1% 2.2% 0.3%

Server 1 (fastSHAP-C, DeepAE) 6.56 15.87 13.5% 11.3% 25.3% 4.7% 1.4% 0.2% 2.3% 0.1%

Server 2 (fastSHAP-C, DeepAE) 3.90 10.05 3.44% 2.51% 7.8% 2.5% 1.3% 0.1% 2.5% 0.1%

Server 1 (fastSHAP-C, SS-DeepCAE) 5.79 11.21 9.65% 7.7% 18.8% 5.1% 1.2% 0.3% 2.3% 0.2%

Server 2 (fastSHAP-C, SS-DeepCAE) 3.50 8.23 3.4% 1.43% 5.9% 1.7% 1.1% 0.1% 2.1% 0.1%

Table 8: Resource utilization comparison of algorithms on different servers (SHAP vs proposed fastSHAP-C)

Algorithm Runtime (s) CPU Util. (%) RAM Util. (%)

kernelSHAP 320.4 0.88 0.17
fastSHAP 48.007 0.67 0.11
fastSHAP-C (on DeepAE Model) 33.627 0.52 0.08
fastSHAP-C (on SS-DeepCAE Model) 22.145 0.47 0.08

Table 9: Runtime and resource utilization

utilization remained consistently low across all configura-
tions, with mean usage around 1.1% to 1.2% on Server-2
and slightly higher on Server-1 due to its lower memory
capacity. The low standard deviation in memory usage
indicates that fastSHAP-C on SS-DeepCAE provides stable
memory consumption, which is crucial for maintaining sys-
tem performance and preventing memory bottlenecks in
resource-constrained environments.

Execution time is a critical factor for real-time process-
ing where AI inferece required in next generation wire-
less networks. As detailed in Table 9, the runtime for
fastSHAP-C on SS-DeepCAE is significantly lower compared
to other algorithms. Specifically, the runtime reduced from
33,627 ms (when using fastSHAP-C on DeepAE) to 22,145
ms on SS-DeepCAE, marking a 34% improvement. When
compared to kernelSHAP, which has a runtime of 320,400
ms, fastSHAP-C on SS-DeepCAE achieves a runtime re-
duction of approximately 93%. This scalability is very
important for O-RAN networks, which require continuous
monitoring and analysis to detect anomalies promptly.

Notably, fastSHAP-C achieved marked improvements
in both short-term (1-hour) and long-term (6-hour) pro-
filing. For example, on Server 2, fastSHAP-C completed
1-hour profiling in about 3.90 seconds and 6-hour profil-
ing in 10.05 seconds, whereas the standard SHAP took
10.52 seconds and 58.28 seconds, respectively. Such gains
are essential for real-time applications that require rapid
response times. Additionally, fastSHAP-C demonstrated
more efficient CPU usage, reflected in lower mean and
standard deviation for CPU consumption. On Server 2,

fastSHAP-C exhibited an average CPU usage of 3.44% for
1-hour profiling, compared to 7.66% for SHAP. This re-
duction facilitates concurrent processing and minimizes
load on CPU resources, making fastSHAP-C well-suited
for high-demand computational environments. The perfor-
mance benefits of fastSHAP-C are even more pronounced
on high-end servers with multiple cores, showcasing its
optimization for multi-core architectures and scalability
for large datasets and complex models requiring parallel
processing.

6.2.4. Supremacy of fastSHAP-C on SS-DeepCAE
fastSHAP-C offers a favorable trade-off between com-

putational efficiency and accuracy when compared to other
SHAP-based algorithms like kernelSHAP and fastSHAP.

