
Advantages of Virtual Addressing for Efficient and
Failure Tolerant Routing in Sensor Networks

Abdalkarim Awad, Lei ’Ray’ Shi, Reinhard German and Falko Dressler
Computer Networks and Communication Systems

Dept. of Computer Science, University of Erlangen, Germany
{abdalkarim.awad,german,dressler}@informatik.uni-erlangen.de

Abstract—We study the capabilities of virtual addressing
schemes for efficient and failure tolerant routing in sensor
networks. In particular, we present the Virtual Cord Protocol
(VCP) that uses techniques known from peer-to-peer networks,
i.e. Distributed Hash Tables (DHTs) are used to associate data
items in sensor networks with particular node addresses. The
addresses of nodes are dynamically maintained by the protocol to
form a virtual cord. VCP uses two mechanisms for finding paths
to nodes and associated data items: First, it relies on the virtual
cord that always points towards the destination. Furthermore,
locally available neighborhood information is exploited for greedy
routing. Our simulation results show that VCP is able to find
paths close to the possible shortest path with very low overhead.
The routing performance of VCP, which clearly outperforms
other ad hoc routing protocols such as Dynamic MANET On
Demand (DYMO), is similar to other virtual addressing schemes,
e.g. Virtual Ring Routing (VRR). However, we improved VCP to
handle frequent node failures in an optimized way. The results
presented in this paper outline the capabilities of VCP to handle
such cases.

I. INTRODUCTION

In recent years, Wireless Sensor Networks (WSNs) have
changed from purely academic research testbeds into real-
world applications. Nevertheless, many of the original research
issues still apply [1]. Among others, routing has attracted many
research projects. Over the last decades, a wide variety of
routing protocols has been developed in the domain of sensor
networks [2]. However, still most practical approaches rely on
standard Mobile Ad Hoc Network (MANET) protocols such
as Ad Hoc on Demand Distance Vector (AODV), Dynamic
MANET On Demand (DYMO), or Dynamic Source Routing
(DSR). On the other hand, WSNs show specific capabilities
that demand completely different routing approaches. One of
the major requirements in the domain of sensor networks is
the need for network-centric operation [3], [4]. This property
relies on the main working principles of WSNs, i.e. data is
collected in a distributed way and needs to be analyzed as
close as possible to the data source. This working behavior
saves communication and energy resources in sensor networks
to a large extend. Combined with data base technology such
as data stream query processing, further optimization can be
achieved [5].

These observations motivate the need to support the combi-
nation of data storage and communication capabilities. Inter-
estingly, similar requirements can be observed in a different
application domain, i.e. in peer-to-peer networks working

over the Internet. Here, Distributed Hash Tables (DHTs) are
successfully used to distribute data over a large number of
peers and to find optimal paths towards this data [6]. This
operation is supported by hashes, i.e. virtual addresses.

In this paper, we analyze the advantages of using virtual
addressing schemes in WSNs. Actually, a number of proposals
have been made that are based on virtual addresses for
routing or data storage [7]–[10]. Motivated by studies on
dynamic address allocation techniques that do not scale well in
sensor networks [11], we address two objectives in this paper:
efficient routing towards clearly identified data items and fault
tolerance w.r.t. frequent node failures. Our study is based on an
extended version of our Virtual Cord Protocol (VCP) [9], [12],
which follows similar concepts as used in DHTs to provide
O(1) complexity for storing and retrieving data items in the
network.

A. Related Work

DHT based approaches for data management in WSNs can
be classified in three main categories: real location based,
virtual location based, and location independent. Geographic
Hash Tables (GHTs) [7] hash keys into geographic locations,
so the data items are stored on the sensor node geographically
nearest the hash of its key. For routing, protocols such as
Greedy Perimeter Stateless Routing (GPSR) [13] are used that
use the physical location of nodes. Thus, it is assumed that
all nodes in the network exactly know their location. Since
greedy forwarding routing mode fails in case of voids, GPSR
uses another mode for routing, which uses a planar subgraph
without crossing edges.

One of the first virtual coordinate based protocols was Geo-
graphic Routing Without Location Information (GRWLI) [14].
Instead of using real node locations, it constitutes an n-
dimensional virtual coordinate system, which is based on find-
ing the perimeter nodes and their locations. Then, a relaxation
algorithm is used to find the virtual location of all nodes.
However, the drawback of having many dimensions resulting
from a large n is that forming virtual coordinates requires a
long time to converge [15]. Subsequently, it consumes more
communication power. Again, the problem of possible dead
ends exists here, so the greedy forwarding algorithm can not
guarantee reaching the correct destination.

