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Abstract

Artificial intelligence (Al)-native radio access networks (RANs) will serve ver-
tical industries with stringent requirements: smart grids, autonomous vehicles,
remote healthcare, industrial automation, etc. To achieve these requirements,
modern 5G/6G design increasingly leverage Al for network optimization, but the
opacity of Al decisions poses risks in mission-critical domains. These use cases
are often delivered via non-public networks (NPNs) or dedicated network slices,
where reliability and safety are vital. In this paper, we motivate the need for
transparent and trustworthy Al in high-stakes communications (e.g., healthcare, in-
dustrial automation, and robotics) by drawing on 3rd generation partnership project
(3GPP)’s vision for non-public networks. We design a mathematical framework
to model the trade-offs between transparency (explanation fidelity and fairness),
latency, and graphics processing unit (GPU) utilization in deploying explainable
Al (XAI) models. Empirical evaluations demonstrate that our proposed hybrid
XAl model xATI-Nat ive, consistently surpasses conventional baseline models in
performance.

1 Introduction

Deep learning (DL) [1] and machine learning (ML) models are becoming central to the management
and optimization of next-generation 5G and 6G wireless networks [2]. In particular, the open radio
access network (O-RAN) architecture introduces RAN intelligent controllers (RICs) that host Al-
driven eXtended applications (xApps) for closed-loop control of the RAN [3]. However, as Al models
are given control over high-stakes RAN decisions (e.g., resource allocation, anomaly detection, load
balancing, and traffic steering), concerns of trust arise. Network operators and vertical industries
need to trust Al decisions that affect critical services [4]]. A key barrier is the “black-box” nature of
many Al models: operators cannot easily understand why a model made a certain decision, making it
hard to detect errors or biases. This lack of transparency undermines confidence in deploying AI/ML
in production networks. XAI promises to bridge this gap by making Al decisions interpretable to
humans. XAl is especially critical in mission-critical communications (e.g. telemedicine, smart grids,
industrial automation) where errant or biased decisions can have serious repercussions. Indeed, 3GPP
has highlighted that future network management for vertical industries must account for stringent
reliability, safety, and isolation requirementsﬂ These domains demand not only performance but
also accountability; Al-driven network optimizations should be fair (not unduly favoring certain
users or services) and transparent to operators and regulators. As one recent survey notes, XAl
methods can promote fairness and transparency of Al models in networks, thereby instilling trust
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Figure 1: End-to-end XAlI-Native testbed with GPU-accelerated RAN.

for businesses and operators [5]]. In other words, explaining the internal logic of AI models helps
ensure the decisions are free of hidden bias and are understandable, which is vital for adoption in
high-stakes scenarios.

In literature, few recent studies underscore these points. EXPLORA [6]], focuses on explainability
for deep reinforcement learning (RL) [[7]], [8]] based RAN control. They note that deep RL agents
are hard to trust in practice due to their black-box nature and that explainability is needed to deploy
them. Basaran et al. [9], stress that striking a balance between performance and interpretability is an
open challenge for deploying Al in critical 6G use case such as next-generation ultra-reliable and
low-latency communications (XURLLC). But it is still an open challenge to answer questions like:
How can we get the best of both worlds: high model accuracy and low latency, and explanations that
are faithful and fast? Our work attempts to answer this by using Al-native models that have built-in
explainability and efficient post-hoc explainers on GPU-accelerated RAN.

In this paper, we address the above challenges by introducing “XAI-on-RAN”, an explainable and
Al-native RAN platform built on prior GPU-accelerated testbed [10]. We integrate a novel xAT—
Native xApp into the O-RAN RICE| which provides real-time interpretability for the inferences
made by other AI xApps (such as the traffic predictor). Our xAI-Native runs on the same
NVIDIA A100 GPU that handles L1/L.2 processing and Al tasks, ensuring low-latency operation.
By leveraging GPU-friendly XAl techniques including attention mechanisms embedded in the Al
model and fast gradient-based explanation algorithms; our xAT-Native xApp design generates
human-interpretable explanations for each prediction with minimal delay.

In summary, the core outcomes of our study are summarized as new contributions (“C") and new
findings (“F") as follows:

C1. We design and implement a new explainability xApp. To our knowledge, this is the first
integration of a real-time xATI-Nat ive xApp in a GPU-centric RAN system.

C2. We develop a modeling framework to analyze the trade-offs between transparency-latency
(and GPU resource usage) in our platform.

C3. We implement and benchmark three GPU-amenable explainability techniques for AI-Native
RAN deployment.
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F1. Our hybrid xATI-Nat ive architecture (Attention + IG) demonstrates that combining in-
trinsic and gradient-based explanations can meet RAN constraints while still offering
interpretable, stable attributions in real time.

