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Abstract—Artificial intelligence (AI) has already been incorpo-
rated into wide range applications of the fifth generation (5G)
networks. The Al-native design of 6G network is serving as
cornerstone for intelligent, autonomous, and dynamic network
operations. Al-driven techniques, such as machine learning (ML)
and Deep Learning (DL), facilitate real-time data analytics,
predictive modeling, and decision-making processes to optimize
resource utilization, enhance network performance, and ensure
seamless connectivity for a multitude of devices and services.
However, it is crucial in many respects that these AI algorithms
are reliable, trustworthy, and explainable. In this direction,
Explainable AI (XAI) will ensure transparent and secure operation
at different layers of 6G networks. With the integration of XAI, 6G
networks can achieve transparent dynamic self-configuration, self-
optimization, and self-healing capabilities, enabling the network to
adapt to fluctuating demands, mitigate potential issues proactively.
To ensure that the AI/ML algorithms used in 6G Next-generation
URLLC (xURLLC) use case are trustable and reliable, we
proposed a XAInomaly framework that use our novel fastSHAP-
C XAI method which handle real-time XAI layer operations
on Open-RAN (O-RAN). Our performance results show that
fastSHAP-C provides a 25% advance over its competitors in
terms of resource utilization.

Index Terms—6G, Explainable and Trustworthy AI, xXURRLC,
XAIL SHAP Values, fastSHAP-C, O-RAN, xApps

I. INTRODUCTION

Al empowers 6G networks with intelligent service orches-
tration, dynamic spectrum management, and advanced security
mechanisms, paving the way for innovative applications and
services, such as large language models (LLMs), the metaverse
including augmented and virtual reality, and holographic
communications [1, 2]. Furthermore, next generation Al-driven
edge computing and intelligence facilitate low-latency data
processing and decision-making at the network edge, reducing
the reliance on centralized data centers and enhancing the
responsiveness and efficiency of 6G networks [3, 4].

In the landscape of 6G networks, the utilization of Ex-
plainable AI (XAI) is paramount due to its multifaceted
benefits [5, 6]. Transparency and trustworthiness are vital
pillars in the deployment of Al-driven functionalities within
dynamic and complex network environments. In Figure 1, XAI
techniques provide stakeholders with clear insights into the
decision-making processes of Al models, fostering transparency
and enhancing trust. Moreover, accountability is ensured as
XAI enables the traceability and auditability of Al decisions,
mitigating risks associated with opaque systems.
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Figure 1. XAl Interaction Between User and Network Layers
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The robustness and reliability of 6G networks are bolstered
by XAlI, facilitating rapid error detection and mitigation, thus
improving overall network performance. Additionally, XAI
supports ethical and regulatory compliance by identifying
and mitigating biases, promoting fairness and inclusivity
in Al-driven decision-making. Ultimately, the integration of
explainable Al in 6G networks facilitates effective human-Al
collaboration, empowering operators to leverage Al capabilities
while retaining control and oversight, thus paving the way for
the successful deployment and operation of next-generation
wireless communication systems [7].

Especially with 6G towards Open Radio Access Networks
(O-RAN) [8], black-box Al systems are inadequate in terms of
reliability and trustworthiness [9, 10]. White-box Al systems
are inevitable for users who handle the network from different
perspectives, such as service providers, legal auditors, and
end-users. In the near future, with 6G O-RAN deployments
where network elements are disaggregated and decentralized,
XALI enables local interpretation of Al decisions at the network
edge, facilitating real-time adaptability and troubleshooting
[10]. Furthermore, XAI techniques help mitigate biases and
ensure fairness in resource allocation and network management,
promoting inclusivity and equity in O-RAN operations as can
be seen in Figure 2. The near-real-time RIC (Near-RT RIC) in
the figure is responsible for the operation of the control loops
work periodically between 10 ms and 1s. It enables AI/ML
algorithms to intelligently manage the network via eXtended
applications (XApps) running on top.
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Figure 2. O-RAN Reference Architecture with XAInomaly

Enhanced Mobile Broadband (eMBB), ultra reliable low
latency communications (URLLC), massive machine type
communications (mMTC) advanced service categories have
found their place in the literature with 5G. In 6G networks,
advanced hybrid use cases such as URLLC-eMBB [11] and
URLLC-mMTC are designed in which these services required
together. In this case, Quality of Experience (QoE) should be
provided in addition to the existing Quality of Service (QoS)
metrics. Besides, more innovative technologies are required to
achieve the QoE and KPIs required by next generation URLLC
use case in 6G Networks [12].