While fastSHAP-C may exhibit a minor reduction in
accuracy compared to traditional methods, it is still highly
effective for providing actionable insights into model be-
havior. These insights are beneficial for tasks such as
network optimization, fault diagnosis, and resource allo-
cation. Under identical testing conditions (Intel®Core™

i7-6800K CPU @3.40GHz with 12 cores), as shown in
Table 8, fastSHAP-C demonstrates approximately a 30%
reduction in runtime compared to kernelSHAP. Further-
more, fastSHAP-C optimizes CPU usage by around 25%,
making it highly suited for deep learning models that re-
quire real-time explainability. This performance-friendly
approach enables fastSHAP-C to deliver efficient, real-time
insights, even in resource-intensive scenarios.

Additionally, the runtime results presented underscore

19

fastSHAP-C’s potential in supporting reliable, low-latency
applications in 5G+/6G URLLC scenarios. When examin-
ing runtime metrics, fastSHAP-C clearly reduces the com-
putational load associated with estimating Shapley values,
which makes it practical for handling large-scale datasets
and complex machine learning or deep learning models.
By maintaining key performance metrics, such as CS and
EM, fastSHAP-C enables real-time generation of explana-
tions, allowing the model to adjust dynamically to evolving
network conditions and user demands.

When specifically XAInomaly framework examined,
fastSHAP-C on SS-DeepCAE consistently outperforms in
terms of resource utilization and execution time. The
standard SHAP algorithm, while providing accurate fea-
ture attributions, incurs high computational costs due to
it is NP-hard complexity. KernelSHAP offers some im-
provements but still falls short in efficiency for real-time
applications. fastSHAP introduces approximations to ac-
celerate SHAP value computations but, when combined
with DeepAE, does not achieve the same level of efficiency
as fastSHAP-C on SS-DeepCAE. The contractive nature of
SS-DeepCAE enhances the model’s robustness by penaliz-
ing the sensitivity of the hidden representations to input
variations. This, in turn, simplifies the computation of
SHAP values, as the model focuses on the most influential
features, reducing unnecessary computations. The ability
of fastSHAP-C on SS-DeepCAE to generate explanations
rapidly enables network operators to detect and respond
to anomalies. This is crucial for maintaining the high lev-
els of service quality required in next-generation wireless
networks, where delays can lead to degraded performance
and user dissatisfaction. The efficient use of computational
resources ensures that the algorithm can run continuously
without overloading the system, which is particularly im-
portant in edge computing scenarios within O-RAN ar-
chitectures. Edge devices often have limited processing
power and memory, so algorithms that are both efficient
and effective are essential for practical deployment.

Despite these vital advantages, some performance trade-
offs should also be considered. Explanation fidelity can
exhibit minor deviations from the more exact kernelSHAP
method. Specifically, in highly atypical data instances
those that deviate substantially from the observed distri-
bution fastSHAP-C’s surrogate model may slightly mises-
timate feature attributions. While our experiments show
these discrepancies to be statistically small, mission-critical
or forensic-level investigations might still benefit from se-
lective use of a slower but more precise approach (e.g.,
kernelSHAP) on particularly suspicious samples.

7. Conclusion and Future Work

In this paper, we introduced XAInomaly, a novel frame-
work that integrates a SS-DeepCAE with a reactive XAI
technique, fastSHAP-C, for traffic anomaly detection in O-
RAN. Our approach addresses the critical need for accurate
and interpretable anomaly detection mechanisms in the

disaggregated and heterogeneous environment of O-RAN,
particularly in the context of 5G+/6G networks supporting
mission-critical applications. The proposed SS-DeepCAE
model effectively learns compressed and robust represen-
tations of normal network behavior by incorporating a
contractive penalty into the loss function. This penalty
encourages the learning of smooth feature representations,
enhancing the model’s generalization capabilities and reduc-
ing overfitting – a common issue in standard DeepAEs. By
minimizing the sensitivity of the encoder activations with
respect to input variations, SS-DeepCAE achieves better
performance in detecting subtle anomalies within high-
dimensional and dynamic O-RAN data. Furthermore, we
addressed the black-box nature of deep learning models by
integrating the fastSHAP-C algorithm. This reactive XAI
technique provides transparency into the model’s decision-
making process by highlighting the features contributing
most significantly to anomaly detection. This explainability
is crucial in O-RAN environments, where understanding the
reasoning behind detected anomalies can facilitate prompt
and effective network management interventions.