F2. Overall, xAT-Nat ive offers the best fidelity—latency balance. So, SHAP remains useful
for offline auditing, while Attention may serve as a lightweight but low-fidelity monitor.

2 System Architecture Design: XAI-Native RAN

Figure[1]illustrates our XAI-on-RAN platform’s architecture (multi-vendor, GPU-based RAN with
integrated O-RAN SC RIC). The next generation node B (gNB) is split into a Central Unit (CU) and
Distributed Unit (DU); the DU runs high-PHY and low-PHY on GPU via NVIDIA Aerial [12] with
compute unified device architecture (CUDA) [13]], and interfaces with a 4T4R Radio Unit (RU)E]
over fronthaul (split 7.2). The near-RT RIC connects to the DU via the E2 interface and hosts the
TP, KPM, and XAI xApps. By deploying a OpenAirinterface (OAI) network [[15]], we are able to
live-monitor network KPMs and run Al inference in real time. For instance, TP xApp predicted
the DL throughput of the UE (5G Commercial-off-the-shelf UE placed on the remote-controlled
mobile robot) based on recent KPM measurements, and KPM xApp provided a user interface (UI)
dashboarcﬂ of current cell performance. The synergy of GPU acceleration and Al-in-the-loop RAN
control is aimed at 6G use cases requiring URLLC.

Our xAI-Native xApp subscribes to messages (via RIC Message Router) from the TP xApp and
KPM xApp. In practice, when the TP xApp produces a new inference (predicted throughput for
the next TTI or next few seconds), it publishes this result (and possibly the features used) to a RIC
database (e.g., Shared Data Layer). xAI-Native xApp is notified of this event and fetches the
relevant data to generate an explanation. xATI-Nat ive xApp can then send the explanation to a RIC
dashboard U or log it for offline analysis. It can also report back summary metrics to the Non-RT
RIC (for longer-term analytics or to update policies via Al interface).

3 Fundamentals of Real-Time Explainability Modeling

3.1 Explanation Fidelity

We first define a measure of how well the explanation reflects the true behavior of the model called
fidelity. Suppose our TP model is a function f(x) — ¢ that takes input features x (e.g., recent KPMs)
and produces a prediction ¢ (e.g. DL throughput). xATI-Nat ive xApp produces an explanation in
the form of an attribution vector e = [ey, es, ..., €,] over the n features (or feature-time elements).
These attributions indicate the importance of each feature to the prediction. One way to define fidelity
is to use a surrogate model: for instance, a simple linear model g(x) = wg + 2?21 w;x; where w;
corresponds to the importance of feature . The attribution vector e can be seen as weights of such a
surrogate. Fidelity can then be quantified by how closely g(x) approximates f(x) in the locality of
the current input. A simple metric is the local R?:
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where x7) are samples in a neighborhood of the current x (could be generated by random perturba-
tions as in LIME [17]]). A high R2 (close to 1) means the linear explanation g is very faithful to
f locally. In practice, our xAI-Nat ive xApp computes a simpler fidelity score: we measure the
prediction error when only the top-k important features (according to e) are fed to the model versus
when all features are fed. If the model’s output does not change much when non-important features
are zeroed out, the explanation is capturing the key drivers. Formally,

gfull = f(x1, ..., zn), 2)

gtop — k = f(xiy, . Tip, 0, ..., 0), 3)
where 11, ..., 1, are the indices of the top k attributions in e. We define fidelity score ® = 1 —
|g} Sull — gtop — k| /G futr|- A © near 1 means the top features explain the prediction almost fully.
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This approach is similar to explanation precision, and we use k that accounts for say 80% of total
attribution weight.

3.2 Latency and Throughput

The primary cost of adding explainability is extra latency per inference considering time sensitive use
cases of 6G. To understand, we break down the latency components in our pipeline:

Latency Decomposition

@ 7. time to run the AI model inference (e.g. LSTM forward pass) on the GPU.

@ 1...: time to generate the explanation by the xAT-Nat ive XApp.

® T....: any communication overhead between RIC components (negligible in our setup
due to co-location, but could be a few ms if data needs to pass through the message bus).

The total decision latency per cycle is Tioa) = Tint + Txai + Zcomm- In our baseline (no XAI), only
Tint + Ttomm matters. Our goal is to keep Tk, much smaller than typical RAN control loop times
(which are on the order of 10 to 100 ms for near-RT RIC). We can model T},; as a function of the
explanation method. If using an intrinsic method like attention, 7%:*™ is basically the overhead of

computing attention weights during inference, which is on the order of one additional layer in the
network. This is typically <10% of Ti,s for an LSTM. Let’s denote by « the fraction overhead:

TUm = Oattn - Tinf, 4)

xat

with aum =~ 0.1 (10%). For gradient-based methods like IG, we may need k forward-backprop
passes to compute gradients at different points. If these are done sequentially, TxIaiG =k - Tinrpack,
where Tinfpack 18 time for one forward + backward pass. However, we can often reuse the original
forward and just do & backward passes for different scaled inputs; also, on GPU we could parallelize
gradient computations to some extent. In practice, we choose a small k£ making this overhead a
multiple of the base inference. For SHAP [[I8], if we take m samples and each requires a forward
pass, TXSaiH AP — m . Tiy (again, possibly parallelized across GPU threads if model is small). SHAP
tends to be expensive if high fidelity is needed because m must be large for many features. In our

adaptation, we use m = 16 at most (which is manageable on GPU in a batch).

