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Abstract—Molecular communications, particularly via extra-
cellular vesicles (EVs), play a critical role in the tumor mi-
croenvironment by influencing processes such as anti-tumor
signaling and cellular responses like migration. EVs function
as signaling pathways mediators, affecting the target cells and
initiating feedback loops that establish a bilateral communication
system. Evaluating the distance between the two cells remains
challenging due to the complexity of these interactions, especially
in closed-loop systems. Overcoming this challenge, we train a
neural network (NN) using features extracted from raw data,
including the numerical differentiation of received molecules
and the amplitude and location of resulting peaks. Our major
contribution is to provide a plausible explanation of the NN
operation. By applying explainable artificial intelligence (XAI)
frameworks, such as Shapley values and manual permutation
importance, we provide deeper insights and proof of correct-
ness for the NN-based distance estimator. While existing work
often relies on local interpretable model-agnostic explanations
(LIME) and individual conditional expectation (ICE) for model
interpretability, these methods have limitations in capturing
the complex feature interactions and nonlinearities inherent in
biological systems like molecular communication. Our findings
underline the potential of XAI in making complex molecular
interactions more transparent, providing critical understanding
of the tumor microenvironment, and assisting in the development
of more targeted cancer treatments.

Index Terms—Molecular communication, cell-two-cell commu-
nications, machine learning, neural networks, explainable Al

I. INTRODUCTION

Molecular communication (MC) is an emerging interdisci-
plinary field focusing on the exchange of biochemical signals
at the nanoscale, crucial for understanding cellular interac-
tions, particularly in the context of precision medicine for
cancer treatment [1]. In the context of cancer cells, one of
the primary channels for such communication is through EVs.
EVs, including exosomes and microvesicles, are lipid-bound
particles released by cells to transmit molecular information
such as proteins, lipids, and ribonucleic acid (RNA) between
cells. This process influences critical functions in the tumor
microenvironment, including cancer initiation, progression,
immune response modulation, inflammation, and apoptosis.

The transmission of molecular signals via EVs is often
modeled as a communication process between a transmitter
(donor cell) and a receiver (target cell). In the tumor microen-
vironment, EVs serve as external stimuli that can activate or
inhibit receptor pathways in target cells, leading to either am-

plification or attenuation of further signaling responses. These
interactions frequently operate in a bilateral feedback loop,
where the EV-mediated signal induces further EV release,
reinforcing the communication process. The understanding of
these dynamic interactions, particularly the frequency response
of EV internalization and release, is essential for uncovering
how malignant transformations and cellular responses are
orchestrated in cancer.

While traditional models focus on the physical and bio-
chemical aspects of EV-mediated communication, there is
a growing need to incorporate advanced machine learning
techniques to capture the intricate, non-linear relationships
between cellular variables. Al, particularly NNs [5], has shown
promise in modeling complex biological systems due to its
ability to learn patterns and relationships from data without
explicit programming [6]. NNs can model the nonlinear depen-
dencies and interactions inherent in biological systems, making
them suitable for studying MC mechanisms in cancer.

However, a significant limitation of traditional Al models is
their lack of interpretability. The “black-box” nature of NNs
means that while they can make accurate predictions, they
do not provide insights into the underlying mechanisms or
rationale behind those predictions. This lack of transparency
is a critical barrier in fields like cancer research, where
understanding findings’ biological significance and implica-
tions is essential. Explainable Artificial Intelligence (XAI)
[7-9] has emerged as a solution to this problem, aiming to
make Al models more transparent and their predictions more
understandable to humans. XAI techniques enable researchers
to interpret and trust AI models by explaining their decisions.
In the context of MC and cancer research, XAI can help
uncover the mechanisms by which EVs influence cellular
behavior and interactions, thereby providing valuable insights
that can inform therapeutic strategies.