However, when AI/ML algorithms are used in highly
dynamic heterogeneous networks such as 6G towards O-
RAN, decision-making processes of AI/ML models must be
interpretable and reliable. To better interpret AI/ML algorithms
that will work on performance demanding 6G networks, we aim
to increase transparency by implementing the model-agnostic
reactive XAl framework elucidate the Deep Autoencoder model
of the Anomaly Detection XxApp microservice running on
O-RAN infrastructure as can be seen in Figure 3. To the
best of our knowledge, we are the first to propose a reactive
XAI framework on O-RAN RIC (RAN Intelligent Controller)
considering 6G xURLLC use case real-time data processing
and low latency requirements.

Our key contributions can be summarized as follows:

« We design, for the first time, a reactive XAl framework
on O-RAN considering xXURLLC use case.

« We introduce novel fastSHAP-C XAI method that obtain
real-time SHAP values regarding O-RAN intelligence
orchestration operations.

o To explain Deep Autoencoder model running in Anomaly
Detection xApp, we proposed performance efficient
fastSHAP-C for the real-time scenarios.

o We are the first to implement kernelSHAP, fastSHAP
baseline models in O-RAN.

II. RELATED WORK

The emergence of 6G networks brings forth unprecedented
opportunities and challenges [11], necessitating the integra-
tion of advanced Al techniques to optimize performance,
resource management, and user experience. In this context,
XAI has garnered significant attention as a means to enhance
transparency, interoperability, and trustworthiness in Al-driven
decision-making processes within 6G ecosystems [7]. By
synthesizing insights from diverse disciplinary perspectives,
these works contribute to a comprehensive understanding of
the opportunities and challenges associated with leveraging
XAl in the evolution of 6G networks.

Continuing this exploration, recent research has emphasized
the critical role of Al explainability in various facets of 6G
network operations, including resource management [13]. In
this study, the authors focused on the use of XAI through
separate 6G use cases. Particularly, they discussed the deep
reinforcement learning based solution used in the Vehicular
network scenario. In this regard, they examined the contribu-
tion of features through SHAP values. However, one major
challenge is the inherent complexity and high dimensionality
of DRL models, which often consist of numerous layers and
parameters, making them difficult to interpret. This complexity
can lead to explanations that are either too simplified, missing
critical nuances, or overly detailed, making them hard to
understand for end-users. On the other hand, in a use case
with vehicles, the XAI model is expected to perform real-
time evaluation. Achieving this real-time evaluation capability
with the conventional SHAP algorithm is quite challenging in
terms of real life scenario. By addressing these multifaceted
challenges and opportunities, researchers aim to establish a
foundation for the development of transparent and accountable
Al systems that underpin the next generation of wireless
communication networks.

In [14], researchers introduce EXPLORA, a novel framework
aimed at enhancing the explainability of AI/ML models in
the context of Open RAN. This paper addresses the pressing
need for transparency and interpretability in decentralized
network architectures like Open RAN, where complex decision-
making processes occur at the network edge. Fiandrino et
al. [5], explore the integration of XAI and robustness in
the context of 6G networks. Despite the progress made, the
paper acknowledges that significant improvements are still
needed, particularly in balancing the explainability-robustness
trade-off and ensuring that explanations are both accurate
and comprehensible to various stakeholders, from network
operators to end-users. A use case examined on the 4G network
with LRP and SHAP algorithms. And the execution time and
resource utilization results of these algorithms have been shared.
According to the authors’ results, CPU usage constitutes a
serious bottleneck, so the development of more innovative
domain-aware XAl algorithms is inevitable. This is why it



motivated us to research and develop XAl algorithms that can
handle the 6G xURLLC real-time data communication.

Although XAI studies are found in different domains in the
literature [15, 16], they are especially prevalent in 5G+/6G O-
RAN research. Especially when we evaluate the deficiencies in
the aforementioned studies, there is still room for improvement
on the 6G towards O-RAN.

