
Data-Centric Cooperative Storage in Wireless
Sensor Network

Abdalkarim Awad, Reinhard Germany and Falko Dressler
Computer Networks and Communication Systems

University of Erlangen, Germany
{abdalkarim.awad,german,dressler}@informatik.uni-erlangen.de

Abstract—Although commonly used sensor nodes are resource-
limited devices, enabling cooperation among these devices can
help building very powerful systems. Besides other character-
istics, storage capabilities of individual sensor nodes have to
be considered as this might be very small compared to the
collected sensor data. The temporal availability of sink nodes
or the importance of collected data are not equal for all nodes
and, therefore, demand storage of the generated data locally for
later retrieval. Furthermore, data items (detected events) may
be collected at different rates, which can lead to hotspot-like
storage requirements. In this paper, we introduce a data-centric
cooperative storage mechanism for wireless senor networks. Our
approach is based on Virtual Cord Protocol (VCP), a virtual
relative position based efficient routing protocol that also provides
means for data management, e.g. insert, get, delete, and replicate,
as known from typical Distributed Hash Table (DHT) services.
Data items are distributed deterministically over several nodes
in the same vicinity. Thus, storing and retrieving data items
typically require communication with local nodes. To maintain
information about stored information, we use a bloom filter to
track the nodes that are storing particular items.

I. INTRODUCTION

Earlier generations of sensor networks, which have been
used in a regular topographic mesh, like the radar network
used in air-traffic control and nationwide weather stations,
use special computers and communication protocols mak-
ing them very expensive. For some application scenarios,
a network of sensors and actuators can be built using the
existing wired technologies. For many other application types,
however, wiring is not practical, expensive, and can make it
difficult to install the sensors close to the phenomenon under
observation [1]. Therefore, Wireless Sensor Networks (WSNs)
present a cost-effective, practical, and capable solution to
support many application scenarios. In spite of the fact that the
capabilities of sensor nodes are very limited, WSN application
domains are diverse and they can operate a variety of data
types, including simple payload such as temperature, light
intensity, and humidity; or more complex data types such as
sound, images, or even more complicated data like video.

Distributed Hash Tables (DHTs) [2] ensure O(1) complexity
to insert and lookup data items. Moreover, they work in a
distributed and self-organized manner. These characteristics
make them attractive for use in WSNs. The main idea is
simple: Data items are associated with numbers and each node
in the network is responsible for a range of these numbers.
Therefore, it is easy to identify the node at which a data

item is stored. Usually, DHTs are built on the application
layer and rely on an underlying routing protocol that provides
connectivity between the nodes. Systems like Chord [3],
Pastry [4], and CAN [5] have been implemented to work on
the Internet for scalable file sharing applications. The nodes
communicate taking advantage of the already existing routing
protocols in the Internet. Several DHTs offer cooperative-
storage (and data replication) mechanisms, for example in
Chord, the successor list can be used to store data on behalf
of other nodes. The main drawback of implementing DHTs
as an overlay in WSNs is the separation between the logical
(overlay) and physical (underlay) networks. This separation
poses extra, possibly avoidable overhead and complexity to
the system as each layer has its own routing schemes.

Virtual Cord Protocol (VCP) [6]–[8] is a DHT-like protocol
in which all data items are associated with numbers in a
pre-determined range [S, E], i.e. a one-dimensional cord. All
the available nodes capture this range. Thus, each node in
the network is responsible for a portion of the entire space
defined by its relative position to physical neighbors. This
way, it is possible to store data on the nodes by mapping data
items deterministically in space using a hash function. The
corresponding key-value pair is then stored at the node whose
position is closest to the key. Routing of packets is performed
based only on the position of the physical neighbors. To
retrieve data items, nodes have to apply the same hash function
to find the key value. They then can route the request to the
node whose position is closest to the key.