In this study, we introduce XAI techniques to enhance
the interpretability of Al-based MC models. We focus on
estimating the distance between immune cells and cancer cells
based on the number of exchanged EVs. Distance knowledge
conveys a significant role in later localizing and actuating over
the tumor cell. Specifically, we develop a NN to model the cell-
to-cell communication link between T-cells and tumor cells.
Cancer cells naturally release EVs that reach immune cells,
and upon detection, T-cells respond by releasing EVs back



TABLE I: Previous XAI research on molecular communication

XAI Studies

Neural Network

Explainability of NN-based Detectors in MIMO Feedforward
Molecular Channels [2]

Explainability of NNs for Symbol Detection in Feedforward
Molecular Communication Channels [3]

Explainable Asymmetric Auto-Encoder for End-to-End Autoencoder
Learning of IoBNT Communications [4]

Our Study Feedforward

into the medium. This exchange creates a feedback loop, with
the number of released and received EVs depending on the
distance between the cells.

Building upon previous research that models this closed-
loop vesicle exchange in [1], we address the challenge of
intertwined dependencies in the analytical expressions gov-
erning EV exchange, which involve complex terms related to
the spatial positions of cells within the extracellular matrix.
These dependencies make it difficult to derive closed-form
expressions for the distance between cells. To overcome this,
we employ a NN that learns the relationship between the
number of induced released vesicles by the T-cell and the
distance to the tumor cell.

Furthermore, by applying XAl techniques to our NN model,
we enhance its interpretability, enabling us to understand how
different input features contribute to the output predictions.
This not only increases the transparency of the model but also
provides valuable insights into the biological processes under-
lying MC in the tumor microenvironment. Such insights are
crucial for cancer research, as they can inform the development
of novel therapeutic interventions that target specific aspects of
EV-mediated communication. The core outcomes of our study
are summarized as new contributions (“C”) and new findings
(“F”) as follows:

C1. We present a NN model that accurately estimates the
distance between immune cells and cancer cells based
on vesicle exchange data. This model addresses the chal-
lenges posed by the complex dependencies in analytical
expressions, offering a practical solution for studying
cell-to-cell communication.

C2. We integrate XAI methods into our NN model, enhancing
its interpretability. This allows researchers to understand
the model’s decision-making process, bridging the gap
between Al predictions and biological understanding.

F1. Our NN model successfully estimates the distance be-
tween the T-cell and tumor cell within the range of
2 — 10 um, achieving a relative error of 3.3 %.

F2. Our XAI method indicates that the peak’s time coordinate
is the most important feature in the model, as permuting
its values leads to a substantial increase in prediction error
while shuffling the peak amplitude has a negligible effect.

Year Focus Data type  XAI Method
2023  Symbol Detection Synthetic LIME, ICE
2023  Symbol Detection Synthetic LIME, ICE
2024  Symbol Detection Synthetic Linear Modelling
2024  Distance Estimation  Synthetic Permutation Importance,
Shapley
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Fig. 1: Diagram for estimating the distance among cells using
a feedforward NN.



II. SYSTEM MODEL
A. Background

Very few recent studies have applied machine learning
models, specifically NNs, to improve symbol detection in
MC systems, addressing challenges in evaluating end-to-end
channel models and reducing bit error rates [2, 3]; as can
be seen in Table I. Recognizing the lack of transparency
in these models, XAl methods such as local interpretable
model-agnostic explanations (LIME) [10], partial dependence
plots (PDP) [11], and ICE [12] plots have been employed
to interpret NN-based symbol detectors in MC channels, re-
vealing underlying mechanisms like threshold detection based
on molecule counts. However, these studies focus on symbol
detection, and there is a gap in applying XAI techniques to
distance estimation in MC systems, particularly within the
context of cancer research—a gap that our work aims to
address.

B. Data Collection

The dataset to train and test the NN module is created
with the code provided by the authors in [1], which models
the reaction-diffusion propagation of EVs in the extracellular
medium. The dataset comprises the number of released vesi-
cles with time and distance. This number of EVs is evaluated
as the superposition of the natural release mechanism (see
[1, Eq. (39)]) and the induced number upon the reception of
vesicles from the tumor cell. As illustrated in Figure 1 a),
the number of released vesicles by the immune cell decreases
linearly with time but also with distance. This behavior makes
the peak concentration of EVs a feature to explore when
estimating the distance between the immune and the tumor
cells.!

