
Next-Gen AI-on-RAN: AI-native, Interoperable, and
GPU-Accelerated Testbed Towards 6G Open-RAN

Osman Tugay Basaran∗†, Hammad Zafar†, Martin Kasparick†, Falko Dressler∗, and Slawomir Stańczak∗†
∗School of Electrical Engineering and Computer Science, TU Berlin, Germany

†Fraunhofer Heinrich-Hertz-Institut, Berlin, Germany
{basaran, dressler}@ccs-labs.org, {hammad.zafar, martin.kasparick, slawomir.stanczak}@hhi.fraunhofer.de

Abstract—The evolution of 5G and the emergence of 6G
networks demand advanced, artificial intelligence-enabled (AI-
enabled), interoperable, and scalable solutions to overcome the
ever-increasing complexity and performance requirements of next-
generation wireless communication systems. To address these
design challenges, we propose a Next Generation AI on Radio
Access Network (Next-Gen AI-on-RAN) testbed an open-source
platform that leverages NVIDIA Aerial RAN CoLab (ARC) and
Aerial Software Development Kit (SDK) to enable virtualized
Graphics Processing Unit (GPU) accelerated Layer 1 (L1) and
Layer 2 (L2) processing, significantly enhancing computational
efficiency and reducing latency. A novel aspect of this work is
the co-location of training and inference workloads on the same
NVIDIA GPU-centric RAN server, wherein the GPU is simultane-
ously used for real-time L1/L2 processing and AI model training
for traffic prediction. Experimental analysis demonstrates that
our design 32% reduced training time without sacrificing model
accuracy which underscores the potential of GPU-accelerated
AI-on-RAN for robust next-generation wireless networks.

Index Terms—Virtualization, AI-on-RAN, 6G, xApps,
GPU-Centric, O-RAN

I. INTRODUCTION

As the telecommunications industry transitions from 4G to
5G [1] and begins to lay the groundwork for 6G, the complexity
of wireless networks is rapidly increasing [2]. 5G networks have
introduced significant advancements, such as enhanced mobile
broadband, ultra-reliable low-latency communications, and
massive machine-type communications, which together form
the backbone of modern smart cities, autonomous vehicles, and
industrial automation. However, these advancements also intro-
duce new challenges in network design, management, and opti-
mization, particularly when it comes to ensuring seamless inter-
operability between diverse network components and vendors.

The advent of Open Radio Access Network (O-RAN)
[3] has introduced a new paradigm in network architecture,
emphasizing interoperability, openness, and disaggregation of
network functions [4]. In traditional RAN architectures, network
components were often proprietary and tightly integrated, lim-
iting flexibility but ensuring a level of performance consistency
through highly optimized hardware. However, the transition
to O-RAN [5], with its focus on vendor-neutral interfaces
and open-source software, necessitates a more sophisticated
approach to performance monitoring and troubleshooting.
As a result, open-source and interoperable testbeds [6] have
become essential tools in the development and deployment
of next-generation wireless communication systems. Moreover,

the integration of artificial intelligence (AI) and machine
learning (ML) into network management and optimization is
a critical aspect of these future wireless networks [7].

Despite these advancements, there is an increasing need to
further optimize O-RAN networks to meet the rigorous perfor-
mance and efficiency demands of modern telecommunications.
A significant challenge for such virtualized open-source
platforms is addressing the high computational complexity
of Digital Signal Processing (DSP) for the Physical (PHY)
layer, which consumes substantial computing resources when
executed on general-purpose CPUs. Additionally, maintaining
high-performance networks requires supporting intensive
optimization algorithms capable of swiftly and accurately
diagnosing issues related to sudden network anomalies in
both the RAN and user equipment (UE), as well as providing
solutions to mitigate and enhance network performance.

A promising approach to achieving this optimization is the
integration of accelerators and specialized hardware designed
to expedite these intensive operations. By utilizing such
hardware, processing speeds can be significantly improved
not only for RAN operations but also for executing AI-based
optimization algorithms. This approach could enable an
AI-powered O-RAN deployment that not only meets the
demands for higher performance but also supports the
scalability and sustainability of next-generation network
infrastructures. To address these challenges, this work presents
an innovative AI-on-RAN testbed as seen in Figure 1.

The core outcomes of our study are summarized as new
contributions (“C") and new findings (“F") as follows:
C1. We developed a customized eXtended application (xApp)

catalogue, integrating the O-RAN Near Real-Time (Near-
RT) RAN Intelligent Controller (RIC) with NVIDIA ARC-
based RAN to enhance real-time network management.