Virtual Ring Routing (VRR) [8] is a routing protocol
inspired by overlay DHTs. VRR uses a unique key to iden-

978-1-4244-3375-9/09/$25.00 ©2009 IEEE 111

tify nodes. This key is a location independent integer. VRR
organizes the nodes into a virtual ring in order of increasing
identifiers. For routing purposes, each node maintains a set
of virtual neighbors of cardinality r that are nearest to node
identifier in the virtual ring. Each node also maintains a
physical neighbor set with the identifiers of nodes that it can
communicate with directly. A proactively maintained routing
table identifies the next hop towards each virtual neighbor. The
forwarding algorithm used by VRR is quite simple. VRR picks
the node with the identifier closest to the destination from the
routing table and forwards the message towards that node. The
problem of such protocols is that the adjacent nodes in ring
can be far away in the real network. As a result, forwarding to
the nearest node can result in a very long path. Moreover the
scalability is a problem because, as the network gets larger, the
protocol needs to maintain routing tables of increasing size.

GSpring [16] tries to improve the performance of greedy
forwarding. In a first phase, each node assigns itself an initial
coordinate. Subsequently, nodes adjust their coordinates by
simulating a system of springs and repulsion forces. Based on
this, greedy routing is performed with high only about 15 %
overhead compared to using real addresses.

In the hop id routing scheme [17], each node maintains a
hop id, which is a multidimensional coordinate based on the
distance to some landmark nodes. Fundamentally, landmarks
can be randomly selected in the network. However, to obtain
better performance and reduce the effect of dead ends, the
authors present several methods for landmark selection. To
construct and maintain the hop id system, a voluntary node
first floods the entire network to build a shortest path tree.
Then, landmarks are selected. Finally, each node adjusts its
hop id periodically and broadcasts its new hop id using a hello
message.

The special case of unidirectional links has been investi-
gated in [10]. The developed virtual coordinate assignment
protocol (ABVCap Uni) supports routing in sensor networks
with unidirectional links. Based on available unique network
IDs of all nodes, the protocol tries to assign nodes with
unidirectional links into rings and to treat a ring as an extended
node. Routing is performed on virtual addresses assigned to
real nodes and extended nodes.

B. Contributions

In the first part of the paper, we analyze the routing
performance of virtual address based protocols. In particular,
we compare our protocol VCP to one of the most promising
approaches of virtual routing presented at SIGCOMM 2006,
namely VRR [8]. As a basis measurement, we compare both to
a typical MANET protocol, i.e. DYMO [18]. From the results,
we will see that both virtual address based protocols clearly
outperform the most recent MANET approach.

Therefore, in the second part of the paper, we study the
protocol behavior in the case of frequent node failures. Such
a scenario is not unusual in WSNs because nodes may fail,
e.g. due to energy outages, or just become “invisible” due
to changing conditions of the radio communication. For the

evaluation, we explicitly modeled a scenario that is similar to
the one described in the GHT paper [7] to be able to compare
the results to this approach as well. For this scenario, we
only consider VCP and VRR (and, relying on the published
simulation results, GHT).

The main contributions can be summarized as follows:
• We present an extended version of VCP that is able

to provide efficient routing and data storage and that is
capable to tolerate frequent node failures (Section II).

• In a comprehensive simulation study, we compare the
routing performance of the two virtual address based
protocols VCP and VRR to classical MANET protocols
using DYMO as an example (Section IV).

• The capability of the protocol to handle frequent node
failures is investigated in comparison to VRR and to
GHT – for the latter relying on measures available in
the literature (Section V).

II. VIRTUAL CORD PROTOCOL

The idea behind the Virtual Cord Protocol (VCP) is to
combine data lookup with routing techniques in an efficient
way. VCP accomplishes this by placing all nodes on a virtual
cord, which is also used to associate data items with. A hash
function is used to create values in a pre-defined range [S, E]
and all available nodes capture this range. Thus, each node
maintains a part of the entire range. The routing mechanism
relies on two concepts: First, the virtual cord can be used to
find a path to each destination in the network. Additionally,
locally available neighborhood information is exploited for
greedy routing towards the destination. In the following, the
operation of VCP is introduced including special extensions
for failure management.