Our experimental results demonstrate that the XAIno-
maly framework not only achieves high accuracy in anomaly
detection but also offers interpretability without imposing
significant computational overhead – an essential consid-
eration for real-time, resource-constrained O-RAN deploy-
ments. By balancing effectiveness with efficiency and trans-
parency, XAInomaly provides a robust solution tailored to
the unique challenges of O-RAN networks.

While the XAInomaly framework presents a signifi-
cant advancement in O-RAN anomaly detection however,
several challenges for future research and development re-
main. O-RAN networks may experience frequent topology
changes due to mobility or reconfiguration. To exemplify,
O-RAN networks are highly dynamic, with network condi-
tions and traffic patterns changing rapidly. Incorporating
adaptive learning mechanisms that allow the SS-DeepCAE
model to update its understanding of normal behavior in
real-time could enhance anomaly detection accuracy. This
might involve online learning approaches or incremental
model updates without retraining from scratch. Also, as
networks become more critical, they also become targets
for sophisticated cyber-attacks, including adversarial exam-
ples designed to evade detection. Future research should
investigate the robustness of the XAInomaly framework
against such attacks and develop strategies to enhance its
resilience.

Acknowledgments

This work has been funded by the German Federal
Ministry of Education and Research (BMBF, Germany) as
part of the 6G Research and Innovation Cluster 6G-RIC
under Grant 16KISK020K.

20

References

[1] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano
Basagni, and Tommaso Melodia. Understanding O-RAN: Ar-
chitecture, Interfaces, Algorithms, Security, and Research Chal-
lenges. IEEE Communications Surveys & Tutorials, 25(2):1376–
1411, 2023. ISSN 1553-877X. doi: 10.1109/comst.2023.3239220.

[2] Michele Polese, Mischa Dohler, Falko Dressler, Melike Erol-
Kantarci, Rittwik Jana, Raymond Knopp, and Tommaso Melo-
dia. Empowering the 6G Cellular Architecture with Open RAN.
IEEE Journal on Selected Areas in Communications, 42(2):245–
262, February 2024. ISSN 0733-8716. doi: 10.1109/JSAC.2023.
3334610.

[3] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin,
and Mérouane Debbah. Artificial Neural Networks-Based Ma-
chine Learning for Wireless Networks: A Tutorial. IEEE Com-
munications Surveys & Tutorials, 21(4):3039–3071, 2019. ISSN
1553-877X. doi: 10.1109/comst.2019.2926625.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In 28th International Con-
ference on Neural Information Processing Systems (NeuRIPS),
pages 2672–2680, Montréal, Canada, December 2014. Curran
Associates Inc.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT Press, 2016.

[6] Vikas Dixit, Jan Plachy, Kexuan Sun, Akio Ikami, Emeka
Obiodu, and Kyungpil Lee. O-RAN Towards 6G. Research
report, O-RAN next Generation Research Group (nGRG), Oc-
tober 2023. Version 03.00.

[7] Noe M. Yungaicela-Naula, Vishal Sharma, and Sandra Scott-
Hayward. Misconfiguration in O-RAN: Analysis of the impact
of AI/ML. Computer Networks, 247:110455, June 2024. ISSN
1389-1286. doi: 10.1016/j.comnet.2024.110455.

[8] Hasan Torabi, Seyedeh Leili Mirtaheri, and Sergio Greco. Prac-
tical autoencoder based anomaly detection by using vector re-
construction error. Cybersecurity, 6(1), January 2023. ISSN
2523-3246. doi: 10.1186/s42400-022-00134-9.

[9] Amina Adadi and Mohammed Berrada. Peeking Inside the
Black-Box: A Survey on Explainable Artificial Intelligence (XAI).
IEEE Access, 6:52138–52160, 2018. ISSN 2169-3536. doi: 10.
1109/access.2018.2870052.