4 Experiments and Evaluation

We now evaluate the XAlI-on-RAN platform, focusing on the questions: (i) What is the latency and
resource overhead of adding the XAl xApp, compared to not using XAI? (ii) How do different XAl
techniques compare in terms of the transparency they provide and the cost they incur? The traffic
is a periodic burst pattern, which the TP xApp tries to predict (somewhat akin to a moving average
predictor). The TP model was trained on sample traces offline (with and without attention). We
then deploy it online for inference. xAI-Nat ive XApp is evaluated in two modes: Attention-only
(intrinsic) and Attention+Integrated Gradients (post-hoc hybrid).

4.1 Local Fidelity Analysis

We evaluate the local fidelity of three explainability method over the feature vector x; =
{Th, BLER, MCS, RP, SINR}. Fidelity (R? ) is quantified via the local coefficient of determi-
nation as explained Section[3.1] computed both feature-wise and time-wise under a sliding-window

evaluation (cf. Figure 2)).

Feature-wise fideliy. As shown in Figure 2a] IG achieves the highest fidelity across features, with
particularly strong alignment on throughput (Th) and signal-to-interference-plus-noise ratio (SINR),
confirming its ability to capture the most relevant physical drivers of downlink performance. SHAP
provides moderate fidelity, correctly attributing to Th and SINR but underestimating the role of MCS
and BLER. In contrast, Attention yields the lowest fidelity, heavily biased toward Th while neglecting
BLER and SINR, which suggests that raw attention scores cannot be directly interpreted as faithful
explanations in the RAN context. These results indicate that IG’s attributions better approximate
the model’s true behavior for each feature. Notably, IG’s fidelity on all features is higher than the
other methods (e.g. IG is 92% higher than SHAP on average feature fidelity, and 37% higher than



Table 1: Paired comparison of proposed (Attention +1G, k = 5) against SHAP and Attention across
sliding windows. Values report median AR?  (Ours — baseline models) with block-bootstrap 95%
confidence interval (CI), and win rate (fraction of windows where IG performs better).

Comparison Median AR? 95% CI Win Rate
Ours (Attention + IG, k = 5) — SHAP +0.41 [+0.39, +0.43 ] 99%
Ours (Attention + IG, k = 5) — Attention only +0.17 [ +0.15,+0.19 ] 93%

Table 2: Latency per inference cycle (mean of 100 runs)

Model Al Inference Computation XAI Total GPU Utilization

Tiinp) Tixan) Ttotal) (%)
Non-XAI (Baseline) 5.1 ms - 5.3 ms ~ 63
XAI (SHAP, m = 16) 5.2 ms ~15ms ~20.4 ms ~ 86
XAI (Attention only) 5.2ms 0.6 ms 5.9 ms ~ 70
Ours (Attention + IG, k = 5) 5.2 ms 2.8 ms 8.1 ms ~ 73

attention on average). This trend holds even on difficult features like BLER and RP, where IG’s R?
is nearly double that of SHAP.

Temporal fidelity. Figure . 2b| shows the sliding-window R2. over time. IG exhibits both high
magnitude and stability (average RZ_. ~ 0.7 — 0.9), demonstratmg reliable real-time explanation
even as network load and channel conditions evolve. SHAP displays greater variance (0.4 - 0.7),
reflecting its smoothing effect and making it more suitable for offline auditing than for strict real-time
monitoring. Attention exhibits low fidelity (< 0.4) and large fluctuations, making it unsuitable for
mission-critical, latency-sensitive applications. Quantitatively, the standard deviation of R?, . over
time is o7 ~ 0.04, versus o o477 ~ 0.05 and oggap ~ 0.06; so IG not only has a higher mean
fidelity but also slightly lower variability. This suggests IG provides more stable explanations over
time, which is desirable for consistent model interpretability in a live RAN setting.

Paired Dominance and Robustness. Table[T|quantitatively establishes the dominance of our solution
over both SHAP and Attention in terms of local fidelity. The median difference in R7, . between IG
and SHAP is remarkably large at +0.41, with a very narrow bootstrap confidence interval ([+0.39,
+0.43]). This implies that IG explanations explain on average over 40% more of the model variance
locally compared to SHAP, a margin that is both statistically precise and practically substantial.
Against Attention, IG also shows consistent advantages, albeit with smaller effect size. The median
ARIQO(, is +0.17 ([+0.15, +0.19]), again with tight confidence bounds, and a 93% win rate. While the
magnitude is smaller than against SHAP, this still reflects a robust gain: in more than nine out of ten

windows, IG provides clearer alignment with the model’s decision logic than raw attention weights.
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Figure 2: Comparative evaluation with baseline models.