To this end the authors have investigated the performance
of VCP assuming each node can store all data items it is
responsible for. In this paper, we extend VCP to support
cooperative storage among nodes. The rest of the paper is
organized as follows. In Section II, we discuss relevant related
work. In Section III, we provide an overview of VCP and,
in Section IV, we present our cooperative storage scheme.
Afterwards, we evaluate the performance of the proposed
scheme in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Virtual Ring Routing (VRR) [9] is a routing protocol
inspired by overlay DHTs. Besides routing, it provides tradi-
tional DHTs functionality. VRR uses a unique key to identify
nodes. This key is a location-independent integer. Similar to
Chord [3], VRR organizes its nodes in a virtual ring in the



order of increasing identifiers. VRR reduces the routing tables
from two in overlay implementation to one by combining the
routing and DHTs. Nevertheless, the successor and predeces-
sor of a node may be located far away. Thus, due to the
distance of candidate nodes to store data items on behalf of
a particular node, cooperative storage may require multi-hop
data transmission, which is considered unsuitable for WSNs.

Geographic Hash Tables (GHTs) [10]–[12] hash keys into
geographic locations, so data items are stored on the sensor
node that are geographically nearest to the hash of its key.
They replicate the stored data locally to ensure persistence in
the case that nodes fail. Like normal DHTs, GHTs are built
as overlays and rely on underlay routing. In fact, it uses the
Greedy Perimeter Stateless Routing (GPSR) [13] algorithm
for low-level routing. GPSR uses the physical location of
nodes for routing purposes. Thus, it is assumed that all nodes
in the network know their location by using localization
methodologies like GPS [14]. GHTs also employ a scheme
called Structured Replication in DCS (SR-DCS) to achieve
load-balancing in the network. SR-DCS uses a hierarchical
decomposition of the key space and associates each event-
type e with a hierarchy depth d. It hashes each event-type
to a root location. For a hierarchy depth d, it then computes
4d − 1 images of root. When an event occurs, it is stored at
the closest image node. Queries are routed to all image nodes,
starting at the root and continuing through the hierarchy. The
performance of SR-DCS depends on the location of nodes
that detect an event. SR-DCS performs well if the locations
of nodes detecting an event are uniformly distributed over the
area. However, all values of an event will be stored on the same
image if the event is detected by one node (e.g., a node has
specific sensor) or the nodes who detect an event are located
in the same region. The image nodes are located not in the
same vicinity, which can cause extra communication overhead
to retrieve all values (or finding a statistical value, e.g. average
or maximum values) of an event.

EnviroStore [15] is a cooperative storage scheme for sensor
networks. EnviroStore focuses on redistribution of data when
the storage capability of a sensor node exceeds a given
threshold. In this approach, each node stores information about
storage capabilities of the nodes in its communication range.
This way, when a node becomes highly loaded, it migrates part
of its load to another, less loaded node. Furthermore, mobile
data mules are used in this scheme to carry data form loaded
partitions to unloaded ones. The mules also responsible for
transferring the data to the base station. It is not clear in this
scheme how to use nodes that are not in the communication
range of the loaded node if the nodes in the communication
range are loaded.

III. VIRTUAL CORD PROTOCOL (VCP)

In this section, we briefly describe the design of the VCP
before studying the cooperative storage in the next section. As
stated previously, VCP is a DHT-like protocol. All data items
are associated with numbers in a pre-determined range [S, E]

0.52

0.5 0.75 1

0.6

0
0.5 0.75 1

0

0 1 0.5 1

0

0

0.5 0.75 1

0.6

0

Fig. 1. Join operation in VCP

and the available nodes capture this range. Thus, each node
captures a part of the entire range.

When a node joins the VCP network, it must set three
important variables: its position, its predecessor, and its suc-
cessor in the virtual cord. Each node determines these values
based on the positions of its single-hop neighbors. First, one
node must be pre-programmed as the initial node, i.e. it gets
the position S. The joining node has to discover the network
structure, i.e. all neighboring nodes and their position in the
cord. In the proactive implementation of VCP, the nodes that
already joined the network send hello messages by means of
broadcasting, i.e. each node broadcasts a hello periodically.

Based on the received hello messages, the joining node
gets information about its physical neighbors and their adja-
cent nodes. If the node that has sent the hello message is
not in the physical neighbors table, it is added. Otherwise,
the entry is updated accordingly. Of course, the hello mes-
sage updates also the successor and predecessor information.
If the node has not yet joined the network, it calls the
SetMyPosition() function – an artificial join delay Tps

must have elapsed before re-asking for a relative position.
If a node can communicate with an end node, i.e. a node

that has either position S or E, the new node takes over
this end value as its virtual cord position. The old node gets
a new position between the end value and its successor or
predecessor, depending on the its old position. The new node
becomes predecessor of the old node if it received position S.
Otherwise it becomes its successor.

