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Abstract—Interference management is becoming ever more
complicated in multi-access networks such as Wi-Fi. Here, ultra-
dense access point (AP) deployments add to the problem. With
the introduction of beamforming, this can be in part reduced,
however, only in combination with optimized nulling the operation
of overlapping basic service set (OBSS) can be improved. In this
paper, we present a machine learning (ML)-based solution for
interference optimization for Wi-Fi 8. In particular, we present a
multi-agent reinforcement learning (MARL) framework that uses
a distributed approach to coordinate beamforming and nulling at
nearby APs. We follow a two-step procedure: first, APs and nodes
are clustered in order to reduce overhead due to exchange of
channel state information; and secondly, the MARL framework
configures beams for the next period. Simulation results confirm
the advantages of our MARL approach.

Index Terms—=802.11bn, Overlapping basic service set, Co-
ordinated beamforming, Interference optimization, Multi-agent
reinforcement learning

I. INTRODUCTION

The continuous growth of high-bandwidth and low-latency
applications such as 4K video streaming, online gaming,
and augmented reality and virtual reality (AR/VR) services
is placing huge demands on Wi-Fi networks [1]. As user
density and traffic volume increase, ensuring reliable and high-
throughput Wi-Fi communication becomes a critical challenge,
especially in indoor and urban scenarios. To address this,
access point (AP) densification has emerged as a common
deployment strategy, where multiple APs are installed within
close proximity to improve signal coverage and throughput [2].

However, while the densification of APs can in general
improve the signal for the users, the densification can also
lead to a higher level of inter-AP interference, especially
when multiple APs operate on the same channel [3]. In dense
wireless local area network (WLAN) deployments, co-channel
interference (CCI) from overlapping basic service set (OBSS)
significantly reduces network efficiency and degrades user
quality of service (QoS). This challenge is further increased by
the limited availability of non-overlapping frequency channels
in Wi-Fi bands, making it practically impossible to assign
orthogonal channels to each AP in ultra-dense deployments [4].
As a result, multiple APs must operate on the same channel,
leading to high CCI, which degrades network performance [5].

To improve spectrum efficiency and reduce interference,
Wi-Fi 8 introduces the concept of coordinated beamforming
(Co-BF) among multiple AP [6]. Specifically, Co-BF builds
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(a) Beamforming and side lobes

(b) Beamforming with null steering

Figure 1. Example of Co-BF: APs transmit simultaneously using (a)
beamforming (to improve signal strength at receiver) and (b) null steering (to
also reduce interference).

upon the spatial nulling mechanism used in multi-user multiple-
input and multiple-output (MU-MIMO) in IEEE 802.11ac and
extends it to multi-AP coordination. In this approach, each
AP directs a beam toward its intended station while using
the remaining spatial degrees of freedoms (DoFs) to suppress
interference in the direction of other nearby non-associated
stations to reduce interference on them.

However, Co-BF introduces its own set of challenges. An
AP with N, antennas can do one beam and N;_; nulls per
transmission slot. In practical scenarios, when the AP performs
beamforming, there are also side lobes that interfere with
nearby stations. However, the number of stations affected by
these side-lobes interference is often higher than the number of
available nulls at AP (cf. Figure 1a), which requires intelligent
selection of the most disruptive directions to suppress those
affected by these side lobes. For instance, an AP with four
antennas can only select at most three stations to null (cf.
Figure 1b).

Although nulling interference directions can improve signal
quality for intended receivers, excessive nulling can also result
in a significant drop in the overall data rate. This is because
each null direction consumes spatial DoF, reducing the AP’s
ability to direct strong signals toward its intended stations.
Frequent channel state information (CSI) updates are required,
but this adds further overhead to network performance. Such
as the artificial intelligence and machine learning (AIML)
topic interest group (TIG) aims to enhance system goodput by
reducing CSI feedback overhead and compression complexity
through intelligent machine learning (ML) techniques without
degrading performance [7].

Moreover, if there are large-scale scenarios where the number
of APs and stations exceeds a manageable threshold, then
handling the interference is even more complex if managed with



a single reinforcement learning (RL) agent. Specifically, when
the number of APs increases from a small-scale deployment
to a realistic large-scale deployment (e.g., twenty to hundred
APs with numerous associated stations), the computational
overhead becomes prohibitive and it will be hard to handle the
huge number of APs altogether [8]. Therefore, scalable and
adaptive interference management mechanisms are urgently
needed, particularly as network sizes continue to grow.