C2. This work presents the first instance in the literature
where GPU infrastructure is used concurrently for
both real-time L1/L2 layer network processing and the
execution of an AI-driven traffic prediction model.

C3. Our solution, which includes custom Key Performance
Metric (KPM) and traffic prediction (TP) xApps, along
with a comprehensive monitoring interface, enables
efficient real-time diagnostics and AI-powered network
optimization.

F1. GPU-centric RAN reduced the AI model training time
by approximately 32%, enabling faster model updates



Table I
COMPARISON WITH EXISTING GPU-CENTRIC RADIO ACCESS NETWORK TESTBEDS

Testbeds O-RAN Split 7.2 NVIDIA Aerial SDK OAI Support O-RAN RIC and xApps Catalogue Real-Time Monitoring

Aerial [8] ✓ ✓ χ χ χ
Aerial AI-on-5G [9] ✓ ✓ χ χ χ
X5G Testbed [10] ✓ ✓ ✓ χ χ

Next-Gen AI-on-RAN ✓ ✓ ✓ ✓ ✓

COTS UE on Remote
Controlled Robot

O-RU Foxconn RPQN7801

CU/DU NVIDIA COTS Gigabyte
E251-U70 Servers with A100 GPUs

Dell Gigabit Fiber Switch
S5248F-ON

Fig. 1. Remote-Controlled User Equipment Connected Next-Gen AI-on-RAN
testbed at HHI

and retraining cycles in AI-native networks.
F2. Our AI-based TP xApp model presents a 48.9% and

66.8% reduction in mean squared error (MSE) compared
to the baseline models which indicates that our model’s
predictions are statistically closer to the actual downlink
(DL) data rates, reflecting higher accuracy and reliability.

II. FUNDAMENTALS OF NEXT-GEN AI-ON-RAN TESTBED

NVIDIA, a leader in GPU technology, has introduced
innovative solutions [8], [9] to accelerate the design and
optimization of interoperable, virtualized Next-Gen RAN.
However, since these studies by NVIDIA are reference works
that reveal the tool, GPU-based L1/L2 processing research is
still very new in 6G research. In [10], researchers focused on
RF planning over the digital twin framework using NVIDIA
ARC and OpenAirInterface network [11]. The X5G testbed
provides concrete performance metrics such as DL and uplink
(UL) rates in a multi-node deployment, offering insights into
the practical capabilities of the testbed in a real-world setting.
However, our proposed O-RAN RIC integration and xApp
experiments are not included in this work, they defined it as
future work. One-to-one feature comparison of our testbed with
the aforementioned GPU-based testbeds can be seen in Table I.

Centralized and Distributed Units: Centralized Units
(CUs) use OAI software which is ported onto the CPU in the
testbed. NVIDIA ARC and Aerial SDK are designed to handle
the computational demands of modern 5G networks and

Core Network

AMF UPFSMF

NG

RRC / PDCP

SDAP/ PDCP

CU

MAC / RLC

DU - High

5G FAPI

DU - Low High-PHY RU Low -PHY
Split 7.2

F1

E2

E2

Near-
RT RIC

Custom KPM
xApp

Traffic Predictor
xApp

Our xApps
Catalogue

OTA

UE

Fig. 2. End-to-End Architecture of our Multi-Vendor Next-Gen AI-on-RAN
Testbed

beyond, particularly in implementing Virtual Distributed Unit
(vDU) layers in the RAN as shown in Figure 2. To process PHY
layer data, the overall system consists of 8 ARC nodes working
on Gigabyte E251-U70 servers. Broadcom PEX 8747 PCI
switch was added to the system to manage interconnections.
Mellanox ConnectX-6 Dx Network Interface Card (NIC) with
2 QFTP Ports is used for O-RAN frounthaul split 7.2 interface
functionality [12]. To support NVIDIA Aerial SDK on PHY
layer operations, the testbed is equipped with NVIDIA A100
GPU. Besides GPU computation power, NVIDIA ARC has
a 24-core Intel Xeon Gold 6240R CPU and 96 GB of RAM.
Compute Unified Device Architecture (CUDA) [13] is the
parallel computing platform and programming model that
underpins the Aerial SDK. Our system uses a 5G Functional
API (FAPI) interface between DU-High and DU-Low which
is specified by the Small Cell Forum (SCF) [14].