A. Joining operation

One node must be pre-programmed as initial node, i.e. it
gets the position S. Furthermore, a number of initial variables
are initialized in the startup phase as listed in Table I. We
employ hello messages to discover the network structure,
i.e. all neighboring nodes and their position in the cord. In
the current implementation of VCP, the hello messages are
transmitted by means of broadcasting, i.e. each node broad-
casts a hello every Th s. Basically, the joining operation
can also be executed using an on-demand mechanism, which
has advantages in static networks or those with a high density.
Another requirement is that the first node is pre-programmed
with the smallest value of the entire range, i.e. S.

Based on the periodically transmitted hello messages, the
joining node gets information about its physical neighbors
and their adjacent nodes. Algorithm 1 depicts the handling of
hello messages. If the node has not yet joined the network,
it calls the SetMyPosition() function listed in Algorithm 2 to
get a relative position in the cord. The artificial join delay
Tps is used to prevent conflicts between multiple nodes that
simultaneously ask for relative positions.

Each node joining the network has to receive at least one
hello message from a node that already joined the cord in

112

TABLE I
INITIAL PARAMETERS FOR THE JOIN PROCESS

Parameter, Value Description
Start S = 0.0 lowest position on the cord
End E = 1.0 highest position on the cord

Position P = −1.0 current position in the cord, −1 means
the position is still unset

HelloPeriod Th = 1 s time interval between hello messages
SetPosDelay Tps = 1 s time interval before re-requesting a new

position
SetVPosDelay Tvps = 1 s time interval before requesting a virtual

position
BlockDelay Tb = 1 s blocking period to prevent assigning the

same position to more than one node
Interval I = 0.1 interval between the two end positions

[S, E] and successor or predecessor
position

VirtInterval Iv = 0.9 interval between node position and
virtual node position

Algorithm 1 Handle hello messages
Require: Locally stored state of all neighbors in set N
Ensure: Maintain neighbor set N and set virtual address

1: Receive neighbor information from node Ni

2: if Ni /∈ N then
3: N ← Ni

4: else
5: Update Ni ∈ N
6: end if
7: if P == −1 AND (Time() − OldTime) > Tps then
8: OldTime ← Time()
9: SetMyPosition()

10: end if

order to get a relative position in the cord. If a node can
communicate with an end node (lines 2–17 in Algorithm 2),
i.e. a node that has either position S or E, the new node takes
over this end value as its virtual cord position. The old node
gets a new position between the end value and its successor or
predecessor depending on the its old position. The new node
becomes predecessor of the old node if it received position S.
Otherwise it becomes its successor.

If a node can communicate with two adjacent nodes in
the cord, the new node gets a position between the values
of the two adjacent nodes (lines 20–27). Additionally, the
new node becomes successor of the old node with the lower
position value and predecessor to the node that has the higher
position value. The call of SendBlockReq() requests a position
update at both neighbors. If successful, this is replied with
an acknowledgment, which, in turn, activates the temporally
stored position information.

Finally, if the new node can communicate with only one
node in the network, which is neither at S nor E, then the
new node asks that node to create a virtual position (lines 29–
33). This virtual node gets a position between the position of
the real node and its successor or predecessor. The new joining
node can now get a position in between the real and the virtual
position of the node in the cord. Notice that the node has to
wait some time, i.e. Tvps, before asking for a virtual node.

Algorithm 2 SetMyPosition()
Require: Neighbor information stored in set N

1: for ∀Ni ∈ N do
2: if Position(Ni) == S) then
3: if Successor(Ni) < S) then
4: Ptemp ← E)
5: else if Successor(Ni) == E then
6: Ptemp ← (S + E)/2
7: else
8: Ptemp ← Successor(Ni) − I × (Successor(Ni) −

Position(Ni))
9: end if

10: SendNewPositionToNeighbor(Ni, Ptemp)
11: else if Position(Ni) == E then
12: if Successor(Ni) == S then
13: Ptemp ← (S + E)/2
14: else
15: Ptemp ← Predecessor(Ni) − I ×

(Predecessor(Ni)− Position(Ni))
16: end if
17: SendNewPositionToNeighbor(Ni, Ptemp)
18: else
19: found ← 0
20: for ∀Nj ∈ N : i 6= j do
21: if Predecessor(Ni) == Position(Nj) then
22: found ← 1
23: Ptemp ← (Position(Ni) + Position(Nj))/2
24: temporally store positions of Ni and Nj

25: SendBlockReq(Nj , Ptemp)
26: end if
27: end for
28: if found == 0 then
29: if (Time() − OldVTime) > Tvps then
30: OldVtime ← Time()
31: temporally store position of Ni

32: SendCreatVirtualNode(Ni)
33: end if
34: end if
35: end if
36: end for

This timeout is used to encourage the node to find multiple
neighbors, i.e. to get a proper position in the cord without the
need to setup a virtual position. We noticed that fewer virtual
nodes lead to better routing paths. More details on the creation
of virtual nodes can be found in [9].

