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Abstract

Next-generation Wi-Fi networks are expected to have an ultra-dense deployment of access points (APs), thus, interference
from overlapping basic service sets (OBSSs) poses challenges for interference management. Wi-Fi 8 aims at mitigating
such interference using multi-access point coordination (MAPC). One of the MAPC variants is coordinated beamforming
(Co-BF), where neighboring APs direct their signals towards specific users. Besides beam steering, APs can also perform
null steering, which is more complex but can bring greater performance gains. In this paper, we present a centralized
approach named intelligent null steering by reinforcement learning (IntelliNull), designed to reduce interference from
neighboring transmitters by coordinated nulling while maximizing the signal quality at each station. We show that
training the beam and null steering mechanism with a deep deterministic policy gradient (DDPG), it is possible to
steer beams toward associated stations while intelligently nulling the most destructive interference from OBSS rather
than nulling random interference directions. This method enhances communication between the AP and neighboring
stations by reducing channel access contention, enabling transmissions at full power, and reducing worst-case latency.
The proposed IntelliNull agent continuously adapts to changes in the network environment, including node mobility using
channel state information (CSI) collected in real-time. We also compare our IntelliNull, which is based on beamforming
plus nulling, with the baseline which is based on beamforming only. Our results demonstrate that IntelliNull outperforms
the baseline by effectively mitigating interference, leading to higher throughput and better signal-to-interference-plus-noise
ratio (SINR), especially in dense deployment scenarios where beamforming alone fails to sufficiently suppress OBSS
interference.

Keywords: Wi-Fi 8, Overlapping basic service set, Multi-access point coordination, Interference management,
Coordinated beamforming, Reinforcement learning, Deep deterministic policy gradient

1. Introduction

The use of Wi-Fi has increased significantly in recent
years due to the rapid development of user devices such
as smartphones, smart glasses, and, recently, virtual re-
ality (VR) sets [1]. This proliferation of Wi-Fi devices
and the increasing demand for bandwidth is the source of
increased inter-network interference [2, 3]. While the use
of technologies such as large-scale multiple input multiple
output (MIMO) antenna systems can significantly enhance
network capacity by leveraging spatial multiplexing [4],
there remains the problem of interference among networks
of neighboring access points (APs), called overlapping ba-
sic service sets (OBSSs) [5]. Such OBSSs create a major
challenge, limiting Wi-Fi’s ability to deliver consistent per-
formance in ultra-dense deployments because of decreasing
signal-to-interference-plus-noise ratio (SINR), disorganized
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infrastructure, and limited spectrum resources [6, 7]. One
possible solution to this problem, enabled by the develop-
ment of MIMO antenna systems, is an advanced beamform-
ing technique called coordinated beamforming (Co-BF)
[8, 9]. Co-BF is enabled by multi-access point coordination
(MAPC), which involves multiple APs working together
to direct their signals to specific users. This technique
improves signal quality and reduces interference, leading to
better overall network performance. By coordinating their
actions, APs can avoid conflicts and optimize the network
for better performance. This coordinated beamforming
feature is part of the upcoming IEEE 802.11bn (Wi-Fi 8)
standard and will allow APs in an OBSS setting to co-
ordinate their transmissions not only by steering beams
towards receivers but also suppressing interference by plac-
ing radiation nulls towards neighboring (non-associated)
stations [10]. Therefore, this advancement enables simul-
taneous transmissions across multiple OBSSs on the same
channel, significantly improving spectral efficiency [11].

Figure 1 illustrates how beamforming and nulling tech-
niques can mitigate interference in neighboring Wi-Fi net-
works. In the presented example, station 1 is associated
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Figure 1: Conceptual example of Co-BF: APs transmit simultaneously
using (a) beamforming (to improve signal strength at receiver) and
(b) null steering (to reduce interference).

with AP 1, and station 2 is associated with AP 2. First,
both APs use beamforming to direct their signal to their
associated stations, to improve communication efficiency
(Figure 1a). However, in addition to the main lobe, there
are also side lobes that can cause interference to receivers in
neighboring networks (e.g., station 2 receives interference
from AP 1). Therefore, since the APs operate in a coordi-
nated mode and know the intended receivers of neighboring
transmissions and their placement, these APs additionally
use null steering to minimize the signal strength in the
direction of the stations communicating with the other
APs (Figure 1b). As a result, both APs can communicate
with their respective stations simultaneously without caus-
ing mutual interference, leading to improved throughput
and reduced latency [12]. Co-BF is therefore a promising
solution to mitigate interference caused by OBSSs.

Even though Co-BF and null steering provide a promis-
ing solution to mitigate interference in ultra-dense multi-AP
Wi-Fi 8 networks, several challenges remain unaddressed.
For example, consider the scenario depicted in Figure 1
and assume each AP is equipped with four antennas and
serves a large number of stations. In such a setup, AP 1
would ideally need to null the interference towards stations
associated with neighboring AP 2. However, with only four
antennas, AP 1 has a maximum of four spatial degrees of
freedom (DoF) available. Since one DoF is required for
beamforming toward its own associated station, only three
DoFs remain to create nulls. Thus, AP 1 can effectively null
out interference in at most three directions, suppressing
its signals toward the most critical non-associated stations
that are affected the most by its transmissions. In addi-
tion, installing a large number of antennas like in massive
MIMO [13] is not a feasible solution based on the cost
and size of the APs. If the AP randomly selects which
directions to null, it risks reducing the gain of the main
lobe toward its own associated station, thus degrading over-

all performance. Therefore, intelligently identifying and
nulling only the most critical interfering directions becomes
crucial. So, the present study uses centralized coordination
among APs (e.g., via MAPC), where each AP is aware of
the scheduling information and the channel state informa-
tion (CSI) of stations in its neighborhood. This assumption
is consistent with the Wi-Fi 8 architecture. Our model con-
siders information from all stations to predict appropriate
null directions, effectively addressing the listed challenges.

A further challenge in coordinated null steering is the
establishment of a coordination set: APs must know which
stations are scheduled during the transmission opportunity
(TXOP) to suppress interference effectively. Identifying an
optimal nulling configuration is complex, as the number of
possible configurations grows exponentially with the num-
ber of APs M , the number of antennas per AP Nt, and
the number of users Nu in the OBSS. Specifically, the total
number of configurations is represented by

(
Nu

Nt

)M
, which

can create a vast search space. This combinatorial explo-
sion makes exhaustive search computationally infeasible.
Moreover, stations in the network may move continuously,
changing their positions even every few milliseconds. This
transforms the problem into a one-shot decision-making
scenario, where the system must select nulling directions
within fractions of a second. Hence, a scalable solution
must rely on intelligent selection strategies to efficiently
identify high-impact nulling directions without exhaustive
enumeration. Instead of exhaustively searching through
all possible nulling configurations, our reinforcement learn-
ing (RL)-based approach learns a nearly optimal nulling
strategy.