III. EXPLAINABILITY AND TRUSTWORTHINESS IN 6G
OPEN-RAN

XAl is the interdisciplinary field at the intersection of artifi-
cial intelligence and cognitive science, focused on developing
techniques and methodologies to enable Al systems to provide
transparent and interpretable explanations of their decision-
making processes to humans, fostering trust, understanding, and
collaboration between humans and machines. Model-agnostic
methods in XAI are techniques that can be applied to a
wide range of machine learning models without relying on
knowledge of their internal structures. These methods aim to
provide interpretable explanations for individual predictions or
the overall behavior of a model, regardless of its complexity or
type. One common type of model-agnostic method is the SHAP
(SHapley Additive exPlanations) framework, which computes
feature attributions for each prediction based on game-theoretic
principles. Other model-agnostic methods include LIME (Local
Interpretable Model-agnostic Explanations) and Anchors, which
generate explanations at the local level by approximating the
behavior of the underlying model in the vicinity of a specific
data point.

A. Local vs Global Model-Agnostic XAI Methods

The difference between local and global model-agnostic
methods lies in the scope of their explanations. Local model-
agnostic methods, such as LIME [17], focus on explaining
individual predictions by approximating the behavior of the
model in the local neighborhood of a data point. These methods
provide insights into why a particular prediction was made for a
specific instance, making them useful for understanding model
behavior at the instance level. In contrast, global model-agnostic
methods, like SHAP, provide explanations that apply across the
entire dataset or model [6]. They offer insights into the overall
importance of features and how they contribute to predictions
on average, providing a broader understanding of the model’s
behavior across different instances. While local methods offer
fine-grained explanations for individual predictions, global
methods provide a more comprehensive view of the model’s
decision-making process across the entire dataset. Both types
of methods are valuable in different contexts and can be used
together to gain a holistic understanding of a machine learning
model’s behavior.

B. Reactive vs Post-hoc XAl

Reactive-XAI refers to a subset of XAI techniques that
provide real-time explanations and interventions in response
to model predictions or user queries. Unlike traditional XAI

methods that generate explanations post-hoc or offline, reactive
XAI methods operate in real-time, offering immediate insights
into the decision-making process of machine learning models
as predictions are made. In contrast, post-hoc XAI involves
generating explanations after the decision-making process
has occurred. This is typically done by applying separate
techniques to interpret and explain the decisions of already
trained models, often using methods such as feature importance
analysis, visualization, or surrogate models. Reactive XAI and
post-hoc XAI are related but distinct concepts. While reactive
XAl focuses on built-in transparency, post-hoc XAl addresses
interpretability retrospectively, aiming to shed light on the
workings of complex models that were not inherently designed
to be interpretable.

Since the xXURLLC use case requires high reactiveness and
responsivity, it is more appropriate to move towards reactive-
XAI design.

C. XAI Metrics

XAI metrics are quantitative measures used to evaluate the
performance and effectiveness of explainability techniques
applied to machine learning models. These metrics help assess
the quality of explanations provided by XAI methods, as well as
their impact on user understanding, trust, and decision-making.
Metrics of Reactive-XAI models are as follows:

o Confidence score is particularly important when assessing
the reliability and robustness of XAl techniques, as it
directly influences user perception and acceptance of
the explanations. It typically measures the consistency
between the model’s predictions and the explanations
generated by an XAI method. One way to compute the
CS is by evaluating the discrepancy between the model’s
predicted output and the output reconstructed using the
explanations. Let f(x) be the prediction of the model for
input 2 and ¢(z) be the vector of feature importances
provided by the XAI method for input z. The explanation
can be used to reconstruct the model’s prediction as:

d
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where d is the number of features. The Confidence Score
can be defined as the average absolute difference between
the model’s actual prediction and the reconstructed pre-
diction from the explanations:
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where n is the number of samples, x; is the i-th sample,
and ¢;(z;) is the explanation for the j-th feature of the
i-th sample.

A high confidence level indicates that the explanations
are reliable, accurate, and consistent with the underlying
model’s behavior, instilling trust in the XAI method and



the model’s predictions. Conversely, a low confidence
level suggests that the explanations may be uncertain or
unreliable.

o Sensitivity refers to the degree to which the explanations
provided by an XAI method are sensitive to changes in
the input data or model parameters. It quantifies how the
explanations vary in response to perturbations or variations
in the input features, helping assess the robustness and
reliability of the XAI technique. A highly sensitive XAI
method exhibits significant changes in the explanations
when small modifications are made to the input data
or model parameters, indicating potential instability or
uncertainty in the insights provided.
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of each feature in influencing the model’s predictions.