Figure 1 shows the joining process for a six node network.
The outer circle indicates the communication range of the
newly joining node. In the first five steps, nodes are placed in
the cord according to the simple rule to create new addresses
either at an end or in the middle of the cord. In the sixth step,
a virtual node is created to join node 0.52.

Figure 2 depicts the network after adding 15 nodes. Routing
in VCP is done using the virtual cord. Additionally, local
neighborhood information is exploited for greedy routing. The

113

0.52

0.5 0.75 1

0.6

0
0.5 0.75 1

0

0 1 0.5 1

0

0

0.5 0.75 1

0.6

0

Fig. 1. Basic join operation in VCP, six nodes are joining the network
according to the rules described in Algorithm 2

0.53

0.52

0.5 0.75

0.78

0.8 1

0.9
0.6

0.67

0.130

0.25

0.4

0.43

Fig. 2. An example for a routing path using the virtual cord and greedy
routing exploiting local neighborhood information

greedy forwarding works as follows: a node with relative
position P forwards a packet to its neighbor Ni that has the
closest virtual position to the destination Dp. The forwarding
is terminated if no more progress is possible, i.e. the local
coordinate P is closest Dp. Based on the established cord,
VCP will never get stuck in dead ends. Preliminary studies
have shown that the path stretch is quite optimal. Also,
it is clear that the joining of a new node only affects a
small number of nodes in the vicinity of the node and it is
independent of the total number of nodes in the network. In
fact, the insertion of a new node only affects O(m), where m
is the number of successors.

B. Failure management

The presented cord management is working very well as
long as all nodes stay available after forming the cord. Greedy
forwarding can guarantee the reachablility of the destination
only if there is no failure. However, in case of node failures,
greedy forwarding might fail and the cord becomes unstable.
To overcome the problem of finding the a path towards the
destination in case of node failures, we propose a new schema
to find an alternative path.

We use hello messages to identify failed nodes. In partic-
ular, we store the timestamp of the last hello message in the
routing table, i.e. the physical neighbor table, in addition to

successor and predecessor positions. If a node did not receive a
hello message from a neighbor for n×Th s, where Th is the
hello message period, this neighbor is marked as a dead node.
From the available information in the routing table, each node
can locally check whether the correct destination of a packet
is this dead neighbor itself or one of this neighbor’s physical
neighbors.

During packet routing there are two cases in which greedy
forward cannot reach the correct destination because of a
dead end in the cord. The first case is to reach a physical
neighbor of the failed node. In this case, the packet can be
either dropped or stored within the neighbor of the failed node.
If the operation was to retrieve data items, the connection is
counted as not successful. In future work, we plan to add data
replication techniques to counteract this case.

Secondly, the failed node is the next hop towards the
destination but not the final destination itself. In this case,
we have to find an alternative path. The procedure is as
follows. The neighbor of the failing node locally creates a
so called no path interval NP-I. This interval corresponds
to the range of IDs that the dead node was responsible
for. Then, the node sends a no path (NP) packet, which
includes NP-I to another active node in its neighborhood.
This node is selected according to its position in the cord
that should be as close as possible to NP-I. In order to
prevent routing loops, this information needs to be stored on
all nodes involved in this process. However, the stored NP-
I data is expected to be expired after Tnp s. From now on,
each node either transmits the data using greedy forwarding
towards the destination if there is a neighboring node closer to
the destination available, or it continues to send NP packets.
Using the stored NP-I data, this information will never be sent
twice. If a NP packet reaches a node, which already has NP-
I in its table, it has to send a no path back (NPB) packet
as an indicator of a detected loop. The procedure of treating
routing packets is shown in more detail in Algorithm 3. The
interval [Pmin, Pmax] is maintained by evaluating the distance
between the current node and the neighbors on the cord. In
particular, this interval is used to identify the final destination
for each packet. The no path interval NP-I is maintained by