Another important challenge is the availability of correct
CSI, not only locally but also at stations in the OBSS. Wang
et al. [14] indicate that the mobility of the stations intro-
duces rapid variations in the channel conditions. Therefore,
frequent updates are essential to keep accurate CSI. As the
overhead caused by channel sounding becomes significant,
the performance of the network degrades. Despite the out-
dated CSI caused by mobility, the intelligent null steering
by reinforcement learning (IntelliNull) system maintains
high performance, highlighting its robustness against dy-
namic wireless environments. Unlike conventional meth-
ods that attempt to null random interfering directions,
IntelliNull learns to null only the most destructive inter-
ference sources. This selective nulling strategy preserves
spatial DoF for beamforming, ensuring that the main lobe
remains as strong as possible for intended stations, thereby
improving the overall throughput.

The design of Co-BF shares some similarities with co-
ordinated multi-point (CoMP) [15]. Both techniques aim
to enhance spatial reuse and improve user throughput in
dense wireless networks through coordinated transmission
strategies, exchange of CSI between APs, and mitigating
interference by steering signal energy toward intended users
while shaping the spatial radiation pattern to reduce inter-
ference elsewhere [16, 17]. However, there are also notable
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differences. CoMP allows for the cancellation of interfer-
ence signals from neighboring cells by coordinating the
transmission and reception of signals from different base
stations (BSs), our approach focuses specifically on Wi-Fi
where each AP serves its own associated station while intel-
ligently placing radiation nulls toward major interference
stations in neighboring OBSSs.

All the limitations mentioned above motivate the search
for adaptive beamforming and interference control methods
that leverage machine learning (ML) tools to adapt the
learned interference direction based on the environment and
hardware surveyed in [18, 19]. Unlike traditional methods
that focus solely on beamforming optimization, this work
emphasizes RL-based nulling design to effectively suppress
interference in multi-AP Wi-Fi 8 (IEEE 802.11bn) environ-
ments. The focus is to achieve network performance in a
scenario having densely deployed APs and many stations
associated with each AP, i.e., a typical OBSSs scenario.

This paper addresses the research gap described by
introducing our IntelliNull approach for null configura-
tion and coordination between APs. IntelliNull intelli-
gently steers nulls toward non-associated stations to mit-
igate interference caused by the AP’s own transmissions.
By integrating null steering with beamforming, IntelliNull
outperforms conventional beamforming-based approaches,
achieving superior SINR and throughput, particularly in
dense Wi-Fi deployments. It outperforms the classical un-
coordinated beamforming methods and enables RL-based
space division multiplexing in OBSS. The proposed RL
approach offers competitive performance compared to an
oracle-based model as a benchmark, which uses exhaustive
search to find the best beamforming and interference nulling
configuration. We conduct a large-scale set of simulation
experiments studying the performance of null steering in
Co-BF to evaluate its impact on interference suppression
and the resulting throughput in the overall network.

Our main contributions can be summarized as follows:

• IntelliNull is a centralized RL framework that opti-
mizes interference mitigation through intelligent null
steering.

• This study demonstrates that the performance of this
system based on imperfect CSI approaches a theoret-
ical oracle, which perfectly optimizes the beams and
nulls of all APs under perfect CSI.

• We provide a systematic comparison between Co-BF
based on beamforming only versus beamforming com-
bined with null steering, showing that coordinated
beamforming with selective nulling significantly im-
proves system performance.

• Results show that intelligent suppressing interference
toward the most affected non-associated stations can
improve throughput and SINR compared to random
nulling.

• Despite increased interference dynamics caused by
station mobility, the IntelliNull agent consistently
identifies near-optimal nulling strategies under realis-
tic mobility scenarios.

• We show that by reducing interference through tar-
geted null steering, our system significantly reduces
channel access contention in dense deployments, en-
abling higher medium utilization, lower latency, and
improved throughput.

• The RL agent achieves fast convergence, enabling
effective adaptation even in dynamic networks with
mobile stations.

The remainder of the paper is organized as follows. We
study related work on interference modeling and mitigation,
ML-based optimization in wireless networks, and Co-BF
in Section 2. We explain the system model for multi-
AP coordination in Section 3. We introduce our novel
IntelliNull platform in Section 4. In Section 5, we present
results from a thorough performance evaluation. Finally,
we conclude the paper in Section 6.

2. Related Work

We first review the literature in the area of interference
modeling and mitigation in Wi-Fi networks. Then, we
show how ML can support interference management. Next,
we discuss research in the emerging topic of Co-BF and
conclude with describing how our contribution fills the
arising research gap.

2.1. Interference Modeling and Mitigation in Wi-Fi
Interference has always been a critical challenge in wire-

less communication, especially in dense Wi-Fi networks
where devices operate in a shared spectrum. In recent
years, various studies explored techniques for modeling and
mitigating interference to improve network performance
such as aligning interference to maximize DoF, reduce de-
pendency on perfect CSI at the transmitters, and utilizing
zero forcing and Maddah-Ali-Tse (MAT) scheme [20]. Bo-
rah et al. [21] propose a pre-coding technique with antenna
and user selection to align interfering signals, enhancing
network performance. They show that such methods can
improve spectral efficiency in wireless networks.

Verma et al. [22] explore how OBSS contribute to inter-
ference issues and suggested Co-BF as a potential solution
by leveraging multi-AP coordination where APs share CSI,
interference levels, and transmission schedule to minimize
interference between neighboring APs and improve over-
all network throughput. Along these, Nunez et al. [23]
propose a MAPC framework for managing interference in
dense AP Wi-Fi 8 environments, where APs share signal
strength data with a central controller, which then forms
spatial reuse-compatible AP groups and schedules their
transmissions to reduce contention and optimize network
performance.
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Seyedebrahimi et al. [24] propose a software-defined
network-based channel assignment algorithm for dense
Wi-Fi networks, optimizing radio frequency (RF) chan-
nel assignment to reduce interference and improve spectral
efficiency, evaluated through simulations showing signif-
icant performance improvements over existing methods.
Abinader et al. [25] discuss the challenges Wi-Fi networks
face in dense environments, particularly due to interference
from overlapping networks. They propose a distributed
interference coordination scheme to improve Wi-Fi per-
formance in such scenarios and showed their scheme has
significant improvements over existing methods like en-
hanced distributed channel access for downlink traffic.

Qiu et al. [26] examine the role of AP placement and
channel selection in mitigating interference. Their research
suggests that by carefully selecting the locations of APs and
intelligently distributing them across different frequency
channels, Wi-Fi networks can reduce OBSS and associated
interference. The paper also highlights the impact of AP
density on interference, showing that even small adjust-
ments in AP placement can lead to notable improvements
in stations throughput. Experimental results prove that
four antennas AP serving one station can suppress up to
10 dB of interference towards neighboring stations [27]. Our
focus is on the downlink channel, where 80–90 % of Wi-Fi
traffic occurs [28]. These efforts underline the significance
of interference modeling and the implementation of ad-
vanced mitigation techniques, such as Co-BF and power
control for spatial reuse.

2.2. The Role of ML for Interference Management in Wire-
less Communication

The integration of ML, particularly deep learning (DL)
and RL, into wireless communication systems represents
a transformative shift in optimizing network performance
and resource management. Most importantly, the recent
success across DL in various fields has inspired its applica-
tion in wireless communications. For example, Zhang et al.
[34] employ four different supervised DL algorithms such
as convolutional neural network (CNN), ResNet, convolu-
tional long-short term deep neural network (CLDNN), and
long short-term memory (LSTM) for interference source
identification in Wi-Fi.