[10] Walid Saad, Mehdi Bennis, and Mingzhe Chen. A Vision of
6G Wireless Systems: Applications, Trends, Technologies, and
Open Research Problems. IEEE Network, 34(3):134–142, May
2020. ISSN 1558-156X. doi: 10.1109/mnet.001.1900287.

[11] Zachary C. Lipton. The Mythos of Model Interpretability: In
machine learning, the concept of interpretability is both im-
portant and slippery. Queue, 16(3):31â€“57, June 2018. ISSN
1542-7749. doi: 10.1145/3236386.3241340.

[12] David Gunning, Eric Vorm, Jennifer Yunyan Wang, and Matt
Turek. DARPA’s explainable AI (XAI) program: A retrospective.
Applied AI Letters, 2(4), December 2021. ISSN 2689-5595. doi:
10.1002/ail2.61.

[13] Weisi Guo. Explainable Artificial Intelligence for 6G: Improving
Trust between Human and Machine. IEEE Communications
Magazine, 58(6):39–45, June 2020. ISSN 0163-6804. doi: 10.
1109/mcom.001.2000050.

[14] Osman Tugay Basaran and Falko Dressler. XAInomaly: Ex-
plainable, Interpretable and Trustworthy AI for xURLLC in 6G
Open-RAN. In 3rd International Conference on 6G Networking
(6GNet 2024), pages 93–101, Paris, France, October 2024. IEEE.
doi: 10.1109/6GNet63182.2024.10765734.

[15] Claudio Fiandrino, Giulia Attanasio, Marco Fiore, and Joerg
Widmer. Toward native explainable and robust AI in 6G net-
works: Current state, challenges and road ahead. Elsevier
Computer Communications, 193:47–52, September 2022. ISSN
0140-3664. doi: 10.1016/j.comcom.2022.06.036.

[16] Zineb Mahrez, Maryam Ben Driss, Essaid Sabir, Walid Saad,
and Elmahdi Driouch. Benchmarking of Anomaly Detection
Techniques in O-RAN for Handover Optimization. In 19th IEEE
International Conference on Wireless and Mobile Computing

(IWCMC 2023), pages 119–125, Marrakesh, Morocco, June 2023.
IEEE. doi: 10.1109/IWCMC58020.2023.10183347.

[17] Pedro V.A. Alves, Mateus A.S.S. Goldbarg, Wysterlânya K.P.
Barros, Iago D. Rego, Vinícius J.M.T. Filho, Allan M. Martins,
Vicente A. de Sousa Jr., Ramon dos R. Fontes, Eduardo H.
da S. Aranha, Augusto V. Neto, and Marcelo A.C. Fernandes.
Machine Learning Applied to Anomaly Detection on 5G O-RAN
Architecture. Procedia Computer Science, 222:81–93, 2023. ISSN
1877-0509. doi: 10.1016/j.procs.2023.08.146.

[18] Claudio Fiandrino, Leonardo Bonati, Salvatore D’Oro, Michele
Polese, Tommaso Melodia, and Joerg Widmer. EXPLORA:
AI/ML EXPLainability for the Open RAN. Proceedings of the
ACM on Networking, 1:1–26, November 2023. ISSN 2834-5509.
doi: 10.1145/3629141.

[19] Nasir Khan, Sinem Coleri, Asmaa Abdallah, Abdulkadir Celik,
and Ahmed M. Eltawil. Explainable and Robust Artificial Intel-
ligence for Trustworthy Resource Management in 6G Networks.
IEEE Communications Magazine, 62(4):50–56, April 2024. ISSN
0163-6804. doi: 10.1109/mcom.001.2300172.

[20] Chinenye Tassie, Brian Kim, Joshua Groen, Mauro Belgiovine,
and Kaushik R. Chowdhury. Leveraging Explainable AI for
Reducing Queries of Performance Indicators in Open RAN. In
IEEE International Conference on Communications (ICC 2024),
pages 5413–5418, Denver, CO, June 2024. IEEE. doi: 10.1109/
icc51166.2024.10622827.