Algorithm 3 Handle routing packets
Require: Received data packet D for destination position Dp,

locally maintained data set [Pmin, Pmax]
1: if Pmin ≤ Dp ≤ Pmax then
2: StoreData()
3: else if D ∈ NP-I then
4: Send(NPB, D)
5: else if ∃Ni ∈ N : |Position(Ni)−Dp| < |P −Dp| then
6: Send(Ni, D)
7: else
8: ComputeNoPathInterval()
9: Send(NP, D)

10: end if

114

0.3 0.24 0.69 0.61

0.35 0.41 0.47 0.51

0.0 0.18 0.73 0.8

0.05 0.12 1.0 0.9

Fig. 3. Routing in case of a node failure: node 0.41 generates a NP packet
that is forwarded until node 0.69 continues to regularly forward the packet

the function ComputeNoPathInterval(). In short, it just checks
the locally stored NP information, updates the timeouts and
expires old entries.

An example for packet forwarding in case of a node failure
is illustrated in Figure 3. In this example, node 0.0 produces a
data packet destined to address 0.52. According to the greedy
routing principles of VCP, the data packet will be forwarded
by nodes 0.30 and 0.35 until it reaches node 0.41. At this node,
a dead end is detected because the previously existing node
0.47 has failed. Thus, node 0.41 will create a no path interval
NP-I and, accordingly, send a NP packet back the path to node
0.35. Similarly, the NP packet is forwarded until it reaches
node 0.24. This one, according to the programmed rules, tries
node 0.47 again, however, 0.47 detects a loop and sends a NPB
packet to node 0.24. In turn, node 0.24 tries to find another
path by sending a NP packet to node 0.69. Finally, this node
can resume greedy forwarding toward destination node 0.51.

III. SIMULATION MODEL AND PARAMETERS

For analyzing the performance of the virtual address based
routing protocols VCP and VRR, we implemented these
models in OMNeT++. Furthermore, we used our recently
implemented model of the DYMO routing protocol, which is
now publicly available [19]. OMNeT++ is a discrete event
based simulator free for academic use. Additionally, we used
the INET framework that provides detailed simulation models
of the MAC and the physical layer. In our simulation, we built
our protocol on the top of the IEEE 802.11 WLAN protocol.

For all communications, the complete network stack is
simulated and wireless modules are configured to closely re-
semble IEEE 802.11b network cards transmitting at 2 Mbit/s
with RTS/CTS disabled. For the simulation of radio wave
propagation, a plain free-space model is employed, with the
transmission ranges of all nodes adjusted to a fixed value
of 50 m. All simulation parameters used to parameterize the
modules of the INET Framework are summarized in Table II.

In our experiments, 100 nodes are deployed either in form
of a grid or randomly on a rectangular area. A single node
is dedicated as the sink node and placed on the upper left
corner of the playground. We allowed for an initial transient
period of 400 s in which VCP and VRR initialize their address
information and routing tables. Afterwards, each node starts
transmitting at a time in the range [400, 418] s for a data rate
of 1 pps and in the range [400, 580] s for a data rate of 0.1 pps.

TABLE II
INET FRAMEWORK MODULE PARAMETERS

Parameter Value
mac.address auto
mac.bitrate 2Mbit/s

mac.broadcastBackoff 31 slots
mac.maxQueueSize 14Pckts

mac.rtsCts false
snrEval.bitrate 2Mbit/s

snrEval.headerLength 192bit
snrEval.snrThresholdLevel 4dB

snrEval.thermalNoise −110dB
snrEval.sensitivity −85dB

snrEval.pathLossAlpha 2.5
snrEval.carrierFrequency 2.4GHz
snrEval.transmitterPower 1mW