A study by Zhou et al. [35] focuses on using neural
network (NN) for interference management and this showed
a significant improvement in the network. Croce et al. [36]
also use NN and hidden Markov chains for interference
recognition in Wi-Fi with 95% accuracy. A DL based
framework with generative adversarial network (GAN) is
developed by Lin et al. [37] for interference mitigation in
Wi-Fi technology. An advanced Q-learning based Wi-Fi
AP is designed by Mishra et al. [38] where the system is
very intelligent to find the interference-free channel and
the system makes a decision intelligently based on mid and
high interference levels by APs.

Interference can also be classified with DL models such
as CNN approach used by Pulkkinen et al. [39], Schmidt

et al. [40], and Kim et al. [41]. Robinson et al. [42] also
use DL for the detection of interference and utilized CNNs
to locate these signals with high accuracy for narrowband
interference detection. Another study, by [43], first detects
the interference signals and then classifies them into differ-
ent categories such as continuous wave, Gaussian mixture,
impulse interference, and narrowband interference using DL
and multiple NN. DL achieve high classification accuracy
between single-label and multi-label wireless signals for
effective interference management and coexistence among
different wireless technologies [44].

To overcome the difficulties of beamforming design, an
ML-based approach to find the optimal beamforming vector
is proposed by Kwon et al. [45]. Huang et al. [46] propose
unsupervised DL-based algorithms with low complexity
to achieve fast beamforming vectors. Zhang et al. [47]
propose a novel multi-AP coordination system for Wi-Fi
7 networks using a centralized AP controller by utilizing
deep Q-network (DQN) to enhance the channel access
mechanism, aiming to maximize network throughput and
maintain proportional fairness among multi-AP networks.
A robust adversarial reinforcement learning (RARL) for
coordinating multi-AP to handle interference from uncoor-
dinated AP is discussed by Kihira et al. [48]. ML models
are making great improvements in the field of wireless com-
munication and also in the field of interference mitigation
which highlights the importance of ML for interference
management in Wi-Fi.

2.3. Coordinated Beamforming in Wi-Fi
Co-BF can reduce interference between APs that oper-

ate on the same channel, so it is expected to improve spatial
reuse and overall network capacity. Pal et al. [49] confirm
this observation by steering nulls towards non-associated
stations to enable simultaneous data transmission in over-
lapping areas. Chauhan et al. [50] prove Co-BF enhances
overall system performance, especially in dense network en-
vironments. Mohamed et al. [51] discuss the use of wireless
gigabit (WiGig) APs operating in the 60 GHz frequency
band to enable high-speed wireless local area networks
(WLANs). The paper proposes a coordinated architecture
for WiGig WLANs that integrates both the 5 GHz Wi-Fi
and 60 GHz WiGig bands and finds that coordination man-
ages simultaneous transmissions, reduce packet collisions,
and minimize interference can improve the overall through-
put. Mohamed et al. [52] demonstrate that coordinated
beamforming enhances beam direction selection to maxi-
mize throughput while effectively mitigating interference,
leading to improved network performance in Wi-Fi.

Zhang et al. [53] find that Co-BF significantly improves
network performance in dense WLANs by selectively updat-
ing beamforming information for a subset of access points.
Their research shows that Co-BF reduces beamforming
overhead by 71% and enhances network throughput by
30.8%, demonstrating its effectiveness in maintaining up-
to-date beamforming information and optimizing resource
allocation. Coordination between multi-AP can improve
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Reference ML
Model

Coordina-
tion

System Model Critical Analysis

Afolabi
et al. [29]

Q-
learning

Coordinated/
Decentralized

Proposes an RL agent
that optimizes
transmission power
levels to minimize
interference and
enhance network
throughput

• Does not account for multi-AP Wi-Fi
systems
• Lacks coordinated beamforming and null
steering in a specific direction
• Does not consider co-channel
interference and stations mobility in
ultra-dense networks

Tarafder
and Choi
[30]

DQN Coordinated/
Centralized

RL for coordinated
interference
management with
beamforming vectors
from a codebook

• No explicit null steering
• Does not handle interference in
ultra-dense OBSS
• High training overhead due to predicting
suboptimal beamforming vectors from a
large codebook

Alkhateeb
et al. [31]

NN Coordinated/
Centralized

Uses NN for adaptive
beamforming
algorithms like Least
Mean Squares and
Linearly Constrained
Minimum Variance to
minimize interference

• Model may struggle to adapt to new or
changing interference patterns since it is
trained on a fixed dataset
• Does not address null steering or
interference management in an OBSS
environment
• Predicting beamforming vectors based
on omni-received signals may be difficult
in highly dynamic and dense environments

Wang et al.
[32]

GPML Coordinated/
Centralized

Uses a Max-SINR
based beamforming
compensation scheme
to mitigate inter-BS
interference, relying on
GPML for channel
estimation

• Uses GPML instead of RL for channel
estimation
• Method is less adaptive to dynamic
interference since it depends on outdated
CSI due to feedback delays
• Uses a fixed infrastructure for small cells,
making it difficult to adjust to changing
conditions

Sun et al.
[33]

DQN Coordinated/
Distributed

Applies deep RL to
predict coordinated
beamforming
strategies for
managing interference
in a wireless network

• Model does not account for the impact
of moving stations
• Focuses only on single-cell and does not
address multi-AP coordination
• Beamforming is delayed due to two
sub-problems

Proposed
Model

DDPG Coordinated/
Centralized

RL-based IntelliNull
platform for dynamic
null steering in Wi-Fi

• Addresses multi-AP coordination
• Optimizes null steering by prioritizing
suppression toward the most severely
impacted non-associated stations,
preserving spatial DoF
• Handles station mobility and operates
robustly with imperfect CSI
• Real-time nulling strategies instead of
static codebooks or heuristic algorithms
• Reduces channel access contention and
improves throughput under dynamic
network conditions

Table 1: The use of ML models in Co-BF for throughput improvement in wireless communication
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spectral efficiency by sharing data and control information
among APs, which enhances spectrum utilization, resulting
in increased peak throughput, reduced latency, transmis-
sion reliability by reducing interference, and optimizing
resource allocation, coordinated APs can attain precise
phase and time synchronization which is crucial for avoid-
ing mutual interference and maintaining high performance
[54]. Moreover, centralized coordination facilitates efficient
resource management, including resource scheduling, time
synchronization, and data sharing among APs, leading
to improved overall network performance. Dahrouj and
Yu [55] explore the benefits of Co-BF in multi-cell multi-
antenna wireless systems, unlike conventional systems that
treat out-of-cell interference as noise, their approach al-
lows multiple APs to jointly optimize their beamformers,
improving overall system performance.

Azari and Masoudi [56] investigate interference manage-
ment by comparing coordinated and uncoordinated access
methods, highlighting that coordination can significantly
improve system capacity and battery life. Their approach
uses RL for distributed coordination. Analytical and sim-
ulation results show that for a packet loss requirement of
1%, the number of connected devices could be doubled by
coordination. According to Chen et al. [57], each user’s
average delay changes with the number of small BSs in-
creases in close proximity and with the increased number
of small BSs, the transmission delay for each user increases
because the interference from the small BSs to the users in-
creases. Shakhatreh et al. [58] suggest different techniques
for interference management with the increased number of
BSs and recommended that coordination among BSs can
reduce the interference in the overall system.