If a node can communicate with two adjacent nodes in the
cord, the new node gets a position between the values of
the two adjacent nodes. Additionally, the new node becomes
successor of the old node with the lower position value and
predecessor to the node that has the higher position value.

Finally, if the new node can communicate with only one
node in the network, which is neither at S nor E, then the
new node asks that node to create a virtual position . This
virtual node gets a position between the position of the real
node and its successor or predecessor. The new joining node



0.53

0.52

0.5 0.75

0.78

0.8
1

0.9
0.6

0.67

0.13
0

0.25

0.4

0.43

Put(Data)

Get(Data)

Fig. 2. An example for a Inserting/retrieving data using the virtual cord and
greedy routing exploiting local neighborhood information

can now get a position in between the real and the virtual
position of the node in the cord. Notice that the node has to
wait some time before asking for a virtual node. This timeout
is used to encourage the node to find multiple neighbors, i.e.
to get a proper position in the cord without the need to setup
a virtual position. In previous experiments, we discovered that
fewer virtual nodes lead to better routing paths [7].

Figure 1 shows the joining process for a six node network.
The outer circle indicates the communication range of the
newly joining node. In the first five steps, nodes are placed in
the cord according to the simple rule to create new addresses
either at an end or in the middle of the cord. In the sixth step,
a virtual node is created to join node 0.52.

For routing, each node has to know its successor and
predecessor as well as the physical neighbors. Then a greedy
algorithm is employed to send packets to the node of the
physical neighbors that has the closest position to the des-
tination until there is no more progress and the value lies
between the positions of the predecessor and successor. VCP
inherently relies on a previously established cord. Therefore,
greedy routing will always discover a path to the destination
– it is not possible to run into a dead end. Additionally, VCP
allows to take shortcuts whenever a physical neighbor with a
virtual number is available that is closer to the destination.

For example, if node 0.25 in Figure 2 produces a data item,
then it has to hash this item to the correspondent hash value.
Continuing with our example, we assume a hash value of
0.781. Thus, node 0.25 will forward the message towards the
destination node, i.e. in our case to node 0.5, which has the
closest position to the value among the physical neighbors.
Afterwards, node 0.5 will send it to node 0.75, then node
0.75 will send it to node 0.78. Node 0.78 will finally store the
data and will not send it any more because there is no more
progress possible and the value lies between the positions of
the predecessor and the successor.

IV. COOPERATIVE STORAGE

VCP inherently offers a cost-effective mechanism to find
alternative nodes which can offer part of their storage capacity
to store data in place of other nodes. In VCP, these nodes are

Start End

Full?Drop

Full?send(Succ,pkt)

Start End

Full?send(Start,pkt)

Full?send(Succ,pkt)

Fig. 3. VCP-based cooperative storage:Ring disabled(up) and Ring enabled
(bottom)

the successors and predecessors on the cord. This way, if the
storage capacity of a node is full, this node can send new
data messages to either its successor or its predecessor. In our
system, we use the successor nodes. If the storage capacity of
successor also reached its limits, it can in turn send the new
data items to its own successor until reaching a node that can
store the data item. Recall that successors (and predecessors)
of a node are located in the same vicinity, therefore, storing
data on the successor always requires only single-hop data
transmission. In order to update a data item that is not available
at the node itself, it has to ask its succeeding nodes, whether
the item has been stored at this place.

It can happen that storage capacity of the nodes at the end
of the cord gets exhausted. In this case, we can either treat the
cord as a ring (ring enabled) or simply drop the packets (ring
disabled). If the ring is enabled, the successor of the end node
is the node at the start of the cord. This approach implies on
average a path length of O(

√
N) between the nodes at E and

S. Taking into consideration that this case does not happen
often, the effectiveness of our cooperative storage approach
should not be affected. Figure 3 shows cooperative storage
based on VCP.

Upon receiving a query for a key, the node has to search
locally and send the query to its successor(s). However, if there
are no constraints on the number of succeeding nodes to search
on, the search process will take long paths. In order to avoid
the extra search overhead that can be introduced as a result
of long searches on the succeeding nodes, Bloom filters [16]
can be used. Bloom filters offer a way of representing a set
of elements as a compact summary.