In this paper, we present a multi-agent reinforcement learning
(MARL) framework with intelligent agents can provide a
scalable and effective solution. By grouping AP based on the
number of stations associated with each AP, the interference
from non-associated APs, and the number of APs. These groups
of APs will be managed by an independent single RL agent, and
the system can better balance beamforming optimization and
interference mitigation, ensuring higher network performance
in ultra-dense environments. In our MARL framework, where
each agent is responsible for a group of APs. This design
addresses the scalability issue faced by single-agent approaches
when managing large numbers of APs and stations.

Our key contributions can be summarized as follows:

o We present a centralized MARL framework for solving the
cooperative beamforming problem plus nulling problem.

« We introduce a grouping algorithm based on the number
of APs, station density, and real-time interference levels.

« We improve scalability in ultra-dense networks by lim-
iting CSI exchange, channel sounding, and coordination
signaling within local groups of APs.

II. RELATED WORK

To address inter-AP interference and channel reuse chal-
lenges, different solutions are explored, such as MU-MIMO,
introduced in IEEE 802.11ac and enhanced in 802.11ax [9].
MU-MIMO improves downlink throughput but its performance
heavily depends on accurate CSI and the spatial separation of
users, which is difficult to guarantee in ultra-dense environ-
ments [10]. Another solution is to use dynamic transmit power
control (TPC), where APs adjust their transmission power
levels to minimize interference while maintaining sufficient
signal strength for their associated stations [11]. Although
TPC reduces inter-AP interference to some extent, it can also
reduce coverage and create dead zones if not carefully managed
[12]. Without explicitly leveraging CSI and spatial interference
patterns, these methods may fail to mitigate interference
effectively in highly congested and spatially diverse Wi-Fi
environments.

With the rise of artificial intelligence (Al), researchers are
now using Al to improve Wi-Fi performance. For example, the
performance challenges of channel access in OBSS environ-
ments under the upcoming IEEE 802.11bn standard are tackled
by using MARL [13]. Several other studies in the field of
802.11 have investigated the application of MARL combined
with knowledge transfer to enhance global awareness in both
centralized and decentralized training setups. For instance,
a distributed deep reinforcement learning (DRL) framework

where device-to-device links adjust their channel selection and
transmission power based on their own local data and outdated
information from others is introduced in [14].

In addition, cooperative beamforming has been explored as
part of multi-access point coordination (MAPC) in Wi-Fi 8.
Some prior work in [15] applied multi-armed bandit (MAB)
for cooperative spatial reuse scheduling, while [8] proposed
a RL-based Co-BF framework combining beam steering and
null steering. Both studies demonstrate the potential of ML to
enhance interference management in dense Wi-Fi deployments,
motivating our present MARL-based approach.

III. SYSTEM MODEL

We consider an ultra-dense Wi-Fi network deployment where
multiple APs equipped with a uniform linear array are placed in
a fixed position and APs operate on the same channel using the
full available spectrum, which can lead to increased interference
if not properly managed. The stations are following random
waypoint (RWP), a human walking speed of 1.4 m/s, commonly
found in residential, office, or enterprise environments.

Each AP serves its associated stations using beamforming,
with zero-forcing (ZF) as the primary technique. To enable
interference-aware beamforming and null steering, the central
controller acquires CSI by periodic channel sounding every
100 ms between each AP and relevant stations, including both
associated and nearby non-associated stations. The received
signal y at a station is modeled by the linear system

y=H z+n, M

where H is the channel matrix representing the wireless channel
between the AP and the station, x is the transmitted signal
vector, and n is the additive white Gaussian noise. Each AP
computes its beamforming weight vector w using the ZF
method as

w = (HH") ' He, )

where H is the combined channel matrix consisting of
the channel vectors of the target station and the selected
interference, H¥ is its Hermitian transpose, and e is a selection
vector that prioritizes the desired signal direction while steering
nulls at others. H is defined as

H= [h17h27"'ahN{L]a (3)

where each h; is an Ny x 1 channel vector representing the
channel between the AP and a selected station. In conventional
beamforming systems, achieving perfect nulling requires that
the number of antennas N; must be greater than or equal
to the number of users NV, i.e., N; > N,. However, in
practical ultra-dense networks, the number of potential users
often exceeds the available spatial DoF. To address this,
our framework intelligently selects only the most disruptive
directions N, for nulling based on real-time interference
observations, maintains beamforming performance even when
N, > N,. After calculating the w, each AP serves one station
per transmission slot and uses the remaining spatial DoF to
nullify and reduce interference on other non-associated stations.