As wireless communication continues to evolve, the
integration of coordinated strategies will play a vital role
in maximizing spectrum efficiency and ensuring robust
network performance. State-of-the-art research papers are
summarized in Table 1. The table shows the ML model
used, coordination type, system model, and the limitations
of each approach.

2.4. Our Contribution
Most existing research on Co-BF is mainly focused

on increasing beamforming quality for optimized signal
transmission and reception. This quality improvement is
related to proper beam alignment, reducing beam training
overhead, and boosting the beam selection processes. Mean-
while, these studies often overlook the important aspect
of intelligently nulling interference towards non-associated
stations in overlapping service areas, which becomes impor-
tant in dense wireless environments. Most beamforming
approaches are based on predefined codebooks or channel
knowledge – these assumptions are unfit for dynamic net-
work environments. Galati-Giordano et al. [59] explained
the key features of Wi-Fi 8 and mention that managing in-
terference through nulling is critical, particularly in OBSS.
They also suggest that null steering should be handled dy-

namically as the interference direction changes with station
mobility.

Our work goes beyond these traditional approaches by
explicitly introducing multi-AP coordination, intelligently
deciding interference directions, and dynamic beamform-
ing in ultra-dense Wi-Fi environments. Specifically, our
method takes into account the mobility of stations and
co-channel interference. Moreover, this work introduces an
RL-based intelligent null steering framework that dynam-
ically identifies and suppresses the strongest interference
direction in dense multi-AP networks, overcoming the fun-
damental limitation of traditional beamforming (where
Nt antennas can null at most Nt − 1 AP interference di-
rections). By prioritizing dominant interference sources
using real-time RL optimization, the system achieves near-
optimal interference mitigation even in overloaded scenarios,
while maintaining robust beamforming gain to the desired
user. This approach bridges the gap between theoretical
null-steering bounds and practical deployments, enabling
scalable coexistence in next-generation Wi-Fi.

We decided to use the deep deterministic policy gradient
(DDPG) model to handle the interference direction dynam-
ically in the most disruptive direction. DDPG has been
successfully applied in wireless communications for dynamic
power control in ultra-dense networks, and multi-resource
allocation tasks due to its stability and ability to generalize
in high-dimensional environments [60, 61]. Sumiea et al.
[62] discuss that DDPG is effective in high-dimensional,
continuous action spaces where precise, real-time decision-
making is required and highlights DDPG’s ability to learn
deterministic policies, making it well-suited for applications
such as robotics, autonomous control, and energy manage-
ment. To the best of our knowledge, there is no research
in the field of Wi-Fi 8 Co-BF and optimum null steering
based on DDPG to avoid channel access contention, enable
transmissions at full power, and reduce latency.

3. System Model

In this work, we model a multi-AP Wi-Fi 8 environment
where APs are positioned in fixed locations within the
network. All APs operate on the same channel (OBSS
conditions) using the full available spectrum, i.e., APs
share the same frequency resources, which can lead to
increased interference if not managed properly. Each AP
is equipped with a uniform linear array (ULA) with Nt

antenna elements, allowing for advanced beamforming and
null steering capabilities (Figure 1). For simplicity, we
assume all ULAs are mounted with a common horizontal
orientation, so that beam angles are defined consistently
across all APs. Stations associated with each AP are
randomly distributed and move according to the random
waypoint (RWP) model, which, unlike simpler mobility
models, allows users to pause before moving again [63].
In the modeled wireless network, the Co-BF and nulling
protocol are designed to optimize the signal quality at each
station while minimizing interference from neighboring
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APs and their stations, commonly known as OBSSs. The
most relevant parameters used in the proposed coordinated
Wi-Fi network are summarized in Table 2.

The stations move within a 10 m radius and change their
position every 50 ms to achieve a human walking speed of
1.4 m/s [64]. In mobile scenarios, the channel measurement
rate should scale with the speed of the station to ensure that
CSI remains up to date. We assume channel measurements
every 100 ms, which is a reasonable coherence interval at
typical walking speeds and 5 GHz carrier frequency [65].
This temporal mismatch between stations changing position
every 50 ms and channel measurements every 100 ms, causes
the available CSI to become outdated, leading to decisions
being made based on aged channel information. Channel
estimation is performed during the sounding process, where
the AP transmits known pilot symbols and the receiver
observes the channel-affected signal. The received signal
at the station is modeled as

y = Hx+ n, (1)

where x is the transmitted pilot vector, H is the channel
matrix to be estimated, and n is the additive white Gaus-
sian noise. Based on this, the station computes the CSI
and feeds it back to the transmitter. This CSI enables
the transmitter to apply beamforming and interference
nulling techniques, optimizing signal transmission based
on real-time channel conditions. Maximizing the signal at
the intended receiver requires optimal beamforming, an
optimization problem that lacks a straightforward closed-
form solution like null steering and is challenging to solve
in practical scenarios with time-varying channels.

Using the obtained CSI, we design a beamforming strat-
egy that maximizes the desired signal while nulling interfer-
ence from unintended stations. To achieve the beamforming
and null steering capabilities to get the highest possible
throughput at station k, we design the beamforming weight
vector w in the environment as

w =
(
HHH

)−1
HHe. (2)

Here, the matrix H consists of the channel vector of the
intended receiver along with channel vectors of unintended
directions corresponding to neighboring stations that are
to be nulled to mitigate interference. H captures how the
signal propagates between the AP’s antennas and the re-
ceiving stations. This zero-forcing formulation aligns the
beam toward the intended station while nulling interference
toward selected users, provided that Nt ≥ Nu. In conven-
tional beamforming approaches that require the number
of antennas Nt to be greater than or equal to the number
of users Nu, our system does not directly impose this con-
straint. Since we adopt our IntelliNull strategy, the agent
learns to identify and null only the most critical interfer-
ence directions from a larger set of potential interferes. As
a result, even when Nu > Nt, the system remains feasible
by selecting N ′

u ≤ Nt dominant interference directions for
nulling, while reserving one spatial DoF for beamforming
toward the intended station.

To ensure compliance with the transmit power con-
straint, the resulting beamforming vector w is normalized
such that w← w/∥w∥, ensuring unit norm beamforming
weights, which can then be scaled appropriately to meet
the AP’s transmit power constraint. H is defined as

H =
[
h1,h2, . . . ,hN ′

u

]
, (3)

and the selection vector e is defined as

eT = [1, 0, 0, . . . , 0] , (4)

where each hi is an Nt×1 channel vector. Thus, the matrix
H has dimensions Nt × N ′

u, where N ′
u is a subset of Nu

and represents the number of stations being considered for
beamforming and nulling (i.e., the intended station and
the interfering ones). This formulation allows to design
a beamforming vector w such that HHw = e, where the
first element of e is 1 (for the intended user), and the rest
are 0 (to null the others). This vector e ensures that the
beamforming vector aligns with the desired station channel
while selectively nulling interference from other sources.