Consider a set of n elements to be represented using a m-bit
vector, which is initially set to 0. A set of k independent hash
functions h1, . . . , hk is chosen where each function maps an
input item to a random number uniformly distributed in the
range [1, . . . ,m]. For each element x to be represented, the
bits at positions hi(x) are set to 1 for 1 ≤ i ≤ k. Obviously,
a bit may be set to 1 multiple times and the bit vector only
serves as a summary.

To figure out if an element y is in the data list, we check
the positions h1(y), . . . , hk(y) in the bit vector. If they are all
set to 1, then we can infer that y is in the data-list with a high
probability – though there is a probability of a false positive.
The salient feature of a Bloom filter is that the probability of
false positives decreases exponentially with m if the number



0.53

0.52

0.5 0.75

0.78

0.8
1

0.9
0.6

0.67

0.13
0

0.25

0.4

0.43
Full? Store On Succ

Put(Data)

Get(Data)

Fig. 4. An example for a inserting/retrieving data and using the successor
on virtual cord to store data on behalf of a storage-exhausted node

of hash functions k is chosen optimally. It has been shown
in [17], [18] that the probability of a false positive is given by
(1− (1− 1

m )nk)k.
We now explain how this concept can be applied to the

problem of data storage in a sensor network using VCP. Each
node maintains a Bloom filter for its successor. Thus, the
Bloom filter can be used to compactly represent which nodes
store data on behalf of other nodes. By means of Bloom filter
based matching, we can infer if a node stores a certain data
item for other nodes. Hence, a node can then forward the
query to its successor only if this node has sent the data item
corresponding to the query to its successor.

Figure 4 depicts an insertion/retrieving example on a
storage-exhausted node. We use the same example discussed
for the routing of VCP. If the data item with hash value 0.781
is detected frequently, then, because sensor nodes have limited
resources, it can happen that the storage capacity of node 0.78
gets exhausted. Now node 0.78 has to store this data item on
its successor. Hence, it will send the data items to node 0.8
and insert this value in the successor Bloom filter.

A query to this data item will also reach node 0.78. Now,
this node will check if data 0.781 was sent to its successor
by examining the bloom filter. Because this test will return a
positive answer, node 0.78 will forward the query to node 0.8.
It is important to say that sending the answer to the originating
node does not require to follow the same path which was used
by the query. In the example, node 0.8 will send the answer
to node 0.75 because it is closer to the destination (node 0.67)
than node 0.78.

V. PERFORMANCE EVALUATION

We implemented a simulation model of the VCP in OM-
NeT++ [19]. OMNeT++ is a discrete event based simulator
free for academic use. We also used the INET framework
that provides detailed simulation models of typical Internet
protocols – including our own implementation of VCP. In our
simulation, we built our protocol on the top of the IEEE 802.11
Wireless LAN protocol. We investigated our approach for
different network sizes between 100 and 400 nodes. We also

200 250 300 350 400 450 500

0
20

0
40

0
60

0
80

0
10

00

time in (s)

D
at

a 
S

to
re

d

without co−storage
with co−storage/ring disabled
with co−storage/ring enabled

Fig. 5. Number of stored data items in the network

adjusted the plane dimensions to keep the density of nodes
per square meter constant.

To explore the effect of storage hot-spots, we simulated
different number of keys. Furthermore, we studied the storage
capacities of nodes in which we varied the percentage of
storage capacity that nodes offer to store data on behalf of
other nodes. For all experiments we used 200 s for network
initialization. In the default configuration after the initialization
period, 3 randomly selected nodes started to generate one data
item per second. Each node started the data generation at a
random time in the interval [200−220]s and all nodes stopped
generating data at 520 s. One node was configured as a base
station. It started sending queries at time 300 s and stopped
at 900 s. The query should return an accumulated value by
visiting all nodes that hold a data item for a specific key. The
default network size was 200 nodes, the number of keys was
20, the storage capacity of all nodes was 20 units of which
the nodes were allowed to offer 100 % to store data on behalf
of other nodes. We ran each simulation experiment at least
5 times. We used cubic smoothing spline to show the results
in this paper, because smoothing spline can be used well for
estimating trends in time series.