Foxconn RPQN 4T4R Radio Unit [15] and UEs: It is a
4T4R (4 Transmit, 4 Receive) radio unit, meaning it has four
channels for both transmitting and receiving signals, which
enables higher data throughput and better coverage compared
to simpler configurations like 2T2R. It offers up to 40W of
transmit power per channel, totaling 160W across its four
channels, enabling extensive coverage and robust signal quality.
The unit supports a wide range of frequency bands, including
both sub-6 GHz and higher mmWave frequencies, making
it versatile for various global network deployments. As UE,
we used different 5G Commercial-off-the-shelf (COTS) UEs
placed on the remote-controlled mobile robot.



Fig. 3. Real-time KPI Monitoring User Interface via our Custom KPM xApp

O-RAN Near-RT RIC: O-RAN SC RIC E-release [16] is
integrated in the testbed. We used a custom E2 Agent [17] to
manage E2SM functionalities and enable interaction between
Near-RT RIC and E2 nodes. E2SM-KPM is used for collecting
and reporting key performance indicators (KPIs) and other mea-
surements from the RAN to the Near-RT RIC. These real-time
metrics allow the RIC to continuously monitor network perfor-
mance. In turn, decisions on resource allocation and optimiza-
tion are executed through the E2SM-RC (RAN Control) service
model, which sends control policies back to the RAN. This
integration of E2SM-KPM for monitoring and E2SM-RC for
policy enforcement enables the Near-RT RIC to make informed,
data-driven decisions for real-time network optimization.

Our xApps Catalogue: Our custom KPM monitoring xApp
serves as a key component for enabling successful closed-loop
control, leveraging E2SM-KPM for the real-time reporting of
KPIs over the E2 interface. These KPIs include, but are not
limited to, UL/ DL throughput (Th), block error rates (BLER),
modulation and coding schemes (MCS), received power (RP),
signal-to-noise-plus-interference-ratio (SINR), and E2 node
load-related metrics. These data streams are stored within the
Near-RT RIC and used by our TP xApp to forecast the future
DL data rates of mobile users. TP xApp utilizes our custom
KPM xApp to gather real-time traffic data, which it analyzes
to learn traffic patterns. By leveraging these observations,
TP xApp employs a Long Short-Term Memory (LSTM)
network [18] to predict future traffic patterns. Both xApps
utilize O-RAN-defined service models, the E2SM-KPM and
E2SM-RC service model which enables end-to-end system
optimization within the O-RAN framework.

Our Performance Monitoring User Interface: We have
developed a performance monitoring user interface that
integrates InfluxDB for data storage and Grafana [19] for data
visualization as shown in Figure 3. This combination provides
a powerful, flexible, and user-friendly solution for tracking
and analyzing KPIs in real-time. InfluxDB serves as the
backend time-series database, efficiently storing vast amounts
of KPI data collected from network elements via the O-RAN
E2 interface. This data is then visualized in Grafana, where

customizable dashboards offer dynamic and interactive views
of network performance metrics such as latency, throughput,
and packet loss. Grafana’s real-time monitoring, coupled with
its alerting system, enables testbed users to quickly identify
and respond to performance anomalies.

In our testbed, COTS UEs communicate with ARC gNBs,
adhering to the fundamental O-RAN architecture divided into
CU, DU, and RU. The Foxconn RUs are connected to the DU-
low implemented using the NVIDIA Aerial SDK. Meanwhile,
DU-high and CU, developed by the OAI are both containerized
within a single container and communicate with DU-low via
the 5G-FAPI interface. Data from the CU is then transmitted
to the OAI core, which processes it while considering factors
such as channel conditions, modulation schemes, and network
congestion. Additionally, DU-high and CU are configured
to interact with the Near-RT RIC through the E2 interface,
enabling xApps to monitor network KPIs and deploy intelligent
xApps to enhance network functionality and performance.

III. GPU-ACCELERATED AI-ON-RAN

GPU acceleration is transformative for AI-based algorithms,
especially in scenarios where real-time processing and high
computational demands are critical. Therefore, integrating
GPU acceleration into O-RAN architecture for AI-based xApp
optimization marks a significant leap in network performance
and efficiency. By leveraging GPU-based acceleration, we
show that the same hardware traditionally used for baseband
processing in the protocol stack can efficiently handle
resource-intensive AI algorithms.