It measures how much the log-odds of the predicted
outcome change when a particular feature is present or
absent, providing insights into the feature’s impact on
the model’s decision-making process. A positive log-odds
value indicates that the presence of the feature increases
the likelihood of the positive outcome, while a negative
log-odds value indicates that the presence of the feature
decreases the likelihood of the positive outcome.
L~y Prie)
log — odds(p) I ; log Pr(jlen) (@)

D. SHapley Additive exPlanations (SHAP)

SHAP [18] is a method in Explainable Al (XAI) that aims
to provide interpretable explanations for the predictions made
by machine learning, deep learning models. It is based on
cooperative game theory, specifically the concept of Shapley

values, which originated from economics and political science.

SHAP emerges as a powerful tool in the realm of complex
networks due to its unique advantages. First and foremost,
SHAP provides transparent and interpretable explanations
for individual predictions, enabling users to comprehend
the reasoning behind model decisions. Its model-agnostic
nature allows for seamless integration with a wide range
of machine learning algorithms, ensuring applicability across
diverse domains and applications. Additionally, SHAP offers
the flexibility to generate both local and global explanations,
providing insights into model behavior at different levels of
granularity.

The core idea behind SHAP is the concept of Shapley values,
derived from cooperative game theory. Shapley values provide
a way to fairly distribute the "payout" among players based on
their contributions to the total payout. For a machine learning
model, the "players" are the features, and the "payout" is
the prediction of the model. The Shapley value for a feature
represents its average contribution to the prediction across all
possible subsets of features.

Mathematically, the Shapley value ¢; for a feature ¢ is given
by:

b= 3
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where N is the set of all features, S is a subset of /N that does
not include feature 4, and v(S) is the value function that gives
the model prediction using only the features in subset S.

SHAP values adapt the Shapley values to the context of
machine learning by defining a value function v(S) that
represents the model’s prediction given the features in subset
S. A common choice for v(95) is:

v(S) = E[f(2) | =] (©)

where f(x) is the model prediction, and zg are the features
in subset S. In practice, computing exact Shapley values is
computationally expensive due to the combinatorial number
of subsets. SHAP uses several approximations to make this
feasible, such as KernelSHAP, TreeSHAP, and DeepSHAP,
tailored to specific model types.

1) kernelSHAP: 1t is a method for interpreting the predic-
tions of machine learning models based on Shapley values,
a concept from cooperative game theory [18] . The goal
is to fairly attribute the contribution of each feature to the
prediction of a machine learning model. Given a set of players
N ={1,2,...,n}, the Shapley value for player ¢ is defined
as

¢i(v) =Y
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Here, v is a characteristic function that assigns a real number
to each subset of players, representing the value or payoff of
that subset. S is any subset of IV that does not include player
1. Algorithm 1 basically completes the following steps:

« Sample subsets: Randomly sample subsets of features.

« Compute characteristic function: For each subset, com-

pute v(S5).

« Weight subsets: Apply the kernel weighting to each

subset.

o Fit linear model: Solve the weighted least squares

problem to obtain the Shapley values.

2) fastSHAP: 1t is an efficient approximation method for
computing Shapley values [19]. As can be seen in Algorithm 2,
it aims to accelerate the computation of Shapley values, which
can be computationally expensive for complex models and
large datasets. fastSHAP leverages a differentiable surrogate
model trained to approximate Shapley values, significantly
reducing computation time.

IV. PROPOSED DESIGN: XAINOMALY FRAMEWORK

In 5G+/6G networks are expected to be highly dynamic and
heterogeneous. With these next generation networks, traditional
anomaly detection methods may struggle to adapt to the
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Figure 3. Integration of XAlInomaly Framework to O-RAN

evolving network conditions and detect subtle anomalies in the
vast amount of network data generated. Recently, it has come
to light in 5G research that Deep autoencoders leverage deep
learning techniques to learn hierarchical representations of the
network data, allowing them to model intricate relationships
and detect anomalies with high accuracy. However, even
though deep autoencoders excel at capturing complex patterns
and anomalies in high-dimensional data, they often operate
as black-box models, providing limited insights into the
underlying reasons for anomaly detection. So, using XAI
algorithms provides transparent and interpretable explanations
for individual anomalies, quantifying the contribution of each
feature to the anomaly detection decision. In this way, the
AI/ML Execution and Inference and Continuous Operations
steps of the AI/ML Workflow [20] published by the O-RAN
Alliance (WG2) are correctly constructed.