C. NN Estimator

Mathematical diffusion models are used to predict how
the concentration of vesicles changes as they move away
from the donor cell. However, finding exact solutions to these
models is often challenging because they involve complex
terms representing the precise locations of both the vesicle-
releasing (donor) cell and the receiving (target) cell within the
extracellular matrix. The concentration of vesicles at a certain
time and distance depends on several factors, including the rate
at which vesicles are released, the diffusion coefficient (which
indicates how quickly vesicles spread through the medium),
and the specific position of the donor cell. Estimating the
distance between cells by solving these models is particu-
larly difficult due to the complexity of working backward
through the equations—known as an inverse problem—and the
inherently random nature of vesicle diffusion and reception
processes. NNs offer a powerful alternative by learning the
complex relationship between vesicle exchange patterns and
intercellular distances from data.

'We provide open access to the dataset code and the NN estima-
tor in https://github.com/tkn-tub/NN_molecular_communications/tree/main/
Section_III_A_distance_estimator

TABLE II: NN parameters for the distance estimation

Parameter Value

Number of Layers 1
Total of nodes 2
Activation function  Sigmoid
Loss tolerance 1x107°

We implement a simple architecture for estimating the
distance with a feature extraction block and a feedforward NN;
see its parameters in Table II. Following the developments in
[13], the feature extraction block evaluates the slope of the
number of released vesicles with time (see the subfigure in
Figure 1 a)) and outputs the slope minimum (Feature 1) and
its location ,i.e, time coordinate (Feature 2), see Figure 1 b).
The NN, comprised of a single hidden layer and 2 nodes, is
trained and tested with these two inputs only, which renders
a low-complex model for the distance estimation. As depicted
in Figure 1 c), this architecture accurately estimates the dis-
tance between the immune and cancer cells. This simple NN
accurately estimate intercellular distances within the 2—10 pm
range, achieving a relative error of 3 %.

III. PROPOSED XAI-ENHANCED BILATERAL MOLECULAR
COMMUNICATION

As presented in the previous section, neural can model
the nonlinear dependencies without explicit analytical formu-
lations, making them suitable for capturing the essence of
bilateral MC. However, these models often function as “black
boxes,” providing accurate predictions without revealing the
underlying decision-making processes. By incorporating XAl
techniques, we can dissect the NN’s internal workings to
interpret how different input features influence the output
predictions. With proposed XAI methods, we can quantify the
contribution of each input feature z; to the output y, measuring
a relevancy score as [14]:

Jy
R; = I"Txi (D

A. Manual Permutation Importance

In the context of our NN model estimating the distance
between immune cells and cancer cells based on the number
of exchanged vesicles, understanding the contribution of each
input feature to the model’s predictions is crucial. This is
where the Manual Permutation Importance method becomes
invaluable. It quantifies the importance of each feature by mea-
suring the decrease in model performance when the feature’s
values are randomly shuffled, thereby breaking the relationship
between the feature and the true outcome. Let us consider a
trained NN model f(X) that predicts the distance between
cells based on input features X = [X1, Xo,...,X,], where p
is the total number of features. The true target variable is vy,
representing the actual distance between immune and cancer
cells. First, we compute the original performance of the model



on a validation dataset, using a suitable error metric such as
the mean squared error (MSE):
N
1

& 2 = F(X))° )

Jj=1

Perfbaseline =

where N is the number of samples, and X; is the feature
vector for sample j. Next, for each feature X;, we create a
permuted version X’ by randomly shuffling its values:

XP™ = Permute(X;). 3)

Then construct a new dataset XP“™ by replacing X; with
Xperm:
3

xpem — (Xl,Xg,...,Xferm,...,Xp) G))
We evaluate the model’s performance on the permuted dataset:
1 & 2
Perfpermuted = N Z (yj - f(Xgerm)) . 5
j=1

The importance of feature X; is quantified as the difference
in performance before and after permutation:

I(Xz) = Perfpermuted — Perfpaseline- (6)

A larger value of I(X;) indicates a greater impact on
the model’s performance, signifying that feature X; is more
important for accurate predictions. By applying Manual Per-
mutation Importance, we can rank the input features based
on their influence on the model’s predictive accuracy. This
not only enhances the interpretability of the NN but also
provides valuable biological insights. For instance, identify-
ing that certain features, such as the amplitude of vesicle
concentration peaks, have a higher importance could suggest
their critical role in the communication between cells. Un-
derstanding feature importance helps validate the model and
ensures that it aligns with known biological phenomena. It
also aids in uncovering new patterns or relationships that
may warrant further investigation. By integrating this XAI
method, we bridge the gap between predictive performance
and model transparency, which is essential for the acceptance
and application of Al models in cancer research.