Table T
WIRELESS COMMUNICATION PARAMETERS

Parameter Value
Frequency band 5GHz
Channel bandwidth 160 MHz
Time slot 50 ms
AP to AP distance d4p 20m

AP to station distance rggs 10m
Transmit power P;, 20dBm

This study also considers path loss as the power density
decreases as it travels through space. We augment the standard
free space path loss (FSPL) formulation with log-normal
shadowing, such as

pp — JPLs(d) + X, if d <10
| PLi(10) + 10 3.5 - logy (%) + Xy, if d > 10"

“)

where X, represents the Gaussian noise term, which follows

a log-normal distribution X, ~ A/(0, 0?). Including the noise

term into the path loss equation helps simulate real-world signal

fluctuations, making the predicted received signal strength

(RSS) values more realistic and stable for the learning process.

The resulting signal-to-interference-plus-noise ratio (SINR)
of station k is

-P[x.,i : |th,iWi|2
X jzi P I w52 4 Paoise

where Py; is the associated AP; transmit power, hy ; €
CNex1 is the channel vector from associated AP; to station k,
and the Hermitian transpose h,ﬁ{ , converts the channel vector
into a row vector, allowing for the inner product with the
beamforming vector w. Similarly, the interference power of
other APs is given by P, ;, and hy, ; is the channel vector
from interfering AP; to station k. Summing over all j # ¢
captures the total inter-AP interference. The total noise power
with Thermal noise and noise figure is calculated as

SINRj, = (5)

Proise = =174+ 10 - IOglo(B) + 7. (6)

where B is the channel bandwidth. The network parameters
used in this study are summarized in Table L.

IV. ACCESS POINT GROUPING

In dense Wi-Fi deployments, optimizing spatial reuse and
minimizing interference is critical for maintaining network
performance. Grouping APs plays a key role in enabling
coordinated interference management. To accurately capture
the interference relationship between APs, we group the APs
based on the interference level, the most M APs in the group,
and the number of stations in the group of APs.

First, we choose a master AP and start calculating the
interference power from other nearest APs. Secondly, if stations
receive interference power greater than a threshold (i.e., higher
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Figure 2. APs grouping and MARL central controller

than —67 dBm [16]) from a neighboring AP are considered
significant interferers and are considered in this group. Thirdly,
if there are more APs whose interference power is higher than
-67 dBm, we set the maximum group of APs to be 7.! Fourthly,
we check if there are more than 100 stations in the group of
APs, it will be considered as a separate group. This design
allows the grouping process to consider not only load but also
real interference coupling between APs.

To ensure robust grouping, the interference metric is averaged
over time to avoid decisions based on short-term fluctuations,
which results in more stable and reliable group formations.
This is particularly beneficial in enterprise networks such as
airports and urban areas, where AP deployments are dense,
and interference sources change frequently. In our system,
interference is handled independently within each group of
APs by a central controller as shown in Figure 2.

Grouping before deploying the MARL significantly improves
the efficiency of multi-agent learning. It reduces the size of the
knowledge for each agent, allowing them to focus only on the
relevant local environment. As a result, agents can learn more
stable interference patterns and achieve better convergence.
Furthermore, grouping prevents redundant use of RL agents.
Random grouping could lead to unnecessary agents being
deployed, which can increase complexity and overhead.

V. MULTI-AGENT REINFORCEMENT LEARNING

To optimize interference mitigation in dense Wi-Fi deploy-
ments, we adopt a MARL framework based on the multi-
agent deep deterministic policy gradient (MADDPG) algorithm,
enabling scalable and adaptive interference control through
coordinated beamforming and null steering. This choice is
motivated by the need for decentralized decision-making across
multiple groups, while maintaining coordinated learning via a
centralized critic. This helps each agent for the group of APs
to learn better decisions while still working together with each

1n some first simulations, we identified that a max. number of AP per
cluster should not exceed 7 in order to maintain reasonable performance.



other. The centralized critic sees all the information during
training, so learning is more stable.

The MADDPG algorithm combines the advantages of deep
Q-network (DQN) and deterministic policy gradient (DPG),
making it effective for continuous control problems [17]. First,
the number of agents A are decided based on the number of
groups of APs, then the replay buffer D = 10° , the learning
rate «, the discount factor v = 0.99, and the target update rate
7 =102 are initialized for MARL.

State: In the MADDPG framework, each agent has access
only to local observations of the group of APs. All APs collect
CSI from their stations through periodic channel sounding
using Equation (1). The local observation for a single group
of APs for an agent is structured as

Sa = [(d)? PL)Sk,APoa (@a PL)Sl...Sﬂ,,Aply
(67 PL)sl‘..sn,AF'z» sy (97 «P-L)sl...S,L,APM,l]7

where (¢, PL)s, ap, are the beam angle ¢ and path loss PL
of the associated station k& of AP, which is served at time slot
t, (©,PL)s, s, ap, are the null angles © and path losses
PL of all non-assoiciated stations s; — s,, of APy, AP», till
APy;_1 with respect to APy. M represents the number of
APs in the group.