Figure 3 shows the workflow of the XAInomaly framework
integrated top of the existing O-RAN anomaly detection use
case. In addition to the existing anomaly detection use case flow,
the performance of the deep autoencoder model running in AD
xApp is checked via Reactive XAI xApp. The confidence level
of the anomaly detection classification is determined thanks to
the SHAP Values calculated by the model parameters coming
from AD xApp. In the next step, the model status update
information is shared with QoE xApp. After the Confidence
Score (CS) is calculated through the metrics specified in
Section III-C, CS is fed to QoE Predictor xApp. Thus, in
an application that requires high real-time computing such as
xURLLC, control loops can be operated while ensuring the
reliability of the DL model.

Input: X; ; samples that kernelSHAP uses to calculate
SHAP values, ErrorList an ordered list for calculate
error per feature, m is autoencoder model

Output: SH APbestM features, calculated SHAP
values for each feature in bestM features

best M features < Xbest featuresfromErrorList
for each i € bestM features do

explainer < shap.Kernel Explainer(m, x;. ;)
SHAPbestM features[i] +
explainer.shapvalues(x;)

end

return S H APbestM features

Algorithm 1: kernelSHAP Training

Input: Value function f, ,, learning rate o
Output: fastSHAP explainer ¢fqq(x,y;0)
initialize ¢ rqst(, y; 6)
while not converged do
sample z ~ p(z),y ~ Unif(y),s ~ p(s)
predict ¢ < ¢rast(w,y;0)
if normalize then

| set ¢ G+ d T (foy(1) = fry(0) = 179)
end
calculate A
L+ (fr,y(s) - fT,y(O) - 5T¢)2
update 6 + 0 —aVyL

end
Algorithm 2: fastSHAP Training

A. Anomaly Detection xApp: Dataset and Model Parameters

As Anomaly Detection (AD) xApp, we directly used existing
model designed by Basaran et al. [21]. Model based on the Deep
Autoencoder model. UE data streams coming through InfluxDB
are classified with a semi-supervised learning perspective via
Deep Autoencoder based xApp. To reveal which features carry
more valuable information regarding Deep Autoencoder based
anomaly detection XxApp, we also implemented traditional
SHAP algorithm as shown in Figure 4 and Table 1.

The dataset consists of samples from different user equipment
(UEs) such as cars, train passengers, pedestrians, and waiting
passengers.

Deep Autoncoder model was trained based on RSRP,
RSRQ, RSSINR, Physical Resource Block (PRB) usage, and
throughput features on a dataset of 10000 samples. 25% of
the dataset constitutes the anomaly class. In other words, it is
understood that the model was trained with an unbalanced
dataset. Deep Autoencoder model is designed with a 10
layer symmetrical encoder and decoder with shallow layers.
After different hyperparameter tuning stages, a model with
31297 parameters (Trainable Params: 30,491 and Nontrainable
Params: 806). Learning capacity of the deep autoencoder model
was monitored by calculating the mean squared error (MSE)
between the real input and the reconstructed input. Accordingly,
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Figure 4. Explaining Feature Contributions with SHAP Values

Table I
EXPLAINABILITY WITH MODEL FEATURES

Features

High Reconstruction Error X1
Explanatory X2, X3
Explaining Anomaly X1, X2,X3

the anomaly classification accuracy of the model was obtained
as 93%. Detailed model parameters in the training process of
Deep Autoencoder based Anomaly Detection xApp are given
in Table II.

B. Our Proposed fastSHAP-C Algorithm

KernelSHAP is one of the important SHAP implementations
in the literature. It is also used on anomaly detection which
works on autoencoder models [22]. Unlike traditional SHAP
methods that rely on sampling or approximation techniques,
KernelSHAP offers an exact solution by leveraging a kernel
function to approximate the Shapley values as shown in Algo-
rithm 1. KernelSHAP, while offering accurate and interpretable
explanations for machine learning models, presents several
challenges that must be considered. Especially considering the
xURLLC scenario, kernelSHAP’s computational complexity
can be prohibitive, particularly for large datasets and high-
dimensional feature spaces, leading to scalability issues and
impracticality for real-time applications.