A. With/Without co-storage

To explore the effectiveness of the proposed approach, we
first investigated the ability of nodes to store data for later
retrieval with and without cooperative storage schemes. We
used a network with limited storage capacity.

Figure 5 shows the number of data items stored correctly in
the network. In the configuration without cooperative storage
the network was not able to store data after about 350 items
have been generated. This can be explained as follows: If the
keys were uniformly distributed as well as the virtual position
of nodes, then at most 20 nodes will participate to store the
generated data items. Thus, a maximum limit of 400 data items
can be stored. For any non-uniform distribution, this limit is
much smaller. Enabling cooperative storage, such a limit is no
longer valid. If we limit the cooperative storage only to the
successor (ring disabled), we notice that some items cannot be
stored. However, this is limited and happens only to data items
mapped on the last portion of the cord and occurs only when



300 400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in (s)

su
cc

es
s 

ra
tio

without co−storage
with co−storage/ring disabled
with co−storage/ring enabled

Fig. 6. Query success ratio

200 250 300 350 400 450 500

0
10

20
30

40
50

time in (s)

N
um

be
r 

of
 H

op
s

without co−storage
with co−storage/ring disabled
with co−storage/ring enabled

Fig. 7. Data insertion path length

this portion is already filled. Using the ring enabled mode to
store data, the storage capacity in the network can be optimally
utilized.

In order to measure availability, we use the success ratio
as a key metric. This is measured after at least one event for
each key has been inserted into the cord. We compute the
fraction of events returned in each response, divided by the
total number of events known to have been generated for that
particular key. As can be seen in Figure 6, without cooperative
storage the success ratio starts at an optimal value and then
declines substantially as the number of detected events for a
key exceeds the storage capacity of each node.

We see the price of cooperative storage in stretch of the path
length as shown in Figure 7 for data insertion and in Figure 8
for data retrieval. The insertion path length increases each time
a node’s storage capacity get exhausted. Similarly, for queries
that were sent after the insertion phase, each query has to
visit all inserted data. Basically, the path length for inserts
and queries depends on two parts: the path to the node with
the ID closest to the current key and the path from this node
to the node that is actually storing the data. For the queries, in
theory the path length is twice as much as for insertion (the
answer packet has to travel back the same path). However,
as can be seen in Figure 8, there is only a little increase in
the path length compared to the insertion path length. VCP
optimizes the path for the answer by sending it on a near
optimal path directly to the node originating the query.

300 400 500 600 700 800 900

0
10

20
30

40
50

time in (s)

nu
m

be
r 

of
 h

op
s

without co−storage
with co−storage/ring disabled
with co−storage/ring enabled

Fig. 8. Query path length

200 250 300 350 400 450 500

0
10

20
30

40
50

time in (s)

nu
m

be
r 

of
 h

op
s

100 nodes
200 nodes
400 nodes

Fig. 9. Data insertion path length for different network sizes

B. Performance with different network sizes

In the remaining set of experiments presented in this paper,
we evaluated the insertion path length in the ring enabled
mode. In all these experiments, the network was able to store
all generated data. Thus, the success rate was close to 100 %.

The second set of experiments evaluates the performance
of our cooperative storage scheme as the number of nodes
increases while keeping the other parameters constant. We
investigated three network sizes of 100, 200, and 400 nodes.
Figure 9 shows the required path length to insert data items.
At the beginning, we see that the larger the network size is the
larger is the path length. Nevertheless, when individual nodes
exhausted their storage capacity, and thus cooperative storage
is required, this rule is no longer valid. Here, the number of
nodes traversed to store data items in smallest network (100
nodes) is higher compared to the larger networks. This is a
result of the fact that the probability to find a non-overloaded
node in the smallest network is smaller than in the larger
networks, which results in many successive overloaded nodes.
Hence, the packet has to be transmitted through several nodes
until it reaches a non-overloaded node.