B. Explainability through Shapley Values

The Shapley Value for a feature quantifies its average
marginal contribution to the prediction over all possible
subsets of features. Let’s f(x) be the model’s prediction
function, x = [z1,x2,...,2p] be the input feature vector
and N = {1,2,...,p} be the set of all feature indices. The
Shapley Value ¢; for feature x; is defined as [15]:

b= Y lSie-Isl- !

|
SCN\{i} P

[fsugir (xsugiy) — fs(xs)]
@)

where S is any subset of the feature indices excluding i,
|S| is the number of elements in S, fs(xg) is the model’s
prediction using features in subset S (other features are set to a
baseline value). The term fg ;1 (Xsu(i}) — fs(Xs) represents

the marginal contribution of feature x; when added to subset
S. The weights W ensure that each subset’s con-
tribution is weighted fairly. Calculating exact Shapley Values
requires evaluating all 2P~! subsets, which is computation-
ally infeasible for large p. To overcome this, approximation
methods such as sampling or algorithms like SHAP (SHapley
Additive exPlanations) [15] are used to efficiently estimate
Shapley Values. By utilizing tools like SHAP, we can compute
approximate Shapley Values for our NN model:

1) Compute Baseline Prediction: Establish a baseline pre-
diction E[f(x)] using baseline feature values.

2) Estimate Shapley Values: Calculate ¢; for each feature
x; using the model and the data.

3) Interpret Results: Analyze the Shapley Values to under-
stand each feature’s contribution and interactions.

The model’s prediction can then be expressed as:
P
fx) = E[fx)]+ ) b, ®)
i=1

where E[f(x)] is the expected prediction at baseline, and
>-F | ¢; represents the sum of the contributions from all
features. Applying Shapley Values in our problem allows us to,
i) Quantify Feature Contributions: Determine how much each
feature contributes to the prediction of intercellular distance, ii)
Understand Feature Interactions: Reveal interactions between
features that may correspond to biological phenomena, iii)
Enhance Model Interpretability: Provide transparent and fair
explanations for the model’s predictions.

IV. EXPERIMENT EVALUATIONS

In this section, we present a comprehensive analysis of
our model’s interpretability using several explainability tech-
niques, starting with baseline models such as LIME and
ICE and then compared with our implemented Manual Per-
mutation Importance and Shapley Value estimation methods.
Starting with LIME, model works by locally approximating
the black-box model with a simpler linear model. It focuses
on individual predictions and highlights feature importance in
those specific instances. In Figure 2; all three observations,
Feature 2 (peak time-coordinate) dominates the explanation,
contributing significantly to the prediction. Feature 1 (peak’s
height) shows almost no impact. This suggests that LIME’s
focus on local perturbations might mislead the interpretation,
as it may amplify or underplay the importance of a feature
without generalizing across the entire dataset. Vesicle dy-
namics involve interactions that vary greatly depending on
cell proximity and environmental factors. Therefore, a local
explanation, such as LIME, might miss out on the holistic
importance of a feature across all instances. Since LIME
simplifies the model locally, it fails to provide insights into the
global feature importance that is critical for accurate biological
interpretation.

ICE plots visualize how the model’s prediction changes
when a particular feature value is varied while other features
remain constant. ICE result for Feature 1 demonstrates almost



LIME Explanation for Observation 1
Blackbox Model Prediction: 2.1132e-06
Simple Model Prediction: 6.0327e-06

LIME Explanation for Observation 2
Blackbox Model Prediction: 2.1479e-06
Simple Model Prediction: 6.0371e-06

LIME Explanation for Observation 3
Blackbox Model Prediction: 2.2928e-06
Simple Model Prediction: 6.0524e-06
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linear changes in predicted response as Feature 1 varies. This
suggests that Feature 1 contributes very little to the overall
prediction, with most predictions staying close to the same
response for different values of Feature 1. Feature 2’s ICE plot
shows a clear non-linear increase in predicted response as the
feature value increases. This indicates that Feature 2 plays a
significant role in the prediction, with a curved relationship
typical of biological processes.