To minimize interference at unintended receivers, we
form the matrix H by combining the channel vectors w ob-
tained from the propagation environment, arranging them
to place the intended receiver first, followed by vectors rep-
resenting interference directions to be nulled. HH denotes
the Hermitian transpose (complex conjugate transpose)
of H, which is used in the least-squares formulation to
solve for the optimal beamforming vector. In the expres-
sion (HHH)−1HH , the Hermitian transpose ensures proper
handling of the complex-valued channel matrix, allowing
us to accurately project the signal into the desired spatial
directions while nulling interference. To further enhance
robustness in practical wireless environments, where the
channel matrix H can become ill-conditioned or lose rank
due to mobility, fading, or interference, we use the Moore-
Penrose pseudo-inverse instead of the regular inverse. This
approach ensures that the beamforming vector w remains
stable and reliable even under dynamic or noisy conditions.

The total transmit power Ptx,i radiated by an APi

is set to 20 dBm. The power of the transmitted signal
reduces as it travels due to path loss. To capture real-
world attenuation, we combine free space path loss (FSPL)
with shadowing, which represents signal attenuation due
to distance in free-space conditions. FSPL is computed
using the distance between transmitter and receiver and the
signal frequency, allowing proper modeling of large-scale
propagation effects. So, a path loss model is used in this
experiment by following the Friis transmission equation

PLfs(d) = 20 · log10
(
4πdf

c

)
, (5)

where d is the distance between the transmitter and receiver,
f is the carrier frequency which is 5 GHz, and c is the speed
of light. To account for real-world obstructions, we augment
free-space path loss FSPL with log-normal shadowing such
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as

PL(d) =

{
PLfs(d) + n, if d ≤ 10,

PLfs(10) + 10 · 3.5 · log10
(

d
10

)
+ n, if d > 10.

(6)
Here, n represents the shadowing term, which follows a

log-normal distribution n ∼ N (0, σ2). In our work, we set
σ2 = 2, to model log-normal shadowing effects typical of
indoor environments (e.g., office spaces with partitions and
furniture), striking a balance between realism in channel
variations and stability for the learning process. This value
aligns with empirical measurements from indoor wireless
propagation studies [66]. FSPL is applied up to a distance
of 10 m, and after that, a log-normal loss, with exponent 3.5,
is added to simulate walls and objects the signal could pass
through. We also model small-scale fading using Rician
fading, which characterizes environments with a dominant
line of sight (LOS) component (e.g., from beamforming)
alongside multiple weaker scattered paths. The total signal
power P at a receiver is defined as

Prx,k = Ptx,i · 10−PL(d)/10 ·
∣∣hH

i,kw
∣∣2 , (7)

where Ptx,i is the transmitted power and PL(d) is the path
loss, which is converted to linear scale using 10−PL(d)/10.
hi,k is the channel vector from the associated APi to station
k, and w is the beamforming vector. The received signal
strength is calculated using the absolute square of the inner
product between the conjugate transpose of the channel
vector and the beamforming vector, capturing the beam

alignment gain by using
∣∣∣hH

i,kwi

∣∣∣2. The total interference
power at station k is obtained by summing contributions
from all interfering APs as

Pint,k =
∑
j ̸=i

Ptx,j · 10−PL(dj,k)/10 ·
∣∣hH

j,kwj

∣∣2 , (8)

where Ptx,j is the transmit power of the interfering APj

(with j ̸= i), PL(dj,k) is the path loss from APj to station
k (converted to linear scale), hj,k is the channel vector
from APj to station k, and wj is the beamforming vector

of APj . The term
∣∣∣hH

j,kwj

∣∣∣2 represents the effective gain
of the interfering signal received by station k due to APj .

The SINR provides a measure of the quality of the
desired signal relative to both the noise and the interfer-
ence from other overlapping networks, which is essential
in evaluating network performance, especially in densely
deployed wireless environments. The SINR at station k is
calculated as

SINRk =
Prx,k

Pint,k + Pnoise
, (9)

where Prx,k represents the received signal power from the in-
tended AP (transmitter) after antenna precoding, Pint,k is
the interference power from unintended transmitter within
the OBSS. Pnoise is the noise power, including thermal

Parameter Value

Frequency band 5GHz
Channel bandwidth 80MHz
Noise figure 7 dB
Thermal noise at room temperature −174 dBm
stations mobility 1.4 m/s
Time slot 50 ms
CSI acquisition interval 100ms
Max. radius station to AP 10 m
Max. transmit power 20 dBm
Pathloss model FSPL

Table 2: Wireless communication parameters

noise and any other background noise at the receiver. We
account for thermal noise influenced by the channel band-
width B and temperature. At room temperature, the
thermal noise is approximately −174 dBm, and it is scaled
according to the channel bandwidth. The noise component
also includes the receiver noise figure, which we set to 7 dB,
consistent with the setup in [10]. The total noise power is
calculated as:

Pnoise = −174 + 10 · log10(B) + 7. (10)

The corresponding maximum amount of bits transmit-
ted during the allocated Tslot is

Rk = Tslot ·B · log2(1 + SINRk), (11)

where Tslot represents the allocated time slot duration for
each user within the network (without loss of generality,
we use a slot time of Tslot = 50ms and a bandwidth of the
wireless channel of B = 80MHz). While this equation gives
the total number of bits transmitted, the rate can be derived
by dividing the result by the time slot duration. A critical
aspect of the modeled wireless network is the dynamic
movement of stations. The dynamic scenario is best suited
for optimal evaluation of Co-BF. This movement simulates
real-world dynamics where users are mobile, providing a
realistic scenario for evaluating the performance of Co-BF.

The complete system architecture is depicted in Figure 2.
There are two main parts: the RL agent (central controller)
part and the environment (Wi-Fi network) part. The agent
acts as a central controller that makes decisions for the Wi-
Fi network. The beam angle (main lobe direction from the
AP to its associated station) and path loss measurements
are collected from each AP in the network environment.
The calculated beam angles and path losses of each station
with respect to their APs are passed as a state to the central
controller every 50 ms. The RL agent’s actor takes this
state (observation) as input and decides which directions to
null. The decision is then passed to each AP in the network
part. The network part consists of APs, each serving a
set of associated stations. Each AP beams toward its
associated stations while nulling interference toward critical
non-associated stations to improve the overall network
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Figure 2: Proposed RL-based architecture for nulling configuration and Co-BF

performance. The aggregate sum of the throughput across
the network is calculated and provided as feedback to the
RL agent. The state is also fed into the critic network,
which outputs a value. We then calculate the mean square
error (MSE) between the value and the feedback value
(reward). This process is repeated iteratively to minimize
the MSE as much as possible. It is important to note
that with each MSE calculation, the system updates the
policy of the actor network, leading to better decisions and,
consequently, improved overall network performance.

Furthermore, we assume that channel access is slot-
ted and synchronized across all OBSSs. In our system
model, basic service sets (BSSs) are assumed to operate
in the same time slot, a synchronization achieved through
mechanisms like the time synchronization function (TSF)
[67]. This assumption aligns with MAPC principles, where
APs are triggered to transmit simultaneously following a
coordinated trigger frame (TF).