A. Traffic Prediction xApp Design

To properly define the TP xApp, we consider it as a
functional module that processes real-time KPIs from the KPM
xApp and predicts future DL data rates using an LSTM network.
At each discrete time interval t∈N, the KPM xApp collects a
set of KPIs, which are then transmitted to the TP xApp. The
feature vector constructed by the TP xApp is represented as:

xt={Tht,BLERt,MCSt,RPt,SINRt}

where n is the number of KPIs used. TP xApp maintains a
sequence of the past L feature vectors to capture temporal
dependencies:

St=[xt−L+1,xt−L+2,...,xt] (1)

The LSTM network processes the sequence St to predict
the future DL data rate. The LSTM model is defined as a
function fθ parameterized by weights θ:

ŷt+1=fθ(St) (2)

where ŷt+1 is the predicted DL data rate at time t + 1.
This predictive capability is crucial for proactive network
management, allowing operators to allocate resources
efficiently and avoid congestion.



B. Model Training and Inference on GPU-Centric RAN

GPUs, with their massively parallel architecture, are designed
to handle thousands of simultaneous threads, making them ex-
ceptionally well-suited for the intensive computations required
by AI algorithms, such as deep learning and neural networks.
To clarify our GPU-Centric RAN operations, let us denote:

1⃝ Tp: Processing time required by the LSTM model to
generate a prediction for a one-time step.

2⃝ TCPU: Processing time when using a CPU.
3⃝ TGPU: Processing time when using a GPU.

Due to the parallel processing capabilities of GPUs, we have:

TGPU=
TCPU

k
(3)

where k>1 represents the acceleration factor provided by the
GPU over the CPU. Assuming the xApp processes a batch
of B sequences simultaneously to maximize GPU utilization,
the total processing time for the batch Tbatch is:

Tbatch=TGPU+Toverhead (4)

where Toverhead includes data transfer times between the CPU
and GPU memory. Then latency (L), the time elapsed from
receiving the input sequence to producing the output prediction
can be given as:

L=Tdata_prep+Tbatch (5)

where Tdata_prep is the time taken to pre-process data. Similarly,
the number of predictions made per unit time (Φ) can be
calculated as:

Φ=
B

Tbatch
(6)

To assess resource utilization on the GPU, we need the
following:

1⃝ CGPU: The computational capacity of the GPU in Floating
Point Operations Per Second (FLOPS).

2⃝ D: The total computational demand of the LSTM model
per prediction in FLOPs.

The utilization ratio (U ) of the GPU is given by:

U=
B×D

CGPU×Tbatch
(7)

To maximize throughput while minimizing latency, we can
formulate an optimization problem:

Maximize Φ=
B

Tbatch

Subject to L≤Lmax (8)
U≤Umax

B∈N+

where maximum allowable latency Lmax and maximum
allowable GPU utilization (typically less than 1 to prevent
overload) Umax.

LSTM computations are parallelized on the GPU to
accelerate matrix operations involved in the network’s forward

pass. The implementation of LSTM equations utilizes parallel
matrix operations, as detailed below:

i) All weight matrices W∗ and U∗ are large matrices
suitable for parallel processing.

1) Input Gate:

it=σ(Wi ·[ht−1,xt]+bi)

2) Forget Gate:

ft=σ(Wf ·[ht−1,xt]+bf )

3) Cell State Update:

C̃t=tanh(Wc ·[ht−1,xt]+bc)

4) Cell State Calculation:

Ct= ft⊙Ct−1+it⊙C̃t

5) Output Gate:

ot=σ(Wo ·[ht−1,xt]+bo)

6) Hidden State Calculation:

ht=ot⊙tanh(Ct)

ii) The element-wise operations, such as the activation
functions σ and tanh, as well as the Hadamard product ⊙, are
applied in parallel across vectors, ensuring efficient processing
on the GPU.