However, ICE still does not account for interactions between
Feature 1 and Feature 2. The isolated analysis could miss im-
portant joint effects in your model, which are often key in MC
dynamics. On the contrary, manual permutation importance
highlight these interactions. As Figure 3 displays, Feature 2

shows an increase in loss of approximately 6 x 10712, which
is significantly higher than the loss increase from Feature 1
(< 1 x 107'2). This indicates that Feature 2 is the most
important feature in the model, as permuting its values leads
to a substantial increase in prediction error, while shuffling
Feature 1 has a negligible effect. Besides, Shapley values
provide a numerical breakdown of how much each feature
contributes to the model’s output. With a mean Shapley
value of 1.5 x 1076 for Feature 2 compared to 0.4 x 1076
for Feature 1, Shapley values provide a deeper understand-
ing of how features contribute to predictions, far surpassing
LIME’s local approximations. All results were verified with a
p — value < 0.001, indicating strong statistical confidence in



the dominance of Feature 2 in our model’s decision-making
process.

The various explainability methods highlight the “’smart”
use of the features by the NN. Coincidentally, in free diffusion,
there is a direct relation between traveling time and the square
of the distance as tpeak X dg, which is independent of the
peak’s amplitude; see [16, below Eq. (2.8)]. In a way, the NN
architecture filters the entry related to the peak and evaluates
a direct relation between the peak time and distance.

Besides, we concluded that vesicle dynamics involve in-
teractions that vary greatly depending on cell proximity and
environmental factors. Therefore, a local explanation, such
as LIME, might miss out on the holistic importance of a
feature across all instances. Since LIME simplifies the model
locally, it fails to provide insights into the importance of global
features that are critical for accurate biological interpretation.
Moreover, molecular data often has non-linear relationships,
and LIME’s linear approximation could misrepresent these
interactions. For instance, if a non-linear interaction between
two features influences vesicle exchange, LIME would not
capture this dependency properly. Also in biological systems
like MC, the interaction between features (e.g., environmental
conditions and vesicle production rates) is often more im-
portant than individual feature effects. ICE overlooks this,
providing only partial insights into the overall model behavior.
These results highlight the global importance of Feature 2,
which was not fully captured by LIME or ICE due to their
focus on local or isolated feature analysis. Clear numerical
distinction in both Permutation Importance (loss increase)
and Shapley Values (contribution) provides a mathematically
precise understanding of the relative importance of Feature 2
and Feature 1. LIME and ICE lack this distinction because
they offer localized or single-feature insights without capturing
feature interactions.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this study, we developed a NN model to estimate the
distance between immune cells and cancer cells based on the
number of EVs. By integrating XAI techniques—specifically
Shapley Values and Manual Permutation Importance—we en-
hanced the interpretability of our model, providing valuable
insights into the underlying biological processes of MC within
the tumor microenvironment. Our main finding is that NN
model uses the peak’s arrival time to estimate the distance
between the immune and tumor cells, disregarding the peak
value. This result is in direct relation to the expected perfor-
mance in free-diffusion MC channels.

Future work could involve exploring advanced NN archi-
tectures to capture more intricate patterns in vesicle exchange
data. Implementing deeper networks with additional layers or
utilizing architectures such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) may improve
the model’s ability to learn spatio-temporal dependencies
inherent in biological processes. However, increasing model
complexity necessitates robust XAl methods to maintain inter-
pretability. Also, focus on integrating experimental data from

in vitro and in vivo studies to refine the model parameters
and validate its accuracy in real-world scenarios. Additionally,
applying the model to clinical datasets could help assess its
utility in predicting patient-specific tumor-immune dynamics,
potentially guiding personalized treatment strategies and im-
proving clinical outcomes.
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