[21] Osman Tugay Basaran, Mehmet Basaran, Derya Turan,
Hamide Gul Bayrak, and Yagmur Sabucu Sandal. Deep Autoen-
coder Design for RF Anomaly Detection in 5G O-RAN Near-RT
RIC via xApps. In IEEE International Conference on Commu-
nications (ICC 2023), 2nd Workshop on Industrial Private 5G-
and-beyond Wireless Networks, pages 549–555, Rome, Italy, May
2023. IEEE. doi: 10.1109/ICCWorkshops57953.2023.10283501.

[22] O-RAN Alliance. O-RAN Architecture Description. Technical
specification, O-RAN Alliance (O-RAN), 06 2024. Version 12.00.

[23] ETSI. O-RAN Fronthaul Control, User and Synchronization
Plane Specification. Technical specification (ts), European
Telecommunications Standards Institute, 09 2022. Version 07.02.

[24] O-RAN Alliance. O-RAN Use Cases and Requirements. Tech-
nical specification, O-RAN Alliance (O-RAN), October 2024.
Version 07.00.

[25] O-RAN Alliance. O-RAN A1 interface: General Aspects and
Principles. Technical specification, O-RAN Alliance (O-RAN),
October 2024. Version 04.00.

[26] O-RAN Alliance. O-RAN O1 Interface Specification. Technical
specification, O-RAN Alliance (O-RAN), October 2024. Version
14.00.

[27] O-RAN Alliance. O-RAN SMO Intents-driven Management.
Technical specification, O-RAN Alliance (O-RAN), October
2024. Version 03.00.

[28] O-RAN Alliance. O-RAN Near-RT RIC Architecture. Technical
specification, O-RAN Alliance (O-RAN), 06 2024. Version 6.00.

[29] Liang Fang, Ruiyuan Song, Zhi Lu, Dongheng Zhang, Yang Hu,
Qibin Sun, and Yan Chen. PRISM: Pre-training RF Signals in
Sparsity-aware Masked Autoencoders. In 43rd IEEE Interna-
tional Conference on Computer Communications (INFOCOM
2024), pages 2109–2118, Vancouver, Canada, May 2024. IEEE.
doi: 10.1109/infocom52122.2024.10621246.

[30] Xinyuan Zeng, Chao Wang, Cheng-Cai Wang, and Zan
Li. CVCA: A Complex-Valued Classifiable Autoencoder for
MmWave Massive MIMO Physical Layer Authentication. In
42nd IEEE International Conference on Computer Communica-
tions (INFOCOM 2023), Infocom Workshops 2023 (Workshops),
pages 1–6, New York City, NY, May 2023. IEEE. ISBN 978-1-
66549-427-4. doi: 10.1109/infocomwkshps57453.2023.10225831.

[31] Ye Zeng, Li Qiao, Zhen Gao, Tong Qin, Zhonghuai Wu, Emad
Khalaf, Sheng Chen, and Mohsen Guizani. CSI-GPT: Integrating
Generative Pre-Trained Transformer With Federated-Tuning to
Acquire Downlink Massive MIMO Channels. IEEE Transactions
on Vehicular Technology, November 2024. ISSN 1939-9359. doi:
10.1109/tvt.2024.3493463. to appear.

[32] Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-

21

Supervised Learning. Springer, 2009. ISBN 978-3-031-01548-9.
doi: 10.1007/978-3-031-01548-9.

[33] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimension-
ality of Data with Neural Networks. Science, 313(5786):504–507,
July 2006. ISSN 1095-9203. doi: 10.1126/science.1127647.

[34] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and
Yoshua Bengio. Contractive auto-encoders: explicit invariance
during feature extraction. In 28th International Conference on
International Conference on Machine Learning (ICML 2011),
pages 833–840, Bellevue, WA, June 2011. Omnipress. ISBN
978-1-4503-0619-5.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In 3rd International Conference on
Learning Representations (ICLR 2015), San Diego, CA, May
2015.