TABLE III
SIMULATION PARAMETERS

Input Parameter Value
Number of Nodes 100

Playground size 1 80× 180m2 or
4 00× 400m2

Node placement Grid and random
Data rate CBR, 1pps or 0.1pps

Initialization time 400 s
Start of data transmission uniformly distributed in

[400, 418] s or
[400, 580] s

End of data transmission 490 s or 1300 s
Destination node Upper left node

Fraction of failing nodes 0%, 20%, 40%, 60%,
80%, or 100%

On time uniformly distributed in
[0, 120] s

Off time uniformly distributed in
[0, 60] s

Start of node failures 400 s
End of node failures 1300 s

The experiment is terminated at 490 s or 1300 s, respectively.
For the second set of experiments, we analyzed the failure

tolerance of the routing protocol by periodically switching
a fraction of the nodes on and off (except the sink node).
Both the on and off intervals are uniformly distributed in a
pre-defined range. After a node is re-activated, it needs to
re-join the network and re-establish its routing information.
For statistical evidence, for each experiment, we performed
ten runs. All the simulation parameters are summarized in
Table III. For evaluation, we selected four basis measures.
First, we analyzed the success ratio, which describes the
capability of the protocol to ensure correct data delivery. Then,
the MAC collisions were analyzed to get an impression of the
overall network load. Furthermore, the path length is evaluated
and, finally, the end-to-end delay.

All results discussed in the following sections are shown
as boxplots. For each data set, a box is drawn from the first
quartile to the third quartile, and the median is marked with a
thick line. Additional whiskers extend from the edges of the
box towards the minimum and maximum of the data set. Data
points outside the range of box and whiskers are considered
outliers and drawn separately. Additionally, the mean value is
depicted in form of a small filled square.

115

(a) Per-hop delay of VCP (b) Per-hop delay of VRR (c) Per-hop delay of DYMO

Fig. 4. Delay performance of VCP, VRR, and DYMO in the grid scenario: depicted is the latency as observed by the application normalized to the path
length; all figures are plotted using a log scale y-axis

(a) Collisions of VCP (b) Collisions of VRR (c) Collisions of DYMO

Fig. 5. MAC layer collisions per date packet sent for VCP, VRR, and DYMO in the grid scenario

IV. ROUTING PERFORMANCE OF VIRTUAL-ADDRESS
BASED PROTOCOLS

In a first set of simulation experiments, we evaluated the
routing performance of VCP. In particular, we compare VCP
to VRR, a competitive approach relying on virtual coordinates
for routing, and to DYMO, which is the most recent standard
of ad hoc routing protocols as developed by the IETF MANET
working group. We rely on the simulation settings as described
in Section III. Basically, these settings represent a basis for
analyzing the routing performance in sensor networks [8], [9].

Fig. 6. Path lengths of VCP and VRR for low and high density scenarios

In a first measure, we evaluated the end-to-end delay as
observed by the application. In a number of different experi-
ments, we analyzed the protocol behavior for different network
densities and traffic rates. Also, we evaluated the influence
of the network topology, i.e. grid or random. The results
for the grid scenario are depicted in Figure 4 (for random
deployment, the results are similar). For better comparability,
we normalized the latency to the path length, i.e. to a per hop
delay. As can be seen, the per hop delay for VCP and VRR
is quite similar. Both, the mean and the median are at about
1 ms. Some outliers can be observed up to about 10 ms. Both
protocols are very robust w.r.t. the network density and the
traffic load. Differently, the MANET routing protocol DYMO
performed slightly worse for higher traffic load (depicted as
1 s traffic pattern). For lower traffic rates, the observed delay
increases largely. This effect can be explained by the route
timeouts used by DYMO in our experiment. In the ten seconds
example, DYMO has to set up a route for almost each packet
because the available routes have timed out. Thus, each time
an additional route setup delay adds to the transmission delay.

For the analysis of routing protocols designed for wireless
networks, a main measure to observe is the number of MAC
layer collisions. This metric helps to evaluate the overall load
in the network. Figure 5 shows the results for the grid scenario
(for random deployment, the number of MAC collisions shows

116

(a) Success rate of VCP (b) Success rate of VRR (c) Collisions of VCP (d) Collisions of VRR

Fig. 7. Failure performance: depicted are the success rate and number of MAC collisions for the grid scenario

(a) Delay of VCP (b) Delay of VRR (c) Path length of VCP (d) Path length of VRR

Fig. 8. Failure performance: depicted are the per hop delay and the path lengths for the grid scenario

a higher variance but a similar trend). In particular, the number
of MAC collisions is almost zero for the virtual address based
routing protocols (for the high density scenario, VRR shows
about 5 % collisions per data packet sent, which is negligible).
However, the number of collisions is quite high for DYMO.
This is not an effect of collisions among data messages but
among the periodic hello messages. With decreasing data rates,
the percentage of hellos to normal data messages increases and
only effects (collisions) of hellos can be measured.