Action: After the observation collection from the network
environment, each agent responsible for multiple APs in the
group predicts an action A, corresponding to the number of
available nulling DoFs for each AP in the group is defined as

Ay =[01,0q,.. (3)

where ©1,...,0n,—1)xn denote the specific null angles
predicted by the agent for interference suppression for all the
APs in a single group. N,_; represents the number of spatial
DoF available for nulling, which means the total number of

(N

SO —1)x M)

null directions the agent can predict per time slot is Ny x M.

Each action Aj,... A, are executed in each corresponding
group. The direction of the beam is not predicted by the agent
since each AP already knows its intended stations.

Reward: Designing the reward function is crucial for
achieving satisfactory performance in DRL solutions. After
passing the actions to each group, each AP performs precoding
to beam towards its station and null the other directions. The
reward function is designed to encourage the maximization of
the network throughput while penalizing decisions that cause
severe interference. Specifically, the reward is based on the
sum-rate of all associated stations, and the total reward R,
function from the group during the allocated time slot T, is

Ra = Tuo Y _ B -log,(1 + SINR). ©)
k

This way the agent will learn to avoid to predict actions
for an AP to null the most disruptive stations directions.
After executing the actions and calculating the reward, all
the information, i.e., local states Sy, actions Ay, and rewards

R of each agent are stored in a buffer.
Global State: To ensure cooperation and competition

Table II
MACHINE LEARNING PARAMETERS

Parameter Value

State and Action space size Dep. on clusters

Actor / critic hidden layers  [400, 300]
Actor, Critic learning rate 10-5, 10~
Optimizer Adam
Batch size 128

between agents in our MARL framework, we adopt centralized
training with decentralized execution, as implemented in
the MARL algorithm [18]. During training, the centralized
critic has access to all the states S and actions A4, allowing
it collaboration between agents. This enables the critic to
accurately assess the joint impact of the actions on the
environment. A single critic can help stabilize learning by
providing a consistent evaluation signal, preventing individual
agent biases from negatively impacting overall performance.
During execution, each agent sees only its local observation
S, and its own policy 7(.A|Sa ), ensuring that the system can
scale and operate under decentralized control without requiring
full global knowledge.

The parameters for the actor-critic networks in our MARL
framework are summarized in Table II. rectified linear unit
(ReLU) activation functions are used in the hidden layers to
enable efficient backpropagation and avoid vanishing gradients.
The loss function used to train the critic is mean square error
(MSE), as commonly applied in value-based RL. We adopt the
Ornstein-Uhlenbeck (OU) noise process, which helps maintain
exploration diversity and stabilize convergence in continuous
control tasks, as originally suggested in [17]. Grouping the
APs before assigning agents reduces the dimensionality of
each agent’s observation and action space, allowing for faster
learning and better scalability, and can even be deployed in a
large Wi-Fi network.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed MARL
framework for interference-aware beamforming in dense Wi-
Fi deployments against single-agent reinforcement learning
(SARL) and an oracle upper bound. The results demonstrate
the scalability and effectiveness of our method, particularly in
scenarios with high user density interference.

A. Single-Agent vs. Multi-Agent Reinforcement Learning

To evaluate the effectiveness of our proposed MARL frame-
work, we compare it with the state-of-the-art SARL baseline
for coordinated beamforming and interference suppression. The
results are shown in Figure 3, which plots the aggregate OBSS
throughput per time slot as a function of training episodes.
This experiment was performed in a large-scale simulation
environment consisting of two groups of APs. Each group
contains 7 APs, and each AP is associated with 10 stations,
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Figure 3. Single-agent vs. multi-agent reinforcement learning

resulting in a total of 14 APs and 140 stations. Every AP is
equipped with 6 antennas, enabling one beamforming direction
for its own station and up to five spatial nulls to suppress
interference toward other stations.

The green curve represents the performance of the MARL
approach, while the dark red curve corresponds to the SARL
baseline. As shown, MARL not only achieves significantly
higher aggregate throughput but also converges more smoothly
over training. In contrast, SARL exhibits inconsistent learning
behavior, with sharp drops around episodes 4, 000, 8,000, and
14,000. These instabilities arise due to the limitations of a
single agent attempting to manage a large and complex envi-
ronment involving many APs (i.e., 14 APs) and stations. This
is because the single agent receives a very large observation
and action space, making it difficult to extract relevant features
and prioritize interference mitigation effectively. It often fails
to make coordinated intelligent predictions of nulling decisions
across all APs, especially when multiple AP interfere with each
other. Our method first groups the APs and then uses MARL
to reduce this complexity by assigning an agent per group.
Thus, each agent only handles local coordination among at
most 7 APs in its group, which simplifies the learning process
and allows better performance.