Therefore, the performance trade-off should be carefully
investigated by using novel new designs. A more competent
framework can be designed through the algorithm proposed by
researchers for real-time Shapley value estimation [19]. Unlike
traditional methods that require exponential time complexity
to calculate Shapley values, fastSHAP leverages sampling
techniques and optimization strategies to achieve significant
speedups without sacrificing accuracy. The flow of fastSHAP
is given in Algorithm 2. When the algorithm flow is examined,
two important approaches stand out. First, fastSHAP does not
need to optimize separately for each input to be explained.
Second, it can obtain Shapley values from similar data points.
This allows fastSHAP to keep its computational complexity

at a low level compared to existing SHAP methods.For this
reason, we first ran the fastSHAP algorithm on O-RAN anomaly
detection xApp. However, this had to be able to truly give
accurate feedback to other xApps within the O-RAN. For this,
we added the CS implementation and proposed fastSHAP-C,
shown in Algorithm 3. The addition of a Confidence Score (CS)
and an Error Metric (EM) allows for assessing the reliability
and accuracy of the explanations provided by fastSHAP which
is critical for 6G towards O-RAN. The steps of fastSHAP-C
algorithm are as follows:
1) Input and Initialization:

¢ Model f

e Data sample x

* Background dataset X
* Number of samples M

Initialize:
pi(z) =0 Vi
f(z) = f(2)
flz)=0

2) Sampling: For each sample m from 1 to M: Sample a
subset S C {1,2,...,d} uniformly at random.

3) Marginal Contribution: For each feature ¢: Compute the
marginal contribution of feature ¢ given the subset S

Afi(S) = f(SU{i}) = F(S) ®)
Update the Shapley value:
bila) = ou(w) + S5 ©

4) Calculate Confidence Score (CS) Compute the recon-
structed prediction:

(10)
Calculate the Confidence Score:

5= |r@o—fwa| v
k=1

5) Calculate Error Metric (EM): Compute the error between
the actual and reconstructed predictions:

M = L3 (5w - )

k=1

12)

6) Output: Return the Shapley values ¢;(x), Confidence
Score C'S, and Error Metric EM.

V. EVALUATION AND RESULTS

In this section, we will first interpret the SHAP values to
understand the Deep Autoencoder model that works as anomaly
detection xApp. Then, we will benchmark the performance
results of our novel fastSHAP-C implementation in XAlno-
maly framework, against kernelSHAP and fastSHAP used by
researchers in the literature.



Table 11
DEEP AUTOENCODER MODEL SUMMARY WITH PARAMETERS

Autoencoder Layers Output Shape  Parameters
input_1 (InputLayer) (None, 20) 0
dense (Dense) (None, 100) 2100
batch_normalization (BatchNorm) (None, 100) 400
dense_1 (Dense) (None, 75) 7575
batch_normalization_1 (BatchNorm) (None, 75) 300
dense_2 (Dense) (None, 50) 3800
batch_normalization_2 (BatchNorm) (None, 50) 200
dense_3 (Dense) (None, 25) 1275
batch_normalization_3 (BatchNorm) (None, 25) 100
dense_4 (Dense) (None, 3) 78
dense_5 (Dense) (None, 3) 12
batch_normalization_4 (BatchNorm) (None, 3) 12
dense_6 (Dense) (None, 25) 100
batch_normalization_5 (BatchNorm) (None, 25) 100
dense_7 (Dense) (None, 50) 1300
batch_normalization_6 (BatchNorm) (None, 25) 100
dense_8 (Dense) (None, 75) 3825
batch_normalization_7 (BatchNorm) (None, 75) 300
dense_9 (Dense) (None, 100) 7600
dense_10 (Dense) (None, 20) 2020

Total Params: 31,297
Trainable Params: 30,491
Nontrainable Params: 806

Input: Value function f, ,, learning rate «
Output: fastSHAP explainer ¢rqs(x,y;0)
initialize ¢ rqsi(, y; 6)
while not converged do
sample x ~ p(x),y ~ Unif(y),s ~ p(s)
predict ¢ G ast(T,y; 6)
if normalize then

| set G+ d 7N (fay(1) = fary(0) —179)
end
calculate .
L (fay(s) = foy(0) — sT¢)?
update 0« 6 —aVyL

end
CS = A0 |Fu(s5) = Fon(0) = 579
EM e IS (fuylo0) = 578)
return ¢pq(x,y;0), CS, EM
Algorithm 3: fastSHAP-C Training

A. SHAP Values and Feature Contributions

The problem of calculating SHAP values is generally NP-
hard, which may cause the high convergence time and the
solution to be complex to reach. We implemented kernelSHAP,
which is also our baseline model, to calculate SHAP values
and get insight about feature contributions.