C. Performance with different number of keys

To explore the effect of hot-spot storage nodes, we evalu-
ated the performance of our cooperative storage scheme for
different numbers of keys while keeping the other parameters
constant. The result of using only a small number of keys in



200 250 300 350 400 450 500

0
10

20
30

40
50

time in (s)

nu
m

be
r 

of
 h

op
s

5 Keys
20 Keys
100 Keys
300 Keys

Fig. 10. Data insertion path length for different number of keys

200 250 300 350 400 450 500

0
10

20
30

40
50

time in (s)

nu
m

be
r 

of
 h

op
s

10 units
12 units
15 units
18 units
20 units

Fig. 11. Data insertion path length for different storage capacities

the network is that more data items will be mapped to the
same position. This effect can be seen in Figure 10: As the
number of keys decreases, the insertion path length increases.

D. Performance with partial storage capacity

Finally, to investigate the effect of offering only a part of the
available storage capacity for cooperative storage, we changed
the offered storage capacity from 100 % to 50 %. We fixed the
maximum storage capacity at 20 units in a network of 100
nodes. As can be seen in Figure 11, it is preferable to use the
maximum available memory to store data in place of other
nodes.

VI. CONCLUSION

In this paper, we presented a fully self-organizing data-
centric cooperative storage system that maximizes the usage of
network storage in presence of limited storage capacity nodes
using the virtual position of nodes generated by VCP. In the
proposed scheme, each node maintains a Bloom filter-based
compact list of the inserted data. This list is used to efficiently
restrict the query forwarding. Our evaluation study validates
that our scheme can effectively utilize the network storage
capacity of individual sensor nodes to accommodate the most
sensory data.

ACKNOWLEDGMENT

This work is supported by DAAD grant “Peer-to-peer tech-
niques for sensor networks” under grant number 331 4 04 001.

REFERENCES

[1] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons, 2005.

[2] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applica-
tions. Springer, 2005, vol. LNCS 3485.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications,” IEEE/ACM Transactions on Net-
working (TON), vol. 11, no. 1, pp. 17–32, February 2003.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, November 2001, pp. 329–350.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” in ACM SIGCOMM 2001, San
Diego, CA, USA, 2001, pp. 161–172.

[6] A. Awad, R. German, and F. Dressler, “P2P-based Routing and Data
Management using the Virtual Cord Protocol (VCP),” in 9th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(ACM Mobihoc 2008), Poster Session. Hong Kong, China: ACM, May
2008, pp. 443–444.

[7] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord Proto-
col (VCP): A Flexible DHT-like Routing Service for Sensor Networks,”
in 5th IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (IEEE MASS 2008). Atlanta, GA: IEEE, September 2008, pp.
133–142.

[8] A. Awad, L. R. Shi, R. German, and F. Dressler, “Advantages of Virtual
Addressing for Efficient and Failure Tolerant Routing in Sensor Net-
works,” in 6th IEEE/IFIP Conference on Wireless On demand Network
Systems and Services (IEEE/IFIP WONS 2009). Snowbird, UT: IEEE,
February 2009, pp. 111–118.

[9] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual Ring Routing: Network routing inspired by DHTs,” in SIG-
COMM 2006, Pisa, Italy, September 2006.

[10] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “GHT: A Geographic Hash Table for Data-Centric Storage,”
in 1st ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA 2002), Atlanta, Georgia, September 2002.

[11] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
Centric Storage in Sensornets,” ACM SIGCOMM Computer Communi-
cation Review, vol. 33, no. 1, pp. 137–142, January 2003.

[12] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
and F. Yu, “Data-Centric Storage in Sensornets with GHT, a Geo-
graphic Hash Table,” ACM/Springer Mobile Networks and Applications
(MONET), Special Issue on Wireless Sensor Networks, vol. 8, no. 4, pp.
427–442, August 2003.

[13] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” in 6th ACM International Conference on
Mobile Computing and Networking (ACM MobiCom 2000), Boston,
Massachusetts, USA, 2000, pp. 243–254.

[14] T. A. Herring, “The Global Positioning System,” Scientific American,
vol. 274, no. 2, pp. 44–50, February 1996.

[15] L. Luo, C. Huang, T. F. Abdelzaher, and J. Stankovic, “Envirostore:
A cooperative storage system for disconnected operation in sensor
networks,” in INFOCOM, 2007, pp. 1802–1810.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.21.9672

[18] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
January 2005.

[19] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in Euro-
pean Simulation Multiconference (ESM 2001), Prague, Czech Republic,
June 2001.