Finally, we evaluated the stretch ratio, i.e. the deviation of
path length calculated by the virtual address based routing
protocols to the shortest path. It turned out that in all the
scenarios the measured stretch ratio was in the interval of
[1, 1.25]. This measure was independent of the network size
and density as well as of the deployment topology. Also, VCP
and VRR provided almost similar results. A deviation of 25 %
from the shortest path can especially considered acceptable
if the observed end-to-end latency is not being influenced to
a large degree. Figure 6 depicts the typical path lengths as
observed during the simulation runs for the low and the high
density scenarios. As can be seen, the path length used by
VRR is slightly higher compared to the VCP paths.

V. PROTOCOL BEHAVIOR IN PRESENCE OF NODE
FAILURES

In a second set of experiments, we focused on the pro-
tocol behavior in presence of frequent node failures. As a

node failure, we consider in general any event that prevents
communication to a particular node at a given time, e.g.
complete energy outages and node replacement, or interrupted
communications due to changes in the radio propagation. For
these experiments, we only consider VCP and VRR because
the network load (and therefore the collision probability)
increases too much for MANET protocols such as DYMO.

The general setup is the same as used for evaluating the
routing performance. However, we further introduced node
failures as described in Section III. We follow the simulation
setup described in [7]. In particular, failing nodes are modeled
as a uniformly distributed on/off process. We increase the
number of nodes toggling their state from 0 % to 100 %. Four
metrics were choosen for the performance comparison. In all
the figures, we show results for the grid scenario. For random
deployment, the variance was sightly higher but the trend of
the results was exactly the same.

First, we investigated the success rate, i.e. the number of
transmissions that were completed successfully. Figures 7a
and 7b depict the measured success rate for VCP and VRR,
respectively. As can be seen, the ratio of successful trans-
mission degrades with the number of failing nodes. However,
VCP still maintains a success rate of about 70 %–80 %. In
contrast, the success rate degrades much faster for VRR (down
to 50 %). A look at the network load reveals some effects
that explain the reduced success rate of VRR compared to

117

VCP. Figures 7c and 7d show the number of MAC layer
collisions. As can be seen, there are almost no collisions for
VCP, which outlines the capability of this protocol to work
even in extreme failure situations. On the other hand, VRR
needs many state maintenance operations that lead to increased
network congestion.

When VRR enters the transmission phase after its initial
join phase, it simply forwards packets to the nodes that has the
closest ID to the packet ID. It needs to be noted that “closest”
ID means the ID that is closest on the virtual ring. When
the network size increases and many nodes fail periodically,
the node’s forwarding table becomes incomplete and only
represents a local view of the whole network. VRR has two
different strategies to handle such failure situations: exact
repair and local “vset-path” repair. The idea is to bypass the
failed node. However, this technique only works for a few
node failures.

This effect can also be observed when looking at the latency
performance. Figure 8a shows that the median per hop delay
of VCP is not affected by the failing nodes. Differently, the
delay of VRR (Figure 8b increases with the failure ratio.

Finally, we looked at the path length that outlines the capa-
bility of the routing protocol to find shortest paths even in case
of many node failures. Figures 8c and 8d depict the simulation
results. While the average path length is slightly shorter for
VCP, some single outliers correspond to special cases in which
the virtual cord needs to be used for routing instead of the
optimal greedy routing between physical neighbors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an extended version of VCP that
supports improved failure tolerance. Basically, our goal was
to emphasize the benefits of virtual coordinate based routing
schemes in WSNs. Therefore, we compared the routing perfor-
mance of virtual address based protocols, in particular VCP
and VRR with a typical ad hoc routing protocol (DYMO).
The results show that VCP shows similar routing performance
as VRR in the optimal case, i.e. no node failures. However,
in case of node failures, VCP demonstrates its strengths
of efficient cord management. VCP shows a much better
tolerance to node failures compared to VRR due to its low
maintenance overhead. Together with the capabilities of virtual
address based protocols to manage data using an application-
specific hash function, we conclude that such approaches
are better suited for WSNs, especially if these networks are
dynamic w.r.t. node failures. Future work includes studies of
the suitability of different hash functions for content replica-
tion in sensor networks. Additionally, we are working on an
implementation on real sensor nodes for first lab experiments.

ACKNOWLEDGEMNTS

This work was partially supported by DAAD grant “Peer-
to-peer techniques for sensor networks” under grant number
331 4 04 001.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Elsevier Computer Networks, vol. 38, pp.
393–422, 2002.

