
Efficient Service Discovery in Sensor Networks using VCP

Abdalkarim Awad, Reinhard German and Falko Dressler
Computer Networks and Communication Systems

Dept. of Computer Science, University of Erlangen, Germany
{abdalkarim.awad,german,dressler}@informatik.uni-erlangen.de

ABSTRACT
We show the feasibility of efficient routing and service dis-
covery in sensor networks using the Virtual Cord Protocol
(VCP). Scalable and energy efficient data management is
still a challenging topic in this domain. Recently, the ad-
vantages of virtual coordinates have been explored in com-
parison to solutions based on geographical positions. Due
to the fact that such virtual coordinates can be assigned in
an “optimal” way, routing and data management becomes
more efficient. We implemented our VCP protocol on BTn-
ode sensor nodes to show the applicability of this protocol
in a lab environment. Furthermore, we address the issue of
service discovery by means of indirections as known from
overlay networks.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) represent a class

of wireless networks that strongly relies (among others)
on energy efficient operation and self-organizing man-
agement and operation. These aspects are especially
challenging in the field of dynamic service discovery. Ba-
sically, these have to be addressed within multiple layers,
or more precisely, through cooperation between these
layers. Most relevant are routing techniques and the
corresponding node identification or service discovery
procedures. The scenario is depicted in Figure 1. In
a first step, the appropriate node needs to be identi-
fied. Then, routing techniques are required to find an
adequate path to the service location.

Routing approaches for WSNs are still dominated
by table-driven solutions known from Mobile Ad Hoc
Networks (MANETs), even though these might be not
scalable due to the high costs for topology discovery
and network management issues. Furthermore, service
discovery is mainly based on either pre-programmed ad-
dresses or publish-subscribe techniques using centralized
service brokers.

Both problem domains are being addressed by recent
Distributed Hash Table (DHT) based approaches for
data management in WSNs. In general, such solutions
can be classified in three main categories: real location
based, virtual location based, and location independent.

replication

A

B

C

(1) Resource identification
(/ localization)

(2) Routing and data
(pre-)processing

Figure 1: Problem description: service identifi-
cation and efficient routing

Geographic routing is conceptually an excellent idea for
use in sensor networks. The required geographic coor-
dinates can be gained either through GPS or by means
of self-localization. Geographic Hash Tables (GHTs) [4]
hash keys into geographic locations, so the data items are
stored on the sensor node geographically nearest the hash
of its key. For routing, protocols such as Greedy Perime-
ter Stateless Routing (GPSR) are used that use the
physical location of nodes. Unfortunately, geographic
routing does not ensure adequate results in all topologies.
Problems with dead ends and costly recovery procedures
make these approaches suitable for selected application
scenarios only.

Most recent approaches for data management and
routing in WSNs rely on virtual coordinates. Inspired
by DHTs and bringing this idea down to the underlay,
efficient routing paths can be maintained together with
the capability to store information and data in a DHT-
like system. The first solution in this field has been
Virtual Ring Routing (VRR) [2]. It uses a location
independent unique key to identify nodes and to organize
them into a virtual ring. For routing purposes, each
node maintains a set of virtual neighbors of cardinality
r that are nearest to node identifier in the virtual ring.
For packet forwarding, VRR picks the node with the
identifier closest to the destination from the routing
table and forwards the message towards that node. The
problem of this protocol is that the adjacent nodes in
the ring can be far away in the real network. Moreover,
dead ends cannot be completely prevented.

Recently, Virtual Cord Protocol (VCP) has been pro-
posed, which shows a couple of advantages compared to
VRR [1]. The concept of the protocol always ensures

1

reachability of all destinations and optimizes routes on
the fly by exploiting information about physical neigh-
bors. Using the concept of indirections, VCP also pro-
vides means for efficient resource and service discovery.
In particular, VCP exploits the inherent use of a DHT
to organize data in the network together with indirec-
tions to store and to retrieve service locations in a pub-
lish/subscribe manner. Node providing services publish
this information in the virtual cord by means of hashing
the information to a particular destination and storing
the node’s location at that destination. Then, nodes
may use (subscribe to) the service by hashing the service
again, retrieving the service’s location (i.e., following the
indirection), and finally accessing the service. A similar
approach has been described by Jung et al. [3]. However,
a separate overlay is used in this solution that requires
additional effort for underlay routing.

This demo shows the applicability of VCP for service
discovery and efficient routing in sensor networks. After
evaluating the protocol using comprehensive simulation
studies in previous work [1], we implemented the protocol
on the BTnode sensor node platform, which is based on
an Atmel ATmega128 micro controller and a CC1000
radio transmitter. We show the feasibility of the protocol
implementation in a small but easy to understand demo
scenario.

2. SERVICE DISCOVERY WITH VCP
The Virtual Cord Protocol (VCP) exploits the con-

cepts of DHTs to combine data management with effi-
cient routing in sensor networks. The main idea is to
arrange all the nodes in the network in form of a virtual
cord. The topology of this cord must not be “optimal”
in any sense because routing is organized by exploiting
information about the physical neighbors for greedy for-
warding. Nevertheless, the cord ensures a connection
between any two nodes. An application-dependent hash
function is used for associating data items to nodes.
Thus, both the push and the pull principles are sup-
ported – pushing to a node and pulling data from a
node. The same concept can be used for reliable service
discovery in massively distributed systems.

2.1 Cord setup and routing
In the following, we briefly introduce the cord setup

and routing process. More details and the complete
algorithms can be found in [1]. One node must be pre-
programmed as initial node, i.e. it gets the start position
S. In the current version of VCP, hello messages are
used to discover the network topology. Besides the as-
signed virtual address, these messages carry all relevant
information including the physical and the virtual neigh-
bors. Based on all received hello messages (at least one
is required) in the last time interval, a new node can
determine its position in the cord.