4.2 Latency and Resource Usage Overhead

Table 2] shows latency and resource usage results. In the baseline, a single LSTM inference took 5
ms on average on GPU. Communication of results to RIC added 0.2 ms. GPU utilization during
the inference window was around 63% (the rest is idle or waiting for next subframe). With the
attention-only XAI, we see negligible impact on Tj, (it actually slightly increased by 0.1 ms due
to the attention layer) and an XAI overhead of 0.6 ms to process the attention weights and format
explanation. The total latency rose by only 11% and remained well within a 10 ms. GPU utilization
ticked up slightly, reflecting that we fill some idle gap with XAI work.

For the proposed model (k = 5 steps), Tk, averaged 2.8 ms. The total of 8.1 ms is still within
real-time bounds. We note that 2.8 ms is roughly 5.2 x 0.5 which matches v ~ 0.5 (50% of one
backward pass per step, as we leveraged the fact that backward is a bit faster than forward for our
model). This overhead is not negligible (52% slower than no XAI), but depending on the application,
may be acceptable for the gain in interpretability. The GPU utilization was 73%; meaning the GPU
still wasn’t fully saturated.

SHAP explainer, even with m = 16 samples, incurred an estimated 15 ms extra (we did not run
it in the live loop, but timed it offline on similar inputs). This would push total latency to 20 ms,
about 4x the baseline. In a tight URLLC scenario, that’s borderline or unacceptable if decisions are
needed faster than 20 ms. GPU utilization was projected 86%; the remainder 14% idle is mainly
due to waiting for next subframe. If we further increased m to improve explanation detail, it could
exceed the frame limit. This confirms what prior literature warned: perturbation-based methods are
computationally intensive and not ideal for real-time.

4.3 Comparing Performance of XAI Models

We explicitly compare Attention, IG, and SHAP side by side in terms of the content of explanations
and their effect on end-to-end performance. We ran the TP model on a fixed input and obtained
explanations from each method.

Attention produced a weight distribution over the 5 past time steps: e.g. [0.1, 0.7, 0.15, 0.05, 0.0]
(meaning it mainly focused on one step). This is easy to interpret (“the throughput 2 intervals ago is
what the model focused on”). It’s fast and built-in, as we demonstrated in experiments. However,
attention only explains temporal importance in our case, not the effect of other features if any. Also,
attention is a part of the model; some literature debates whether attention is a true explanation of
the model’s decision or just a by-product. In our controlled model, it aligns well with importance,
so we consider it useful. IG’s attributions were fairly consistent with attention in our case (the
feature corresponding to the time step attention highlighted had the largest attribution). IG also can
capture feature directionality (positive or negative influence), which attention doesn’t directly give.
So IG explanations were richer, at the cost of some latency. SHAP provided attributions that were
similar in pattern to IG for our simple model, which is expected as Shapley values align with IG for
networks with monotonic activations in some cases. But because we used only 16 samples, the SHAP
estimates had some variance run-to-run. With more samples, they stabilized but that was too slow to
be practical. The advantage of SHAP is it’s theoretically solid, and model-agnostic. But clearly, in a
time-sensitive RAN, it is not the first choice unless heavily optimized or run infrequently.

Performance tradeoffs. On NVIDIA GPUs, IG adds only a small latency overhead per inference
(on the order of milliseconds), making it feasible for online deployment in O-RAN-compliant XApps.
SHAP, while computationally heavier, is still practical in offline operator dashboards for fairness and
compliance audits. Attention is the least costly computationally but fails to deliver adequate fidelity,
underscoring the latency—transparency tradeoff: computationally cheap methods (Attention) may
not meet transparency requirements, while GPU-optimized attribution methods (IG) achieve strong
fidelity without violating real-time constraints.

5 Conclusion

We introduced the XAI-on-RAN platform, a next-generation RAN for 6G that integrates Al-driven
control with real-time explainability, implemented on a GPU-accelerated testbed. Building on a prior
Al-native RAN architecture, we introduced an explainability framework that provides transparency
into Al decisions with minimal impact on latency. By leveraging GPU-efficient XAI techniques



such as attention mechanisms and integrated gradients, our system delivers human-interpretable
insights within a few milliseconds of the Al inference. This capability is crucial for deploying Al in
high-stakes domains, it empowers network operators to trust but verify Al actions, ensuring reliability
and fairness in domains like industrial automation and healthcare where communication failures or
biases are unacceptable.
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