[2] K. Akkaya and M. Younis, “A Survey of Routing Protocols in Wireless
Sensor Networks,” Elsevier Ad Hoc Networks, vol. 3, no. 3, pp. 325–349,
2005.

[3] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data
Aggregation in Wireless Sensor Networks,” in International Workshop
Distributed Event Based System (DEBS 2002), Vienna, Austria, July
2002.

[4] R. Govindan, “Data-centric Routing and Storage in Sensor Networks,”
in Wireless Sensor Networks, C. S. Raghavendra, K. M. Sivalingam, and
T. Znati, Eds. Springer, 2004, pp. 185–205.

[5] J. Gehrke and S. Madden, “Query Processing in Sensor Networks,” IEEE
Pervasive Computing, vol. 3, no. 1, pp. 46–55, January-March 2004.

[6] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applica-
tions. Springer, 2005, vol. LNCS 3485.

[7] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
and F. Yu, “Data-Centric Storage in Sensornets with GHT, a Geo-
graphic Hash Table,” ACM/Springer Mobile Networks and Applications
(MONET), Special Issue on Wireless Sensor Networks, vol. 8, no. 4, pp.
427–442, August 2003.

[8] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual Ring Routing: Network routing inspired by DHTs,” in SIG-
COMM 2006, Pisa, Italy, September 2006.

[9] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord Proto-
col (VCP): A Flexible DHT-like Routing Service for Sensor Networks,”
in 5th IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (IEEE MASS 2008). Atlanta, GA: IEEE, September 2008, pp.
133–142.

[10] C.-H. Lin, B.-H. Liu, H.-Y. Yang, C.-Y. Kao, and M.-J. Tasi, “Virtual-
Coordinate-Based Delivery-Guaranteed Routing Protocol in Wireless
Sensor Networks with Unidirectional Links,” in 27th IEEE Conference
on Computer Communications (IEEE INFOCOM 2008). Phoenix, AZ:
IEEE, April 2008.

[11] F. Dressler and F. Chen, “Dynamic Address Allocation for Self-
organized Management and Control in Sensor Networks,” International
Journal of Mobile Network Design and Innovation (IJMNDI), vol. 2,
no. 2, pp. 116–124, 2007.

[12] A. Awad, R. German, and F. Dressler, “P2P-based Routing and Data
Management using the Virtual Cord Protocol (VCP),” in 9th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(ACM Mobihoc 2008), Poster Session. Hong Kong, China: ACM, May
2008, pp. 443–444.

[13] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” in 6th ACM International Conference on Mobile
Computing and Networking (ACM MobiCom 2000), Boston, MA, 2000,
pp. 243–254.

[14] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic Routing without Location Information,” in 9th ACM In-
ternational Conference on Mobile Computing and Networking (ACM
MobiCom 2003), San Diego, CA, September 2003.

[15] K. Liu and N. Abu-Ghazaleh, “Aligned Virtual Coordinates for Greedy
Routing in WSNs,” in 3rd IEEE International Conference on Mobile
Ad Hoc and Sensor Systems (IEEE MASS 2006). Vancouver, Canada:
IEEE, October 2006, pp. 377–386.

[16] B. Leong, B. Liskov, and R. Morris, “Greedy Virtual Coordinates
for Geographic Routing,” in 15th IEEE International Conference on
Network Protocols (ICNP 2007), Beijing, China, October 2007, pp. 71–
80.

[17] Y. Zhao, Y. Chen, B. Li, and Q. Zhang, “Hop ID: A Virtual Coordinate-
Based Routing for Sparse Mobile Ad Hoc Networks,” IEEE Transactions
on Mobile Computing, vol. 6, no. 9, pp. 1075–1089, September 2007.

[18] I. Chakeres and C. Perkins, “Dynamic MANET On-Demand (DYMO)
Routing,” Internet-Draft (work in progress) draft-ietf-manet-dymo-
10.txt, July 2007.

[19] C. Sommer, I. Dietrich, and F. Dressler, “A Simulation Model of DYMO
for Ad Hoc Routing in OMNeT++,” in 1st ACM International Confer-
ence on Simulation Tools and Techniques for Communications, Networks
and Systems (SIMUTools 2008): 1st ACM International Workshop on
OMNeT++ (OMNeT++ 2008). Marseille, France: ACM, March 2008.

118