MARL not only ensures better scalability but also allows
the system to handle large deployments efficiently while main-
taining throughput improvements. These advantages clearly
demonstrate the strength of decentralized learning in dense
Wi-Fi deployments with coordinated beamforming.

B. Interference handled by MARL

The results presented in Figure 4 compare the aggregate
OBSS throughput across three distinct approaches: the proposed
MARL method (green), an oracle with perfect CSI and nulling
angle knowledge (blue), and a random nulling (red). In
Figure 4a, the system comprises two clusters with a total of
13 APs, where the first cluster contains 6 APs and the second
cluster 7 APs. Each AP is equipped with 6 antennas and serves
between 5-15 stations, reflecting a dense and interference-
prone environment. The oracle approach, as expected, achieves
the highest throughput, reaching approximately 450 Mbit/slot,
due to its ideal knowledge of CSI and optimal nulling angles.
This serves as an upper bound for performance comparison.

In contrast, the random nulling strategy performs poorly,
with throughput limited to around 120 Mbit/slot, as it fails
to mitigate interference effectively. The proposed MARL
method demonstrates competitive performance, reaching up to
435 Mbit/slot, which is significantly higher than random nulling
and approaches the oracle’s performance. This improvement
stems from the ability to dynamically learn and prioritize high-
traffic interference while avoiding unnecessary nulling.

The scalability of the proposed MARL framework is further
evaluated in a more complex five-cluster environment, where
each cluster contains 3—7 APs, and each AP serves 15 stations
(Figure 4b). In this scenario, the oracle maintains its superior
performance, achieving throughput levels consistent with its
ideal interference management capabilities. The random nulling
approach, however, exhibits even poorer performance compared
to the Oracle case, with throughput nearly 350 Mbit/slot. The
MARL-based approach demonstrates remarkable robustness
in this challenging environment. While its throughput does
not reach the oracle’s peak performance, as MARL makes
decision based on the outdated CSI, but it consistently
outperforms random nulling and achieving throughput levels
around 650 Mbit/slot. The key to this success lies in the
distributed nature of the MARL framework, where each agent
independently learns to coordinate beamforming decisions
based on local observations, thereby scaling effectively with
the number of APs.

Finally, we examine the system performance in an ultra-
dense seven cluster configuration, where each seven-group
contains 4-7 APs with 5-15 stations per AP (Figure 4c).
This scenario represents the most challenging interference
environment studied, with significantly higher node density
and spatial complexity compared to previous configurations.
The oracle benchmark achieves stable throughput around
1500 Mbit/slot, demonstrating the theoretical upper bound for
interference management in this ultra-dense scenario. Random
nulling performance degrades severely in this environment,
with throughput around 800 Mbit/slot, highlighting its complete
inadequacy for dense deployments.

Several key observations emerge from this seven-cluster
scenario. The MARL approach maintains relatively stable
performance despite the increased network complexity, demon-
strating its robustness to scaling effects. This stability stems
from the distributed learning architecture, where each agent
adapts to local interference patterns without requiring global net-
work knowledge. The results reveal that the MARL throughput
shows greater episode-to-episode stability in this seven-cluster
scenario. This suggests the agents develop more generalized
policies through exposure to diverse interference patterns during
training.

As the number of clusters increases, the performance gap
between the MARL approach and the Oracle becomes more
pronounced. Although the MARL framework still outperforms
single-agent baseline, these results highlight the importance
of carefully designing clustering strategies to balance scal-
ability, coordination complexity, and interference mitigation
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effectiveness.

VII. CONCLUSION

We presented a MARL framework for interference man-
agement in dense Wi-Fi networks. By dynamically grouping
APs based on real-time interference, AP, and station density,
and assigning RL agents per group, our system effectively
scales in ultra-dense deployments. The proposed approach
improves network throughput by learning to suppress the most
disruptive interference directions using coordinated nulling
actions. Simulation results demonstrate that MARL outperforms
SARL approaches in terms of throughput and learning stability,
especially as the network scales. This work highlights the
potential of intelligent coordination and grouping in next-
generation Wi-Fi systems, and covers the way for adaptive,
scalable interference management using ML. In the future, we
will further investigate the gap between the MARL and the
Oracle approach to reduce it further.
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