To consider the data transfer overhead:
1⃝ Ttransfer: The time required to transfer data between CPU

and GPU memory.
2⃝ S: The size of the data being transferred (in bytes).
3⃝ Bw: The bandwidth of the PCIe bus or interconnect (in

bytes per second).
The transfer time can be calculated as:

Ttransfer=
S

Bw
(9)

Minimizing this overhead is crucial for enhancing overall
performance. Furthermore, to deploy additional xApps
effectively, memory and real-time processing constraints must
be carefully managed; GPUs have a limited memoryMGPU
and the batch size B should be selected such that:

B×Memory Footprint per Sequence≤MGPU (10)

Deployed xApps must operate under real-time constraints
to be effective in network management. The end-to-end delay
De2e from data acquisition to prediction delivery should satisfy:

De2e=Tdata_acq+L+Tcomm≤Dmax (11)

where time to acquire data from the KPM xApp Tdata_acq,
communication delay in delivering the prediction Tcomm, and
maximum allowable end-to-end delay Dmax. So our final TP
xApp deployed on a GPU server can be formally defined as:

ŷt+1=FGPU(St;θGPU) (12)

where LSTM model optimized for GPU execution FGPU and
model parameters stored and processed on the GPU θGPU.



Fig. 4. Data Rate Prediction using LSTM-based TP xApp

5 15 30 60
Prediction interval (min)

0

50

100

150

200

250

300

RM
SE

LSTM
FNN
Random Forest

5 15 30 60
Prediction interval (min)

0

20

40

60

80

100

120

M
AE

LSTM
FNN
Random Forest

Fig. 5. Model Prediction Error within Different Time Intervals

IV. EXPERIMENTS AND RESULTS

A. Benchmarking with Baseline Forecasting Models

To evaluate the performance of the LSTM-based model, we
fine-tuned the hyperparameters for optimal results. The batch
size was set to 64, and the model was trained over 500 epochs.
The model is trained using the MSE loss function, which
measures the average squared difference between predicted and
actual traffic values. The model was trained on 24 sets of 30-
minute intervals, which amounted to 12 hours of data. During
training, the model’s performance was continuously monitored
using a validation dataset derived from the training data. The
validation loss was used as a metric to adjust the model’s
hyperparameters and prevent overfitting. The Adam optimizer
is employed with an initial learning rate of 0.01. Adam is
chosen for its efficiency in handling sparse gradients and
adaptive learning rates. To enhance training efficiency, an early
stopping strategy with patience of 5 epochs is implemented. If
the training loss does not decrease for 5 consecutive epochs, the
learning rate is reduced by a factor of 0.1. This approach helps
prevent overfitting and ensures convergence. After training, the
model was tested on a separate dataset comprising 4 sets of
30-minute intervals, totaling 2 hours of data. The purpose of
this testing phase was to evaluate the model’s generalization
capability on unseen data. The LSTM-based approach, while
computationally intensive during the training phase, offers
superior prediction accuracy compared to simpler methods
like the minimum distance method. Once trained, the LSTM
model can deliver precise traffic forecasts with only a marginal
increase in computational complexity during inference.

In Fig. 4, we evaluate the prediction performance of
the LSTM-based TP xApp and compare it with alternative

104 105 106 107 108

Array size (bytes)
0

2

4

6

8

10

Tr
an

sf
er

 sp
ee

d 
(G

B/
s)

Data Transfer Bandwidth
Send to GPU (NVIDIA A100)
Gather from GPU (NVIDIA A100)

104 105 106 107 108

Array size (bytes)
0

100

200

300

400

500

600

700

Sp
ee

d 
(G

B/
s)

Read+Write Bandwidth
GPU (NVIDIA A100)
CPU (Intel® Xeon Gold 6240R)

Fig. 6. Performance Comparison for Memory Intensive AI-on-RAN Operations

Table II
PERFORMANCE COMPARISON BETWEEN CPU AND GPU CENTRIC SERVERS

FOR TRAINING THE LSTM MODEL UNDER DIFFERENT TRAINING
CONFIGURATIONS

Processor Type Epoch = 300 Epoch = 400 Epoch = 500

CPU (Intel Xeon Gold) 4055s 5900s 6980s
GPU (NVIDIA A100) 3125s 4241s 5286s

methods: using Random Forest (RF) [20] and the Feed-foward
Neural Network (FNN) [21]. For the RF model, we configured
200 trees, striking a balance between performance and training
time, while limiting the maximum tree depth to 10 to mitigate
overfitting and allow the model to effectively learn meaningful
patterns in the data. The FNN was designed with three hidden
layers containing 64, 32, and 16 neurons, respectively, utilizing
a ReLU activation function for hidden layers and a linear
activation for the output layer. In the figure, the solid line
represents the actual DL data rates observed during the test
period, while the dashed line illustrates the predicted values
from the different models.