When the results of Figure 4 and Table I are examined,
the most informative feature that can be used to explain the
anomaly occurring in the UE is seen as RF.serving. RSRPV(X7).
RSRP is a metric used to quantify the strength of the radio

signal received by a device from the serving cell’s base station
(eNodeB in LTE or gNodeB in 5G). RSRP is a crucial parameter
that reflects the quality of the radio link between the user
equipment (UE) and the base station. It measures the power
level of the downlink reference signal (RS) from the serving
cell, providing an indication of the signal strength experienced
by the UE. Low RSRP values indicate weak signal strength,
leading to dropped connections, packet loss, and degraded
performance, while erratic fluctuations can disrupt handover
processes and impact QoS metrics such as latency and jitter.
RF.serving. RSRQ and RF.serving.RSSINR (X5 and X3
respectively), which are classified as explanotary features by the
XAI algorithm, also contribute to the formation of anomalies
in a way that is dependent on the RF.serving.RSRP feature.
Variations in RSRQ and RSSINR values can indicate changes
in signal quality, interference levels, and network conditions
experienced by the UE. Anomalies such as low RSRQ values
may lead to degraded signal quality, increased interference, and
connectivity issues, while fluctuations in RSSINR may impact
data throughput, latency, and overall network performance.

B. fastSHAP-C Advantages

The performance trade-off between fastSHAP-C and other
customized SHAP algorithms kernelSHAP, fastSHAP lies in
their computational efficiency and accuracy. When Table III is
examined, exclusion and inclusion metrics are calculated based
on log-odds. Exclusion and inclusion AUC metrics provide
nuanced insights into the performance of XAl framework by
evaluating their discriminatory power across specific subsets
of data. Considering metrics, it is clearly seen that fastSHAP-
C outperformed existing kernelSHAP and fastSHAP models.
Moreover, the results in Table IV have very novel results
in terms of the reliability of 6G xURLLC scenario. When
the runtime results are examined, it is seen that fastSHAP-C
reduces the computational burden of Shapley value estimation,
making it practical for large-scale datasets and complex
ML/DL models while considering CS and €M metrics. Its
computational efficiency allows for on-the-fly explanation
generation, facilitating dynamic adaptation to changing network
conditions and user requirements.

fastSHAP-C’s accuracy, albeit slightly compromised com-
pared to conventional methods, remains sufficient for providing
actionable insights into model behavior, aiding in network
optimization, fault diagnosis, and resource allocation. Under the
same resources results given in Table IV show that, under the
same resources ( Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
(12 cores)), the fastSHAP-C algorithm provides approximately
30% runtime advantage. On the other hand, by reducing CPU
usage by 25%, it brings performance-frindly explainability to
deep learning algorithms that require real-time processing.

C. Benchmarking with Recent Studies

We compared our results with literature studies in two
different ways. First, we took as a basis the lowest and highest
performance servers we had available and used by the authors



Table III
EXCLUSION AND INCLUSION AUCS (log — odds(p) )

Algorithm Exclusion AUC Inclusion AUC
kernelSHAP  10.53 (10.17, 11.03)  4.96 (4.56, 5.47)
fastSHAP 6.89 (6.73,7.65) 5.79 (5.58,5.93)
fastSHAP-C 6.6 (5.73,4.65) 6.79 (5.53,5.96)

Table IV
RUNTIME AND RESOURCE UTILIZATION

Algorithm Runtime (ms) CPU Util. (%) RAM Util. (%)
kernelSHAP 320400 0.88 0.17
fastSHAP 48007 0.67 0.11
fastSHAP-C 33627 0.52 0.8

[5]. Server 1; Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
(12 cores), equipped with 64 GB of RAM, while Server 2;

Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz (97 cores) was.

While the first two rows show the Time, CPU and Memory
results that the authors obtained using SHAP, the last two lines
show the results of the fastSHAP-C algorithm that we ran
on servers with the same resources as we mentioned. When
the performance results in the last two rows of Table V are
examined, the proposed fastSHAP-C algorithm is significantly
faster in execution time compared to the standard SHAP
algorithm on both standard and high-end servers.fastSHAP-C
algorithm demonstrates significantly improved execution speed
compared to the standard SHAP algorithm. This is evident in
both short-term (1-hour) and long-term (6-hour) profiling. For
instance, on Server 2, the execution time for fastSHAP-C is
reduced to approximately 3.90 seconds for 1 hour and 10.05
seconds for 6 hours, compared to 10.52 seconds and 58.28
seconds for SHAP. This improvement is crucial for real-time

applications and scenarios where quick turnaround is essential.