4. Reinforcement Learning-based Algorithm for
Nulling Configuration

In the following, we explain the RL agent’s interaction
with the system model. Unlike other approaches that focus
solely on beamforming optimization, IntelliNull empha-
sizes effectively directing beams toward associated stations
while suppressing interference toward unintended recipi-
ents, including stations in neighboring BSSs in multi-AP
environments. We use a DDPG model for this purpose.
DDPG is an algorithm, used in RL, specifically designed for

environments with continuous action spaces. It combines el-
ements from both policy-based and value-based approaches,
leveraging the strengths of DQN and deterministic policy
gradient (DPG) to effectively handle continuous control
tasks [68]. In this approach, the action space consists of
possible null steering angles that the agent can predict for
each AP to optimize the network performance. Training
environments that have continuous observation and action
space is challenging. However, with continuous values, the
agent can find the best possible directions where the agent
finds it better to predict the null angle. In a discrete action
space, the agent is restricted to a limited set of predefined
directions, which may cause it to miss potentially optimal
values that lie between two discrete values. In contrast, a
continuous action space allows the agent to explore the full
range of directions without such limitations.

As per Algorithm 1, first, the RL agent is initialized
with random weights, learning rate, and buffer. All APs
have collected CSI from their stations through periodic
channel sounding using Equation (1). The resulting path
loss and angle information to each station is then combined
to construct the observation space, which serves as the
agent’s representation of the current environment. Based
on this observation, the agent selects nulling actions to
suppress the most critical interference directions. The
observation space is structured as

s = {(ϕ0, PL0)} , {(ϕ1, PL1), . . . , (ϕMOBSS , PLMOBSS)} ,
(12)

where MOBSS represents the number of OBSSs. The first
two values in the observation correspond to the associated
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Algorithm 1 IntelliNull platform for angle prediction
1: Initial DDPG: random weights for actor and critic;

target actor and critic networks with weights θµ− and
θQ− initialized to θµ and θQ; experience replay buffer
D; learning rate α

2: for each time slot do
3: 1. Agent Interaction:
4: i. Obtain stations angles and path loss around

APs
5: ii. Update current observation space st
6: iii. Predict action at according to policy

µ(st|θµ) +Nt (where Nt is exploration noise)
7: iv. Execute action at by steering beam and null
8: v. Calculate received power, SINR, and reward

rt, and next state st+1

9: vi. Store transition (st, at, rt, st+1) in experience
replay buffer D

10: 2. Update Agent Networks:
11: i. Sample random mini-batch of transitions from

D
12: ii. For each transition (s, a, r, s′) in the mini-

batch, compute target value:

y = r + γQ(s′, µ(s′|θµ−)|θQ−)

13: iii. Update critic network by minimizing loss:

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2

14: iv. Update actor network by maximizing expected
reward:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)
∣∣∣∣
a=µ(s|θµ)

∇θµµ(s|θµ)

15: v. Update target networks:

θQ− ← τθQ + (1− τ)θQ−

θµ− ← τθµ + (1− τ)θµ−

16: end for

station, which includes the angle ϕ from the APi to station
k and the corresponding path loss PL. The remaining
values in the observation represent the non-associated sta-
tions in the OBSSs, with their respective null angles and
path losses. This observation representation allows the
agent to consider interference from non-associated stations,
which are often located in the vicinity of the AP but are
not directly connected. These non-associated stations can
still interfere with the associated stations signal, and the
agent must optimize null steering. After collecting the
observation space st, the agent can predict all possible or
maybe a few of the null angles, depending on how much
that decision can improve the reward. Based on these ac-

tions at, APs generates antenna weights for the ULAs using
Equation (2). The idea is to steer nulls toward directions
where OBSS stations are located while focusing the main
beam toward its currently served station by directing the
signal power Ptx,i.

After directing the signal power the stations calculate
the received power using Equation (7) and the interference
for each interfering stations using Equation (8). The SINR
is calculated at each station using Equation (9) and then
the throughput as a reward using Shannon capacity in
Equation (11). The sum of the throughput is fed back
to the RL agent in the form of a reward rt and the next
state st+1 of the environment. These observations are
stored in the replay buffer D for off-policy training, where
mini-batches of transitions (st, at, rt, st+1) are sampled to
update the agent’s policy and value networks.

After each interaction with the environment (lines 10–
16 in Algorithm 1), a mini-batch of past experiences is
randomly sampled from the replay buffer D. For each
transition, the target Q-value y is computed using the
target networks (µ− and Q−), which helps stabilize training.
Back-propagation is also considered in the DDPG network
and the MSE is calculated for each Q-value produced using
the loss function

Lcritic = MSE(Qcurrent, Qtarget). (13)

The weights of each network are implicitly updated
based on the loss corresponding to its allocated portion
of the reward. This reward decomposition, like Q-value
prediction, is learned over time through experience. Next,
the actor network is updated using the policy gradient
derived from the critic, which encourages actions that yield
higher rewards. Finally, both the actor and critic target
networks are softly updated by blending their parameters
with the current networks using a small update factor,
ensuring smoother and more stable learning. This update
process allows the agent to iteratively refine its nulling
strategy based on observed network dynamics.

In our IntelliNull system, the agent tries many different
actions to maximize the overall throughput. The agent
intelligently steers null interference from specific directions
that would most affect the system’s performance. By using
throughput as the reward function, the agent is encouraged
to only null interference in those directions that enhance
the overall rate. This ensures that the agent adapts its
nulling strategy to maximize system performance, rather
than randomly nulling all interference. The reward func-
tion guides the agent’s learning process, and in the final
stage, the agent’s policy converges to those actions that
can maximize its cumulative reward.

The parameters for actor-critics networks and Ornstein-
Uhlenbeck (OU) noise are gathered in Table 3. The ar-
chitecture of the actor network was chosen to balance
complexity and computational efficiency. The three hidden
layers with 400 and 300 neurons provide sufficient capac-
ity to learn complex nonlinear mappings from the input
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Parameter Value

Action space size Dep. on netw. topology
State space size Dep. on netw. topology
Actor / critic hidden layers [400, 300]
Buffer capacity 100,000 samples
Actor learning rate 0.0001 step/iteration
Critic learning rate 0.001 step/iteration
Optimizer Adam
Loss function MSE
Discount Rate 0.99
Batch size 1024
OU λ 0.9995
OU τ 0.001
OU σ 0.20
OU θ 0.15
OU µ 0.0
OU sOU 1.0

Table 3: Actor-critic parameters

state space to the action space, which is crucial for the
high-dimensional problem of beamforming and null steer-
ing. ReLU activation functions enable efficient gradient
propagation, reducing the vanishing gradient issue. The hy-
perbolic tangent (TanH) activation function at the output
layer ensures bounded outputs, matching the range of valid
null angles. The TanH activation function ensures that the
output action values are normalized, making them suitable
for continuous control tasks. The observation space is nor-
malized between 0 and 1. The action space is normalized
between -1 and 1, allowing the RL agent to operate within
a continuous actions space. The critic network evaluates
the quality of the action taken by the actor network by
estimating the expected return Q-value given the current
state and action. This network is similar in structure to
the actor network but includes both the state and action
as inputs.