As depicted in Fig. 4, the predicted DL data rates from the
LSTM-based TP xApps align closely with the ground truth,
demonstrating the model’s effectiveness in capturing temporal
variations and accurately forecasting future rates. In contrast,
the other methods demonstrate lower prediction accuracy in
terms of error rate. The MSE for the LSTM model is 0.90,
while the FNN has an MSE of 1.76. The RF model exhibits the
highest MSE at 2.71, making it the least accurate among these
models. This represents a 48.9% reduction in MSE compared
to the FNN and a 66.8% reduction compared to the RF model.
LSTM’s ability to model temporal dependencies within the
traffic data allows it to capture complex patterns and fluctuations
more effectively than models lacking recurrent architectures.
Statistical tests, such as paired t-tests on the prediction errors,
confirmed that the improvements offered by the LSTM are
statistically significant (p−value<0.01), validating its efficacy
in enhancing traffic forecasting accuracy. Also when model pre-
diction errors are evaluated in Fig. 5, the LSTM model demon-
strates superior predictive performance across various time inter-
vals, as evidenced by lower root mean square error (RMSE) and
mean absolute error (MAE) values compared to FNN and RF
models. At the 5-minute interval, relative improvement trans-
lates to a 33% reduction in RMSE, 40% in MAE compared to
FNN, and a 50% reduction in both RMSE and MAE compared



to RF. Such reductions indicate that LSTM significantly miti-
gates prediction errors. Variance in RMSE and MAE is crucial
for understanding consistency. Lower variance in these metrics
for LSTM suggests that its predictions are more stable and
less prone to extreme errors, especially over longer intervals.

B. GPU versus CPU for AI-on-RAN Operations

When analyzing Fig. 6, it becomes clear that utilizing
GPUs for both data transfer and memory operations leads to
significantly reduced latencies, facilitating real-time processing
for RAN L1/L2. The GPU’s high sending speed of 10 GB/s and
gathering speed of 4 GB/s yield a data transfer latency of just
35 ms for a 108 byte dataset, which is crucial for real-time data
offloading in AI-on-RAN. With 6.5× faster read+write speed on
GPUs compared to CPUs, the GPU can process large datasets in
a fraction of the time, enabling quicker AI inference results. Re-
duced latency of processing on GPUs enables faster updates and
responses to changes in the RAN environment. This makes the
AI models more effective in adapting to real-time changes in the
wireless channel or user behavior, directly contributing to better
Quality of Service (QoS) and Quality of Experience (QoE)
towards 6G. For example, if decisions need to be made within a
50 ms window, using the GPU (0.154 ms) allows for more com-
putation and adaptation compared to the CPU (potentially tak-
ing 1 ms or more with slower read/write operations). Also, exe-
cution times of the proposed LSTM-based prediction model are
compared across different platforms in Table II to demonstrate
the benefits of incorporating GPU acceleration into the O-RAN
architecture for AI-based xApp optimization. For this compari-
son, we used an Intel CPU with 10 cores running at 2.7 GHz and
64 GB of RAM, alongside an NVIDIA A100 GPU. The training
times for machine learning models varied significantly between
the two platforms. For instance, the neural network used for data
rate prediction required only 5286 seconds to train on the GPU,
compared to 6980 seconds on the CPU. Similarly, substantial
reductions in training time were observed across various config-
urations. These results highlight the clear advantages of GPU-
based systems, particularly when handling larger datasets and
complex models, where the efficiency gains lead to significant
time savings. Leveraging GPU capabilities in AI-on-RAN
scenarios can ultimately support the vision of ultra-reliable and
low-latency communication (URLLC) in 6G networks.

V. CONCLUSION

Our Next-Gen AI-on-RAN testbed delivers significant
improvements in computational efficiency for 6G networks. It
provides faster data transfer speeds and substantially quicker
memory operations on GPUs compared to traditional CPU-
based approaches, reducing latency and enabling real-time
responsiveness crucial for Next-Gen RAN applications. By
running a computationally efficient PHY layer alongside AI
models directly on the GPU, the testbed minimizes overhead
and streamlines processing. Additionally, the integration of
a versatile xApp catalog; KPM, TP xApps, and a real-time
monitoring user interface—introduces a robust solution for

detailed network diagnostics and AI-powered, GPU-accelerated
network performance optimization.

ACKNOWLEDGMENT

This work has been funded by the German Federal Ministry
of Education and Research (BMBF, Germany) as part of the
6G Platform under Grant 16KISK050, as well as 6G Research
and Innovation Cluster 6G-RIC under Grant 16KISK020K.