fastSHAP-C uses the CPU more efficiently, leading to lower
mean and standard deviation in CPU usage. For example, on
Server 2 (fastSHAP-C), CPU usage is 3.44% (Mean) for 1
hour, compared to 7.66 % (Mean) for SHAP. This reduction in
CPU usage allows for more concurrent tasks and less strain on
the processing resources, making it suitable for environments
with high computational demand. The performance gains with
fastSHAP-C are more pronounced on high-end servers with
more cores. This presents that fastSHAP-C is optimized to take
full advantage of multi-core architectures, making it highly
scalable for large datasets and complex models that require
parallel processing.

We concluded second performance comparison with the
algorithms we reviewed in the Section II and also the most used
ones in recent studies. We calculated accuracy for kernelSHAP
and fastSHAP. When Figure 5 is examined, it is seen that the
exclusion curve on the left graph shows how the top-1 accuracy
of the model decreases as an increasing percentage of the most
important features (as identified by each method) are excluded
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Figure 5. Exclusion and Inclusion Curves for fop-1 Accuracy

from the model’s input. kernelSHAP (yellow line) maintains
high accuracy when a small percentage of features are excluded
but shows a steady decline as more features are removed.
fastSHAP (red line) shows a similar trend but with a slightly
faster decline in accuracy compared to kernelSHAP, indicating
that it might be less robust when critical features are excluded.
fastSHAP-C (green dashed line) starts off with a slightly
lower accuracy than kernelSHAP and fastSHAP but shows
a comparable decline. However, fastSHAP-C performs better
than fastSHAP in the mid-range of feature exclusion (around
20-70%). The inclusion curve on the right graph illustrates how
the top-1 accuracy improves as an increasing percentage of
the most important features are included in the model’s input.
kerne]lSHAP shows a steady increase in accuracy as more
features are included, but it lags slightly behind fastSHAP and
fastSHAP-C in the initial phase (0-20% inclusion). fastSHAP
improves accuracy more rapidly than kernelSHAP in the early
stages of feature inclusion, indicating a better initial selection of
important features. fastSHAP-C (green dashed line) consistently
outperforms both kernelSHAP and fastSHAP across the entire
range of feature inclusion, achieving the highest accuracy
as the inclusion percentage increases. kernelSHAP maintains
higher accuracy under exclusion but starts slower in inclusion.
fastSHAP shows faster initial improvement in inclusion but
drops quicker in exclusion.

VI. CONCLUSION

5G+/6G and upcoming next-generation wireless networks
prioritize user-centric QoE, especially in critical applications
such as XURLLC use cases. In these scenarios, where the
network must meet stringent requirements for reliability,
real-time processing, latency and understanding the factors
influencing QoE is paramount. Taking these requirements
into consideration; in this study, we proposed novel XAI
method called fastSHAP-C. fastSHAP-C method integrated
into O-RAN in a domain-aware way and demonstrates the
explainability of the deep autoencoder model used in anomaly
detection applications. Besides, it provides significant reduc-
tion in computation time and resource usage which makes



Table V
RESOURCE UTILIZATION COMPARISON OF ALGORITHMS ON DIFFERENT SERVERS
(SHAP vs PROPOSED fastSHAP-C)

Server Time CPU Memory

lh 6 h lh 6h 1h 6h

(s) (s) Mean Std Mean Std Mean Std Mean Std
Server 1 (SHAP) 11.74 62.00 29.8% 8.3% 36.8% 16.7% 1.5% 0.1% 2.6% 0.2%
Server 2 (SHAP) 10.52 58.28 7.66% 3.82% 12.3% 3.8% 1.6% 0.2% 2.4% 0.1%
Server 1 (fastSHAP-C) 6.56 15.87 13.5% 11.3% 25.3% 4.7% 1.4% 0.2% 2.3% 0.1%
Server 2 (fastSHAP-C) 3.90 10.05 3.44% 2.51% 7.8% 2.5% 1.3% 0.1% 2.5% 0.1%

fastSHAP-C particularly suitable for real-time applications
where decisions need to be made quickly. The results show that
using the fastSHAP-C algorithm provides superiority compared

the

state-of-the-art XAI methods used in the literature where

demanding 6G use cases are considered.
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