State and action spaces are based on the specific Wi-Fi
network topology. If the Wi-Fi network topology increases,
the state and action space also increase to ensure that the
agent can make better decisions for that specific topology.
The actor-critic learning rates are 0.0001 and 0.001, respec-
tively, with a buffer size 100000, and a batch size of 1024 to
allow the agent to learn from different past experiences in
a complex environment. We use the Adam optimizer [69],
which is well suited for problems that are large in terms of
parameters, easy to implement, and computationally effi-
cient. Lillicrap et al. [68] proposed that the combination of
the OU process, soft update parameter τ , decay parameter
λ, magnitude of the diffusion term σ, magnitude of the
drift term θ, initial scaling factor sOU, and mean of the
noise process µ, can help the actor and critic networks in
the continuous control environment to balance the learning
stability and asymptotic mean of the noise process which
controls the mean value of the noise for exploration in the
actions.
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Figure 3: Example network topology as used on our simulations

5. Performance Evaluation

5.1. Simulation Setup
We developed a Co-BF simulator in Python. The setup

consists of a custom number of APs, each equipped with
a custom number of antennas. The number of antennas
directly impacts the beamforming and null steering capa-
bilities of each AP. Stations move within a 10 m radius,
mimicking the movement of users in an office or home
environment. A minimum distance between stations and
APs of 1.5 m is set to avoid singularities in path loss cal-
culations. We explore network topologies with a variable
number of APs, number of antennas per AP, and users
(stations). Figure 3 depicts an exemplary network topology
consisting of seven APs with five to seven stations per AP
and the circles represent the radius of each AP, where the
stations can possibly move.

For the performance comparison of our IntelliNull-based
solution, we also implemented an Oracle approach, in which
a custom agent operates assuming perfect CSI, meaning
it has full knowledge of the wireless environment at any
given moment in time. This agent is pre-programmed with
precise beamforming and null-steering angles that maximize
throughput and minimize interference, ensuring optimal
performance. The Oracle provides an ideal performance
benchmark for the IntelliNull system by assuming perfect
channel knowledge.

5.2. Comparison with State of the Art
To further evaluate the effectiveness of IntelliNull, we

compare its performance against the nulling strategy in-
troduced by Galati-Giordano et al. [59], representing a
state-of-the-art (SOTA) method adopted in IEEE 802.11bn
evaluations, as well as random nulling, which randomly
allocates nulling directions within available spatial DoF.

In this first experiment, we adopt the same topology
and key parameters, for example, number of APs, number
of antennas per AP, stations associated per AP, and band-
width, to enable a direct comparison. In particular, we
use two APs operating in the 6 GHz band using a 160 MHz
channel and a time slot of 50 ms. Each AP is equipped
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Figure 4: Comparison of nulling strategies: SOTA, null random angles, and null angles from RL agents.

with four antennas and one associated station. The CSI
acquisition delay, representing the time required to gather
and process CSI, is varied from 0 ms to 2 ms to reflect re-
alistic overhead scenarios. AP locations are fixed at (5 m,
10 m) and (10 m, 10 m), while their associated stations are
positioned at (5 m, 12.5 m) and (10 m, 12.5 m), respectively.
All methods are evaluated under identical conditions to
ensure a fair comparison.

Results in Figure 4 show that the DDPG-based In-
telliNull agent observes CSI-derived channel metrics and
interference patterns and learns a nulling policy that maxi-
mizes aggregate throughput and SINR. Instead of relying
on fixed rules, the agent dynamically selects the most im-
pactful interference directions to null, adapting to mobility
and CSI aging in real time. Specifically, with fresh CSI
(i.e., 0 ms time delay), IntelliNull achieves an SINR of over
32 dB and throughput exceeding 85 Mbit. Even under 2 ms
delay, it maintains robust performance, whereas SOTA and
random nulling degrade significantly, with SOTA showing
a steep drop to 10 dB SINR and only 28 Mbit throughput
from 0 ms to 2 ms CSI delay, SOTA performance degrades
by over 20 dB in SINR and nearly 60 Mbit in throughput,
while IntelliNull maintains high performance with less than
5 dB SINR and 15 Mbit throughput loss, demonstrating
stronger resilience to outdated CSI. Unlike random nulling
that assigns null directions arbitrarily, IntelliNull learns to
prioritize the most critical interference directions using RL,
leading to smarter null allocation and better spatial reuse.

These results highlight two key insights. Firstly, al-
though random nulling uses all available DoF but lacks
spatial selectivity and often nulls non-critical interference
directions, leading to modest gains and high variance. Sec-
ondly, while SOTA provides significant benefits under per-
fect or near-perfect CSI, its performance degrades with
increasing delay due to the lack of adaptivity. In contrast,
IntelliNull’s RL-driven strategy learns to prioritize and
steer nulls toward the most disruptive interference paths,
achieving resilient interference suppression even with im-
perfect CSI. This confirms the potential of RL-based null
steering to enhance both spatial reuse and reliability under
practical overhead constraints in ultra-dense Wi-Fi deploy-

ments. All results are averaged over multiple randomized
runs, and error bars in the figures indicate standard devia-
tion, confirming the statistical reliability of the observed
performance trends.

5.3. Beamforming vs. Beamforming Plus Null Steering
Next, we study the impact that null steering adds to

beamforming. Figure 5 illustrates the effect of beamforming
and null steering on the aggregate OBSS throughput for
a scenario where we have two APs and each AP has one
connected station. Figure 5a shows the results without
null steering with a 10 dB antenna gain for both APA
and APB as a baseline. As the baseline experiment, we
only use beamforming without nulling. In Figure 5c, null
steering is added where the black dash line is the null
steering directed towards the interference with 8.98 dB for
APA and 9.79 dB for APB reduction in antenna gain. In
both figures, the station with the blue antenna indicates
the associated station (STAASST) to their APs, while the
stations with the red antenna represents the direction of
the interference station (STAINT) for each AP. As shown
in Figure 5d, even with the reduction of the antenna gain,
the throughput is consistently higher when null steering is
applied.

By directing nulls toward neighboring receivers (i.e.,
stations associated with other APs), APs reduce the in-
terference, thereby enabling more efficient communication
with the associated station. In contrast, Figure 5b shows
lower throughput due to increased interference from neigh-
boring devices and only beamforming. As the stations are
continuously moving, throughput is good from 0 to 100
seconds for both cases. However, an interesting observation
occurs when the associated STAASST and the interference
STAINT are in almost the same direction while moving
around their AP, as shown in our example for APA. In
this case, the throughput drops significantly in both cases
between 100 and 175 seconds.

However, with beamforming plus null steering, the
degradation is around 80 Mbit and is noticeably less severe
compared to the scenario with only beamforming where the
throughput drops to around 20 Mbit. This is due to the
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Figure 5: Comparison beam construction and achieved throughput.

mobility of stations (Figure 6), for which at some points in
space beamforming only cannot generate optimal channel
conditions. This effectively demonstrates the benefits of
null steering in mitigating interference even in challeng-
ing conditions and even with the reduction in gain in the
main beam lobe. These results highlight the effectiveness
of null steering in reducing interference and maintaining
robust communication in dynamic environments with in-
terfering stations, especially when the associated stations
and interfering directions are in the same direction.

5.4. Impact of APs, Stations, and Antennas
We first analyze the performance of our IntelliNull plat-

form in comparison to the theoretical Oracle and a Baseline
approach. Different experiments are conducted to evaluate

AP

STAINT

STAASST

Figure 6: Stations mobility around the APs

the effectiveness of IntelliNull across different scenarios,
varying the number of antennas, APs, and stations. We
present selected results in Figure 7, where the background,
pale-colored curves show the average throughput while the
foreground, intense-colored curves represent the moving
average (with a window size of 15), illustrating both the
performance of our algorithm and its convergence time.
The episodes are the number of iterations the RL agent in-
teracts with the network environment. In simple scenarios
with only one station, the IntelliNull approach converges
quickly to a level that is close to the Oracle. As can be seen
in Figures 7a to 7c, the convergence rate is even almost
independent of the number of antennas used at the AP. Of
course, the overall performance improves significantly, if
more antennas are available.