REFERENCES

[1] M. Agiwal, H. Kwon, S. Park, and H. Jin, “A Survey on 4G-5G
Dual Connectivity: Road to 5G Implementation,” IEEE Access, vol. 9,
pp. 16 193–16 210, 2021.

[2] H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,”
IEEE Access, vol. 8, pp. 57 063–57 074, 2020.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understand-
ing O-RAN: Architecture, Interfaces, Algorithms, Security, and Research
Challenges,” IEEE Communications Surveys & Tutorials, pp. 1376–1411,
2023.

[4] A. Bhattacharyya, S. Ramanathan, A. Fumagalli, and K. Kondepu,
“Towards Disaggregated Resilient 5G Radio Access Network: A Proof
of Concept,” in 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft), 2023, pp. 396–401.

[5] M. Polese, M. Dohler, F. Dressler, M. Erol-Kantarci, R. Jana, R. Knopp,
and T. Melodia, “Empowering the 6G Cellular Architecture With Open
RAN,” IEEE Journal on Selected Areas in Communications, vol. 42,
no. 2, pp. 245–262, 2024.

[6] A. Gabilondo, Z. Fernandez, Á. Martín, R. Viola, M. Zorrilla, P. Angueira,
and J. Montalbán, “5G SA multi-vendor network interoperability
assessment,” in 2021 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), IEEE, 2021, pp. 1–6.

[7] S. Zhang and D. Zhu, “Towards artificial intelligence enabled 6G: State
of the art, challenges, and opportunities,” Computer Networks, vol. 183,
p. 107 556, 2020.

[8] A. Kelkar and C. Dick, “Aerial: a GPU hyper-converged platform for
5G,” ser. SIGCOMM ’21, Virtual Event: Association for Computing
Machinery, 2021, pp. 79–81.

[9] A. Kelkar and C. Dick, “NVIDIA Aerial GPU Hosted AI-on-5G,” in
2021 IEEE 4th 5G World Forum (5GWF), 2021, pp. 64–69.

[10] D. Villa, I. Khan, F. Kaltenberger, N. Hedberg, R. S. da Silva, A.
Kelkar, C. Dick, S. Basagni, J. M. Jornet, T. Melodia, M. Polese, and
D. Koutsonikolas, “An Open, Programmable, Multi-vendor 5G O-RAN
Testbed with NVIDIA ARC and OpenAirInterface,” in 2nd Workshop
on Next-generation Open and Programmable Radio Access Networks
(NG-OPERA), Vancouver, BC, Canada, May 2024.

[11] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
“OpenAirInterface: Democratizing innovation in the 5G Era,” Computer
Networks, vol. 176, p. 107 284, 2020.

[12] O-RAN Alliance, “O-RAN working group 4 (open fronthaul interfaces
wg) control, user and synchronization plane specification,” Techreport
O-RAN.WG4.CUS.0-R003-v12.00, Jun. 2022.

[13] NVIDIA. “CUDA Toolkit.” (2024), [Online]. Available: https://developer.
nvidia.com/cuda-toolkit. (accessed: 10.08.2024).

[14] Small Cell Forum, “5G FAPI: PHY API Specification,” Techreport
222.10.04, Oct. 2021.

[15] Foxconn. “Foxconn RPQN.” (2024), [Online]. Available: https://fcc.
report/FCC-ID/2AQ68RPQN7801/5573870.pdf. (accessed: 10.08.2024).

[16] O-RAN SC, OSC Near Realtime RIC, https://wiki.o-ran-sc.org/display/
RICP/2022-05-24+Release+E, Accessed: 04-Aug-2024, 2024.

[17] E. Moro, M. Polese, A. Capone, and T. Melodia, “An Open RAN
Framework for the Dynamic Control of 5G Service Level Agreements,”
in IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN 2023), Dresden, Germany, Nov. 2023, p. 6.

[18] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural
Networks: LSTM cells and Network Architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[19] Grafana. “Grafana Monitoring.” (2024), [Online]. Available: https:/ /
grafana.com/docs/. (accessed: 10.08.2024).

[20] S. J. Rigatti, “Random Forest,” Journal of Insurance Medicine, vol. 47,
no. 1, pp. 31–39, 2017.

[21] G. Bebis and M. Georgiopoulos, “Feed-forward Neural Networks,” IEEE
Potentials, vol. 13, no. 4, pp. 27–31, 1994.