0.5 0.75

0.6

0.5 0.75

0.52

0.5

0.55

0.75

0.6

0.5 0.75

0.6

Figure 2: Basic join operation for an intermedi-
ate and a “virtual” node

If the new node can communicate with an end of
the cord, it just becomes successor or predecessor of
this node. If at least two other nodes that are virtual
neighbors in the cord are detected, the new node gets
a virtual position in between these two. If this is not
the case, i.e. the new node has contact to at least one
non-end node and to no virtual neighbors in the cord,
then the new node asks its neighbor node to create a
co-located virtual position. The new node then gets a
position between the real and the virtual position of its
neighbor. Figure 2 outlines the join process for a normal
join (steps 1+2) and for the use of a virtual position
(steps 3+4).

2.2 Service discovery
Service discovery and data management are handled

by the protocol inherent capabilities to identify virtual
coordinates of “items” in the network. An application-
dependent hash function is used to hash specific data to
nodes in the network. This functionality supports the
classical push and pull principles to access data in the
sensor network, i.e. the hash value of an identifier can
be used to store data at this position in the cord or to
retrieve data, respectively.

Similarly, service discovery can be organized by hash-
ing a service description to a virtual position. At this
position, a link can be stored that points to the address
of the node that provides this service. Thus, using indi-
rections like in overlay networks, VCP can identify and
locate services in the sensor network as well as route

0.53

0.52

0.5 0.75

0.78

0.8
1

0.9
0.6

0.67

0.13
0

0.25

0.4

0.43
Service
Provider

Directory
Service

2) Routing + Access

1) Identification

Figure 3: Service discovery using indirections
and VCP routing

2

Sink node
pos Virtual cord position

Pre Predecessor in the cord

Succ Successor in the cord

Hops Distance to sink

Figure 4: Cord visualization in the lab demo

packets to the identified service provider. Specifically,
nodes may store their virtual coordinate, that is the
local VCP address, at H(service). Basically, this con-
cept follows the publish/subscribe paradigm. Services
announce their presence by publishing their identity in
the DHT. Then, nodes my use (subscribe to) the service
by retrieving the service’s virtual coordinate and using
VCP to route to the service.

The concept is shown in Figure 3. VCP connects all
the nodes in a virtual cord. This cord is specified in the
setup phase by allocating virtual addresses to each node.
These addresses in the range [0, 1] are used together with
a hash function mapping items to virtual node addresses.
In our example, 15 nodes are depicted. In a first step,
the service provided by node 0.78 is stored in the DHT
(in this example, the service ID is 0.67). Access to the
service is then requested by node 0.25. It first uses the
same hash function to find the directory service for the
particular service. So, it first places a request to node
0.67 to discover the cord address of the service provider.
Then, it is able to directly access the service provider
(node 0.78) to access the service.

3. IMPLEMENTATION AND DEMO
One of the main questions about VCP was concern-

ing with the feasibility of an implementation in a real
world scenario. Therefore, we started an implementa-
tion project with two intentions. First, in order to prove
the feasibility of VCP to operate on low resource sensor
nodes and, secondly, to identify possible issues due to
hardware limitations.

For the implementation, we chose the BTnode sensor
platform. It is comparable to the widely used Mica
mote series. An Atmel ATmega 128 micro controller

builds the basis of this node supported by a CC1000
radio transceiver and a Bluetooth module. We used the
BTut operating system, which has been developed based
on the open source Nut/OS. Similar to TinyOS, it is a
real-time embedded operating system compatible with
ATmega processor family. In addition to minimal OS
services, it provides a multi threaded system architec-
ture. We used this thread support to schedule tasks
for hello, insert, query messages. The used BTnode
sensor nodes primarily use the Berkeley MAC (BMAC)
protocol.

The size of the compiled system to be installed on the
BTnode is about 87 kByte. The file contains both the
text and the data sections. The text portion contains
the actual instructions, while the data contains the pro-
gram’s data part. The resulting file size is reasonable
for sensor nodes of this class. To simplify the adminis-
tration of the network we implemented some functions
and registered them to be called from the terminal:

• printN displays some debugging information infor-
mation about the node (like its virtual position),

• setpos 0 is used to initialize the first node, and

• sink 1 assigns the current node as a sink.

In our demo, we are going to show the setup of the
virtual cord. We connect a single node to a laptop that
announces a new service to the network: being a sink
for network management information. All other nodes
query the hash table for the current position of the
sink node and, if successful, start sending their routing
table entries to the sink. Using this information, the
laptop graphically shows the connected nodes, their cord
addresses, and the cord structure. The setup is shown
in Figure 4.

4. REFERENCES
[1] A. Awad, C. Sommer, R. German, and F. Dressler.

Virtual Cord Protocol (VCP): A Flexible DHT-like
Routing Service for Sensor Networks. In IEEE
MASS 2008, pages 133–142, Atlanta, GA,
September 2008. IEEE.

[2] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron. Virtual Ring Routing: Network
routing inspired by DHTs. In ACM SIGCOMM
2006, Pisa, Italy, September 2006.

[3] J. Jung, S. Lee, N. Kim, and H. Yoon. Efficient
service discovery mechanism for wireless sensor
networks. Elsevier Computer Communications,
31(14):3292–3298, September 2008.

[4] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin,
R. Govindan, L. Yin, and F. Yu. Data-Centric
Storage in Sensornets with GHT, a Geographic
Hash Table. ACM/Springer Mobile Networks and
Applications (MONET), Special Issue on Wireless
Sensor Networks, 8(4):427–442, August 2003.

3