The situation is different with increasing complexity
of the beamforming and nulling solution space. As shown
in Figures 7d to 7f, the convergence time increases for
IntelliNull when 15 stations need to be considered. In these
figures, also the number of antennas at the AP is increases
from 4 to 10. Figure 7f shows the most extreme case (15
stations, 10 antenna). This smoothing was applied solely
in each plot for clear visualization. The convergence was
observed after approximately 100 episodes for Figures 7a
to 7c, where the total number of moving stations was 7,
and after approximately 230 episodes for Figures 7d to 7f,
where the total number of moving stations was 105. The
average sum rate stabilizes with minimal fluctuations.

In all cases, the baseline, which represents only beam-
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Figure 7: Convergence of IntelliNull (DDPG) and its steady state performance compared to Oracle across different configurations of the
number of stations and antennas per AP.

forming without null steering, performs worse than both
the IntelliNull approach and the Oracle. This highlights the
importance of using both beamforming and null steering for
effective interference mitigation. Despite the convergence
time, our ML-based solution still achieves close to optimal
results (represented by the Oracle solution).

5.5. Performance Gap
Beyond the absolute performance results, we are also

interested in how closely our algorithm matches the Or-
acle. The performance gap |Oracle Reward−IntelliNull Reward|

Oracle Reward
between the rewards by the IntelliNull system and the
Oracle approach across all experiments follows a consistent
pattern as shown in Figure 8. Initially, the performance
gap is relatively high, reflecting the early learning stages
of our algorithm. As time progresses, there is a sharp
decline in the performance gap, which stabilizes at very
low values, typically around 10–15 % across different con-
figurations of antennas and stations. This trend indicates
that the IntelliNull system rapidly learns to approximate
the optimal performance. However, the stabilized gap also
exhibits minor fluctuations, particularly in more complex
scenarios with higher numbers of antennas and stations,
suggesting that while IntelliNull can achieve a performance
close to the Oracle, it occasionally struggles with the added
complexity (see, for example, Figure 8f).

5.6. Impact of Station Mobility
We further study the impact of mobility of the stations

on the performance of our algorithm. All the experiments

discussed so far included user mobility. If we keep the user
stationary, the IntelliNull model achieves a relatively stable
average sum rate, with few fluctuations and a performance
that approaches that of the Oracle as shown in Figure 9a.
This is because the characteristics of the wireless communi-
cation channel, such as signal strength, interference levels,
and path loss, do not change significantly over time, which
allows the Oracle to achieve the theoretic optimum and the
IntelliNull model to learn and optimize the nulling angles
effectively. The baseline, in contrast, represents a setup
where only beamforming is performed without considering
null steering. As a result, it consistently underperforms
compared to both the Oracle and the DDPG-based In-
telliNull model, as it lacks the additional degree of freedom
provided by null steering. In Figure 9a, we observe that the
baseline maintains a lower aggregate throughput compared
to both Oracle and IntelliNull, reinforcing the significance
of null steering in mitigating interference.

However, in general, due to mobility, the stations often
face a low throughput because the null angle and the beam
angle come in the same direction or almost in the same
direction for APs time to time. Figure 9b shows a scenario
where 50% of the stations are static and 50% are mobile.
In this case, the throughput is higher for Oracle and In-
telliNull compared to the scenario where all the stations
are mobile Figure 9c but lower than the scenario where
all stations are static Figure 9a. That shows that with
mobility the network topology gets more complex and the
interference increases with the mobility. Indeed, in Fig-
ures 9b and 9c, there are brief moments where IntelliNull
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Figure 8: Performance gap between IntelliNull and Oracle across different configurations of number of stations and antennas per AP
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Figure 9: Impact of mobility in a scenario with 7 APs, 4 antennas per AP, and 1 station per AP.

performs slightly worse than classical beamforming. This
occurs primarily during the initial learning or adaptation
phases, particularly in highly dynamic scenarios where sta-
tion mobility rapidly changes the interference landscape.
This also occurs when the beam angle and the interfer-
ence direction are nearly aligned, which affects the main
lobe gain. This condition, where the beam and null angles
are closely aligned, occurs frequently in the experiments
shown in Figure 9c, where multiple APs with mobile sta-
tions operate in a dense environment. We also observe
a moderate throughput drop and variability in Figure 9b
compared to Figure 9a, as 50% of the stations are mobile
while the remaining 50% are static. In contrast, in the
fully mobile scenario of Figure 9c, the beam and null direc-
tions frequently overlap, leading to a significant throughput
degradation and variability compared to Figures 9a and 9b.
This beam and null angle alignment issue contributes to
the performance gap observed between static and mobile

deployments.
The baseline remains consistently lower in all mobility

scenarios, as it does not leverage null steering to mitigate
interference, making it more susceptible to the challenges
introduced by user movement. This experiment is per-
formed by considering 7 APs, 4 antennas, and 1 station per
AP. This trend was expected, as mobility always increases
the bit error rate [70].

6. Conclusion

We have explored the application of the IntelliNull
platform to the problem of null steering in wireless com-
munication networks, specifically within the context of
Wi-Fi 8. The performance of our intelligent null steering
by reinforcement learning (IntelliNull) approach was evalu-
ated against an Oracle approach, which served as an ideal
benchmark with perfect CSI and precomputed optimal
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null angles. Across all experiments, our intelligent null
steering by reinforcement learning (IntelliNull) approach
demonstrates a strong ability to learn and adapt to vari-
ous configurations, progressively improving its performance
over time.

In summary, we observed the following advantages (and
limitations) of our IntelliNull approach:

(a) Beamforming vs. beamforming plus nulling: When
comparing experiments with only beamforming and
beamforming plus nulling, it was observed that beam-
forming plus nulling significantly improves the overall
throughput. This emphasizes the effectiveness of null
steering in enhancing network performance and mini-
mizing interference.

(b) Optimal nulling vs. random interference nulling: We
have shown that random nulling all possible inter-
ference directions does not produce the best overall
sum throughput. The results show that nulling only
the crucial interference directions leads to better net-
work performance and higher throughput, highlight-
ing the importance of intelligently selecting which
interference directions to null rather than nulling all
directions indiscriminately.

(c) CSI acquisition and optimization: The availability of
accurate CSI data was found to be a critical factor
in the performance. IntelliNull platform can adapt
to make a close-to-perfect decision comparable to the
theoretical Oracle performance.

(d) Mobility and interference: In mobility scenarios, the
dynamic nature of interference presents a significant
challenge. The results show that the IntelliNull plat-
form can still adapt and make satisfactory decisions,
indicating the superiority of DDPG application in
Wi-Fi to find null direction over exhaustive search.

(e) Impact of antenna and user density: In simpler setups
with few antennas and users, IntelliNull platform per-
forms extremely well. As the number of antennas and
stations increases, the convergence time of IntelliNull
is higher.

In future work, we aim to further improve IntelliNull.
Fluctuations observed in DDPG performance, particularly
in early episodes, suggest that while the algorithm is effec-
tive, there is room for improvement of convergence time.
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