[36] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data
using t-SNE. Journal of Machine Learning Research, 9(86):
2579–2605, 2008.

[37] Md Abul Bashar, Richi Nayak, and Nicolas Suzor. Regularising
LSTM classifier by transfer learning for detecting misogynistic
tweets with small training set. Knowledge and Information
Systems, 62(10):4029–4054, June 2020. ISSN 0219-3116. doi:
10.1007/s10115-020-01481-0.

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12
(85):2825–2830, 2011.

[39] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multi-
layer feedforward networks are universal approximators. Neural
Networks, 2(5):359–366, January 1989. ISSN 0893-6080. doi:
10.1016/0893-6080(89)90020-8.

[40] Léon Bottou. Large-Scale Machine Learning with Stochastic
Gradient Descent. In 19th International Conference on Com-
putational Statistics (COMPSTAT 2010), pages 177–186, Paris,
France, August 2010. Physica-Verlag. ISBN 978-3-7908-2604-3.
doi: 10.1007/978-3-7908-2604-3_16.

[41] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse
Rectifier Neural Networks. In 14th International Conference
on Artificial Intelligence and Statistics (AISTATS 2011), pages
315–323, Fort Lauderdale, FL, November 2011. JMLR.org.

[42] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela
Milano, and Luca Benini. Anomaly Detection Using Autoen-
coders in High Performance Computing Systems. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):9428–
9433, July 2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.
33019428.

[43] Tao Huang, Pengfei Chen, and Ruipeng Li. A Semi-Supervised
VAE Based Active Anomaly Detection Framework in Multivari-
ate Time Series for Online Systems. In ACM Web Conference
2022, Lyon, France, April 2022. ACM. doi: 10.1145/3485447.
3511984.

[44] Scott M. Lundberg and Su-In Lee. A Unified Approach to
Interpreting Model Predictions. In 31st International Conference
on Neural Information Processing Systems (NIPS 2017), pages
4768–4777, Long Beach, CA, December 2017. Curran Associates
Inc.

[45] Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In
Lee, and Rajesh Ranganath. FastSHAP: Real-Time Shapley
Value Estimation. In 10th International Conference on Learning
Representations (ICLR 2022), volume V1, Virtual Conference,
April 2022. ICLR.

22

	Introduction
	Our Contributions

	Background
	Principles of O-RAN
	GenAI and XAI Literature on O-RAN

	Semi-supervised DeepCAE Design for O-RAN Anomaly Detection
	Overview of Our Semi-Supervised L. Approach
	Proposed DeepCAE Architecture
	Loss Functions
	Optimization and Batch Training
	Anomaly Detection During Inference

	Proposed Design: XAInomaly Framework
	Selecting XAI Interpretation Methods
	Global Model-Agnostic XAI Interpretation
	Reactive XAI Interpretation

	Proposed fastSHAP-C Algorithm
	XAInomaly Integration on O-RAN

	Experimental Analysis
	Dataset
	Selected Anomaly Detection Metrics for SS-DeepCAE
	Selected XAI Metrics for fastSHAP-C
	Hyper-parameter Tuning
	Baseline Models
	Baseline Models for our SS-DeepCAE Model
	Baseline Models for our XAI Method fastSHAP-C

	Results and Discussion
	Performance Results of SS-DeepCAE Model
	Training and Validation Performance
	Analysis of Reconstruction Loss and Precision with Varying Layer Sizes
	Performance Comparison with Baseline Models
	Model Complexity Analysis for Resource-Constrained Environments

	Performance Results of fastSHAP-C
	SHAP Values and Feature Contributions
	Benchmarking fastSHAP-C with Baseline Models
	Performance Results of fastSHAP-C on Baseline Models and SS-DeepCAE
	Supremacy of fastSHAP-C on SS-DeepCAE

	Conclusion and Future Work

